
Scalable Action Mining for Recommendations to Reduce Hospital
Readmission

Abstract

Hospital re-admission problem is one of the long-
time issues of healthcares in USA. Unplanned re-
admissions to hospitals not only increase cost for pa-
tients, but also for hospitals and taxpayers. Action
mining is one of the data mining approaches to rec-
ommend actions to undertake for an organization or
individual to achieve required condition or status. In
this work, we propose a scalable action mining method
to recommend hospitals and taxpayers on what actions
would potentially reduce patient readmission to hos-
pitals. We use the Healthcare Cost and Utilization
Project(HCUP) databases to evaluate our approach.
All our proposed scalable approaches are cloud based
and use Apache Spark to handle data processing and to
make recommendations.

1 Introduction

US hospital expenditures are proven increasing for
the past 2 decades, constituting total spending of $3.3
trillion and 17.9% of US economy as of 2016, given
by US health records [11]. These expenditures are at-
tributed due to various factors like inpatient care price,
ambulatory prices, pharmaceutical prices, unnecessary
visits, and emergency services apart from other social
factors like population growth and aging [8]. Out of
these, research show that 31% of the expenditures are
due to inpatient care [14] and 20%-30% of patients gets
readmission within 30-90 days of discharge [12].

Data mining offers several techniques to extract sur-
prising, unknown, and interesting knowledge patterns
from a massive data. The rule based learning is one of
the simple data mining methods that intends to iden-
tify, learn, and recommend knowledge as rules. Many
rule based methods like association rules and decision
rules exist to generate rules to associate patterns and
classify data respectively. In general, we represent rules
as given in Equation 1, where the antecedent is a con-
junction of conditions and the consequent is the result-

ing pattern in the given data for the given conditions
in antecedent.

condition(s)→ result(s) (1)

Action rule is also a knowledge extraction technique
developed in the context to recommend possible tran-
sitions for a person to move from one state to another.
For example, recommending the business to improve
customer satisfaction [17] and sentiment analysis on
Twitter [19]. Action rules follow the representation,
similar to Equation 1, as given in Equation 2, where
Ψ represents a conjunction of stable features, (α→ β)
represents a conjunction of changes in values of flex-
ible features and (θ → φ) represents desired decision
action.

[(Ψ) ∧ (α→ β)]→ (θ → φ) (2)

The existing actionable pattern extraction algo-
rithms [24, 22] extract knowledge efficiently when the
data is small, which is not the case in this era of big
data. Limited research like MR-Random Forest[26],
SARGS [3], and distributed Association Action Rules
mining [5] has been done on extracting Action Rules
in a distributed scenario. The ultimate challenges in
extracting Action Rules in a distributed fashion is that
distribution of data among the computation nodes has
to be done in such a way that there is minimum loss
of actionable knowledge extracted from the distributed
data. In this paper, we propose an extension to our
previous work on distributed actionable pattern min-
ing [5]. We propose additional parameters, robust data
distribution strategies to the existing methodology for
extracting actionable patterns in cloud setup and com-
pare its efficiency across all previous methods. We use
the Healthcare Cost and Utilization Project (HCUP)
databases [9, 10] as use case for the proposed pattern
extraction method. Particularly, we aim to extract ac-
tionable recommendations from the HCUP datasets,
that help hospitals to give better care to its patients
and reduce their overall costs for patients in the future.

2 Related Work

Unplanned hospital readmissions are expensive for
both patients and healthcare, and they create unfor-
tunate outcomes to everyone(patients, physicians, tax
payers, and healthcare systems) [14]. Many research
studies have focused on using the voluminous real world
datasets for healthcare applications and decision mak-
ing using such data mining and knowledge extraction
techniques [15]. For example, in particular to hospi-
tal readmission, researchers created a machine learning
model to predict patient readmissions using just billing
codes and basic patient admission characteristics [12].
Some focus on predicting the liklihood of patient read-
mitting to the hospital, modelled as risk prediction,
using Support Vector Machines [6], Logistic Regres-
sion [23], and Neural Networks [28]. Recently, there is
an interesting study on designing a personalized pro-
cedure graphs, which gives a probability on patient’s
future procedure and recommend hospitals in making
decisions for a patient [1, 2].

In the literature, action rules are extracted using
two methods. First method is a rule based approach,
in which intermediate classification rules are extracted
first using efficient rule generation algorithms such as
LERS or ERID. From these extracted rules, action
rules are generated with systems like DEAR [24], which
extracts Action Rules from two classification rules, or
ARAS [22], which extracts Action Rules using a sin-
gle classification rule. Second method is object-based
approaches, in which the Action Rules are extracted
directly from the decision table without any intermedi-
ary steps. Systems ARED [13] and Association Action
Rules [20] works in the object-based approach. Al-
gorithms, except association action rules, runs much
faster with the aim of extracting rules that are bene-
fits the user to the maximum and extracts only limited
recommendations.

Recently, due to the advent of big data, some re-
search [26, 3, 5, 4] started applying distributed com-
puting frameworks like MapReduce [7] and Spark [27]
have been done to extract actionable recommendation
completely in a clustered setup. All these methods aim
to extract complete/approximated results, showing ef-
ficiency over non-parallel methods for big datasets.

3 Background

In this section, we give basic knowledge about De-
cision system, Action Rules and Spark frameworks to
understand out methodology.

3.1 Decision System

Information System can be represented as T =
(X,A,V) where,
X is a nonempty, finite set of data objects or rows
A is a nonempty, finite set of attributes
Vi is the domain of attribute a which represents a

set of values for attribute i|i ∈ A
An information system becomes Decision system, if

A = ASt∪AFl∪d, where D is a decision attribute. The
user chooses the attribute d if they wants to extract
desired action from di : i ∈ Vd. ASt is a set of Stable
Attributes and AFl is a set of Flexible Attributes. For
example, ZIPCODE is a Stable Attribute and User
Ratings can be a Flexible Attribute.

3.2 Action Rules

In this subsection, we give definitions of action
terms, action rules and properties of action rules [21]

Let T = (X,A ∪ d,V) be a decision system, where
d is a decision attribute and V = ∪Vi : i ∈ A. Action
terms can be given by the expression of (m,m1 → m2),
where m ∈ A and m1,m2 ∈ Vm. m1 = m2 if m ∈ ASt.
In that case, we can simplify the expression as (m,m1)
or (m = m1). Whereas, m1 6= m2 if m ∈ AFl

Action Rules can take a form of t1∩t2∩....∩tn, where
ti is an atomic action or action term and the Action
Rule is a conjunction of action terms to achieve the
desired action based on attribute D. Example Action
Rule is given below: (a, a1 → a2).(b, b1 → b2) −→
(D,D1 → D2)

3.2.1 Properties of Action Rules

Action Rules are considered interesting based on the
metrics such as Support, Confidence, Utility and Cov-
erage. Higher these values, more interesting they are
to the end user.

Consider an action rule R of form:
(Y1 → Y2) −→ (Z1 → Z2) where,
Y is the condition part of R, which comprise of se-

quence of action terms
Z is the decision part of R
In [21], the support and confidence of an action rule

R is given as
Support(R) = min{card(Y1 ∩ Z1), card(Y2 ∩ Z2)}

Confidence(R) = [card(Y1∩Z1)
card(Y1)

] · [card(Y2∩Z2)
card(Y2)

]

Coverage of an Action Rule means that how many
decision from values, from the entire decision system
S, are being covered by all extracted Action Rules. In
other words, using the extracted Action Rules, Cov-
erage defines how many data records in the decision
system can successfully transfers from Z1 to Z2

Table 1: Interesting attributes in the datasets

Attribute
Name

Attribute Description

DX, DXCCS Diagnosis codes representing all
diagnosis that a patient follows
during their hospital visit

PR, PRCCS Procedure codes representing all
procedures that are followed on a
patient during their hospital stay

LOS Length of hospital stay
VisitLink Identifier of a patient
DaysToEvent Number of days before next ad-

mission

4 Dataset Description

Figure 1: Representation of number of patients in
Florida with their corresponding readmission frequency
in 2011-2012

The use case that we used for this research is the
medical domain data: Healthcare Cost and Utilization
Project(HCUP) data. For our analysis we use the H-
CUP State Inpatient Data (SID) of the state Florida
of years 2011-2012 [10]. All our data are organized as
each data record representing a patient’s hospital visit
and each patient visit has 298 attributes. Table 1 give a
brief description about interesting attributes that are
available in our datasets and that we use in all our
methods. In total, our SID dataset has 4,008,182 pa-
tient visits of 2,625,083 unique patients. Although, we
do not have a separate boolean attribute called Read-
mitted, we measure this attribute for each patient visit
using attributes LOS and DaysToEvent. Based on this
measured Readmitted, attribute, we give a plot on num-
ber of patients with their corresponding number of hos-
pital readmission in Figure 1. From this figure, we can
note that the number of patients who have been read-
mitted to the hospitals at very low frequency decreases
constantly and have sudden spikes between readmis-
sion frequencies 40 and 60, and becomes constant for

higher frequencies. We also note that almost 72% pa-
tients in the data has atleast been readmitted to the
hospital atleast once.

Figure 2: Top 15 diagnosed diseases for patients in
Florida based on their frequency in 2011-2012

Out of 298 attributes, 70% of the attributes are allo-
cated to mark diagnoses and procedures that a patient
follows during their hospital stay. Most importantly,
these diagnoses and procedures are represented as ICD-
9-CM (International Classification of Diseases, Ninth
Revision, Clinical Modification) codes. The data re-
ports two varieties of diagnoses and procedures for cov-
ering these ICD-9-CM codes. One is simple ICD-9-CM
code with around 8,900 unique codes in all diagnoses
and procedures and the other is an Clinical Classifi-
cation Software(CCS) with around 520 unique codes,
which are aggregated versions of ICD-9-CM codes. In
all our experiments, we use the later versions of codes.

In Figure 2, we represent diseases that have
been most diagnosed in Florida in years 2011 and
2012. Interestingly in the data, most diagnosed dis-
ease(Choronary Heart Disease) is not present in the top
procedures list and similarly, the top procedure(Benign
Neoplasm) is not present in top diagnosis. According
to our data, almost 12% of patient visit are resulted
in death after following certain procedures to cure dis-
eases.

5 Methodology

5.1 Data Partitioning strategies

We emphasize the concept of semantic data parti-
tioning module in our actionable recommendation ex-
traction system. It is the special case of the technique
proposed in [2], where they define Personalization as
all possible combinations of diseases that a patient have

been followed in all their hospital vists. Since such
partitioning creates sparse data clusters and results in
complex result aggregation, we create partition for all
possible diagnosis and bucket all patient visits that fol-
low diagnosis for these diseases. This significantly re-
duces the number of data partitions and all partitions
have fair number of patient visits to extract recom-
mendations from them. With this data distribution
strategy, we perform horizontal data partitioning, sim-
ilar to [3], but more semantically instead of random
partitioning and later divide the number of attributes
in the data by vertical data distribution [5]. Since
one big data is broken into multiple chunks of small
resilient distributed datasets, we can extract action-
able patterns from all such small partitions in parallel.
However, the small chunks may sometimes increase the
complexity of our algorithms proposed in previous sec-
tions. For that reason, we propose the following load
balancing approach to handle the situations, where the
data has large number of attributes.

5.2 Privacy settings and Load balancing modules

In addition to parameters that we assign for extract-
ing action rules, we define two parameters for privacy
settings and load balancing in our algorithms to man-
age privacy and efficiency respectively.

5.2.1 Privacy parameters

The data that we use for extracting actionable recom-
mendations may comprise of sensitive information like
user identifiers, places, and practices. Some of these
information when placed together reveals greater pri-
vacy details to others. In most of the cloud computing
techniques, the data is distributed to multiple servers
and the corresponding algorithms use such distributed
data to mine or extract patterns. Since the data gets
distributed to multiple servers, privacy of the data may
get compromised and it is important to address such
issues. Although, we do not handle such problems al-
gorithmically, we give options to users to set input pa-
rameters that gives intuition to our data partitioning
module on which attributes to be given more impor-
tance.

5.2.2 Load balancing parameter

Load balancing is another issue in cloud computing
that we address in this work for extracting actionable
recommendations. Our methods handles two levels of
load balancing. Attracted from dynamic load balanc-
ing algorithms like Ant Colonization Optimization [18]
and Honey Bee foraging [16], we propose load balanc-
ing that follows binary tree structure as given in Fig-
ure 3. We define a function that process this parameter

and split the data accordingly. This method is an ex-
tension of the vertical data partitioning methodology
given in Section 5.3. Instead of terminating the data
partitioning at depth 1, the data partitioning continues
to depth n in a binary fashion, based on the assigned
load balancing parameter. From the binary tree, each
node is a given as a load to the action rule extraction
algorithm and thus reducing the total load into tiny
chunks. Since assigning very high and very low value to
this parameter increases complexity of extracting pat-
terns, we recommend to set a mid-range value to this
parameter. For all our experiments, we set this param-
eter as 2. The next level of load balancing is in-built
load balancing functions in Apache Spark framework.

Figure 3: Binary Tree Load Balancing Strategy for
Data Distribution

5.3 Distributed Action rules extraction algorithm

Given the load balancing parameter, we require a
model to split the data at each level in the binary tree.
We use the information granules methods proposed by
Bagavathi et.al [5] to distribute the data. Information
granularity solutions can break bigger problems into
fine grained granules. Since our problem is with dis-
tribution of data, we incorporate information granules
to our method. Algorithm 1 gives a brief description
about the process we use to measure overlaps between
2 granules and sub granules in each granules.

We represent a finite set of attributes from the at-
tribute set A from the information system as gran-
ules. We minimize the correlations of granules given
by Equation 3, where C(G) represents correlation of
a sub-granule with sub-granules of the other granule
and m,n represents number of combinations of values
of granules 1 and 2 respectively. The idea is that with
minimum correlation between partitions, there is min-
imum combinations of results from multiple data par-
titions.

Algorithm 1 Granule Based Data Distribution

Require: dataSplit1, dataSplit2
function getScore(split1, split2)

2: splitSum← 0.0
for data1 in dataSplit1 do

4: p←[]
sc ← 0

6: for data2 in dataSplit2 do
L← data1.lines ∩ data2.lines

8: if L 6= ∅ then
p.addAll(L)

10: sc = sc + 1
if |p| == |data1.lines| then

12: splitSum + = 1/sc
break

14: return splitSum

split1Avg = getScore(split1, split2)/|dataSplit1|
16: split2Avg = getScore(split2, split1)/|dataSplit2|

return split1Avg − split2Avg

Table 2: Sub-granules of granules: A,B and C,D

A,B C,D
Y,N - {x1} N,D1 - {x1, x5, x8}

Y,H - {x2, x3} Y,D2 - {x2, x6, x7}
N,N - {x4, x6} Y,D1 - {x3}

N,H - {x5, x7, x8} N,D2 - {x4}

m∑
i=1

C(Gi) +
n∑

j=1

C(Gj)

2
(3)

Given an information system T, we run our op-
timization(minimizing Equation 3) on all granules:
({A,B} and {C,D},{A,C} and {B,D} . . .). Exam-
ple of such combinations and sub-granules are given
in Table 2. In the given example, the number of sub-
granules, m,n = 4. We measure the correlation of
each sub-granule(C(Gi),C(Gj)) by checking the over-
lap count of the sub-granule with sub-granules of other
granule. For example, C(GY,H) = 1

2 , since Y,H from
A,B overlaps with Y,D2 and Y,D1 of the granule C,D.

To extract actionable patterns, we follow a dis-
tributed version of Association Action Rules [20]. We
in particular choose this method because of its dispo-
sition over datasets with large number of attributes
and its ability to extract the complete knowledge in
an efficient execution time. Another advantage of this
method is to calculate properties of actionable patterns
such as support and confidence on the fly unlike other
algorithms, which waits until extracting all patterns.

Figure 4: Example Vertical Data Distribution for Table
1

Table 3: HCUP data attributes and Algorithm param-
eters

Property Description
Attributes 67 attributes with DX(1-

31) ; PR(1-31) ; Gender ;
Race ; IsHomeless

Stable attributes Gender ; Race ; IsHome-
less ; PR(1-31)

Decision attribute IsReadmitted
Required decision
action

IsReadmitted(1→ 0)

Minimum support 30
Minimum confi-
dence

40%

No. of diseases 262

6 Experiments and Results

To evaluate our methods(load balancing and ver-
tical data distribution), we use the existing cloud
based methodologies to extract actionable patterns
from large datasets. For all experiments, we use H-
CUP data (described in Section 4) and we use all meth-
ods to extract actionable patterns that recommends to
reduce hospital readmission. Following are the meth-
ods that we are evaluating this data:

1. Non-parallel approach [26]: A basic approach to
extract actionable patterns that does not incorpo-
rate any cloud based techniques to retrieve knowl-
edge

2. MR-Random Forest [25]: A Hadoop MapReduce
based approach that partitions the data in random
by rows and find patterns in them

(a) Vertical Data Distribution cluster usage

(b) Semantic Data Distribution cluster usage

Figure 5: Total cluster usage by simple vertical data
distribution and semantic data distribution

3. SARGS [3]: A Spark based approach that follows
stratified sampling to distribute the data

4. Simple vertical data partitioning [5]: The basic ap-
proach of the proposed methodology without load
balancing

Since all above methods cannot handle personaliza-
tion, we run these methods sequentially on all diseases.
In Table 3, we give a very short description about the
data and also, we give parameters that we set for all
the above algorithms. For semantic data distribution,
we split the data by their diagnosis codes first. We set
these partitioned data as a source of input for algo-
rithms.

In Table 4, we give the execution time of all our pro-
posed algorithms. We can note that for big datasets
like the HCUP data, the non-parallel version of the ac-
tion rule extraction method takes very long time to ex-
tract action rules. Whereas, the proposed cloud based
performs much faster than the non-parallel methods.
Particularly, our latest paralellized vertical data distri-
bution algorithm achieves better execution time com-
pared to other cloud based counterparts.

In Figure 5, we give total node usage in the clus-
ter by simple vertical data distribution and semantic
data distribution algorithms for the diagnosis code 250.
It is notable from this figure that the simple vertical
data distribution takes more than 1 hour to complete

(a) Vertical Data Distribution cluster memory

(b) Semantic Data Distribution cluster memory

Figure 6: Total cluster memory occupied by simple ver-
tical data distribution and semantic data distribution

extracting all actionable patterns, whereas the seman-
tic data distribution taken only around 17 minutes for
extracting the recommendations. Also we can note
that in the vertical data distribution method from Fig-
ure 5a, one or two nodes execute most of the time and
in our semantic data distribution method from Fig-
ure 5b utilizes much parallalization in the cluster.

We also give the cluster memory usage in Figure 6.
We can note that semantic data distribution in Fig-
ure 6b occupies only limited quantity of data in the
memory while the algorithm progress in extracting ac-
tionable patterns compared to the vertical data distri-
bution method in Figure 6a.

In Table 5, we give action rules of diagnoses given
in Table 4. We consider these actionable patterns as
recommendations to hospitals in such a way that for a
given disease, if the hospital provides treatment or care
for recommended diseases, hospitals can potentially re-
duce the number of hospital readmissions. For exam-
ple with disease code 250, if hospitals give treatment
for disease codes 21 (Bone cancer) and 251 (Abdomen
pain), hospitals can reduce readmission by 50%. The
support of 143 shows that the framework identifies 143
entries in the data to acquire this change.

Table 4: Execution time of algorithms for the HCUP data

Dataset Non-
parallel
algo-
rithm

MR-
Random
Forest

SARGS Vertical
Data
Distri-
bution

Semantic
Data
Distri-
bution

670(Mental Health
Disorders)

>2 days 3.87
hours

2.14
hours

49 mins 13.7 mins

250(Nausea & Vom-
iting)

>2.5 days 4.53
hours

2.62
hours

1.14
hours

17 mins

654(Developmental
disorders)

>2days 3.2 hours 1.8 hours 35 mins 11.5 mins

233(Intracranial
injury)

>2days 4.8 hours 2.3 hours 57 mins 13.8 mins

236(Open wounds) >2days 3.5 hours 2 hours 46 mins 8.6 mins

Table 5: Sample Action Rules from the HCUP data for
selected diagnosis

670(Mental Health Disorders)
250(Nausea & Vomiting)

1. H250AR1 : (DX, 21 (Bone Cancer) → 251
(Abdominal pain)) ⇒ (Readmission, 1− >
0)[Support : 143.0, Confidence : 58.68%]

2. H250AR2 : (DX, 21 (Bone Cancer) → 234
(Internal injury)) ⇒ (Readmission, 1 →
0)[Support : 38.0, Confidence : 60.52%]

654(Developmental disorders)

1. H654AR1 : (DX, 238 (Surgical procedure
complication) → 11 (Neck/Head Cancer)
) ⇒ (Readmission, 1 → 0)[Support :
49.0, Confidence : 51.43%]

2. H654AR2 : (DX, 45(Radiotherapy) → 100 (My-
ocardial infarction)) ⇒ (Readmission, 1 →
0)[Support : 44.0, Confidence : 63.72%]

233(Intracranial injury)

1. H233AR1 : (DX, 228 (Skull fracture)→ 52 (Nu-
tritional deficiency)) ⇒ (Readmission, 1 →
0)[Support : 65.0, Confidence : 51.5%]

7 Conclusion

In this work, we have provided an extension to our
existing work [5] by adding additional parameters to
set privacy settings and load balancing to the action-
able pattern extraction techniques. More importantly
we proposed a binary tree based load balancing mod-
ule that split the data by attributes upto certain depth.
Our results showed that this method improved the al-
gorithm performance in execution time for very large
data like H-CUP. Our analysis is the first effort upto
our knowledge to extract actionable recommendations
for reducing hospital readmission in much efficient time
and improved personalization.

Although our methods proved efficient in execution
time, it is not very optimal in memory usage in the dis-
tributed setup. Also, our methods lack subject matter
experts input to evaluate actionable recommendations.
In future, we plan to address these problems by pro-
viding more optimal load balancing modules that are
both memory and time optimal. We also plan to use
experts input to evaluate our results.

References

[1] M. Al-Mardini, A. Hajja, L. Clover, D. Olaleye,
Y. Park, J. Paulson, and Y. Xiao. Reduction of hospi-
tal readmissions through clustering based actionable
knowledge mining. In Web Intelligence (WI), 2016
IEEE/WIC/ACM International Conference on, pages
444–448. IEEE, 2016.

[2] M. Almardini, A. Hajja, Z. W. Raś, L. Clover, D. Olal-
eye, Y. Park, J. Paulson, and Y. Xiao. Reduc-
tion of readmissions to hospitals based on action-
able knowledge discovery and personalization. In
Beyond Databases, Architectures and Structures. Ad-

vanced Technologies for Data Mining and Knowledge
Discovery, pages 39–55. Springer, 2015.

[3] A. Bagavathi, P. Mummoju, K. Tarnowska, A. A.
Tzacheva, and Z. W. Ras. Sargs method for dis-
tributed actionable pattern mining using spark. In
2017 IEEE International Conference on Big Data (Big
Data), pages 4272–4281, Dec 2017.

[4] A. Bagavathi, V. Rao, and A. A. Tzacheva. Data dis-
tribution method for scalable actionable pattern min-
ing. In Proceedings of the First International Con-
ference on Data Science, E-learning and Information
Systems, page 3. ACM, 2018.

[5] A. Bagavathi, A. Tripathi, A. A. Tzacheva, and Z. W.
Ras. Actionable pattern mining-a scalable data dis-
tribution method based on information granules. In
2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 32–39.
IEEE, 2018.

[6] P. Braga, F. Portela, M. F. Santos, and F. Rua. Data
mining models to predict patient’s readmission in in-
tensive care units. In ICAART 2014-Proceedings of the
6th International Conference on Agents and Artificial
Intelligence, volume 1, pages 604–610. SCITEPRESS,
2014.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[8] J. L. Dieleman, E. Squires, A. L. Bui, M. Campbell,
A. Chapin, H. Hamavid, C. Horst, Z. Li, T. Matyasz,
A. Reynolds, et al. Factors associated with in-
creases in us health care spending, 1996-2013. Jama,
318(17):1668–1678, 2017.

[9] A. for Healthcare Research and M. Quality, Rockville.
Hcup national readmission databases (nrd). healthcare
cost and utilization project (hcup). 2011, 2011.

[10] A. for Healthcare Research and M. Quality, Rockville.
Hcup state inpatient databases (nrd). healthcare cost
and utilization project (hcup). 2011-2012, 2011-2012.

[11] C. for Medicare and M. Services. National health ex-
pendire data.

[12] D. He, S. C. Mathews, A. N. Kalloo, and S. Hutfless.
Mining high-dimensional administrative claims data
to predict early hospital readmissions. Journal of the
American Medical Informatics Association, 21(2):272–
279, 2014.

[13] S. Im and Z. W. Raś. Action rule extraction from a
decision table: Ared. In International Symposium on
Methodologies for Intelligent Systems, pages 160–168.
Springer, 2008.

[14] S. F. Jencks, M. V. Williams, and E. A. Coleman.
Rehospitalizations among patients in the medicare
fee-for-service program. New England Journal of
Medicine, 360(14):1418–1428, 2009.

[15] H. C. Koh, G. Tan, et al. Data mining applications
in healthcare. Journal of healthcare information man-
agement, 19(2):65, 2011.

[16] P. V. Krishna. Honey bee behavior inspired load bal-
ancing of tasks in cloud computing environments. Ap-
plied Soft Computing, 13(5):2292–2303, 2013.

[17] J. Kuang, A. Daniel, J. Johnston, and Z. W. Raś. Hier-
archically structured recommender system for improv-
ing nps of a company. In International Conference on
Rough Sets and Current Trends in Computing, pages
347–357. Springer, 2014.

[18] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P.
Singh, R. Rastogi, et al. Load balancing of nodes in
cloud using ant colony optimization. In 2012 14th In-
ternational Conference on Modelling and Simulation,
pages 3–8. IEEE, 2012.

[19] J. Ranganathan, A. S. Irudayaraj, A. Bagavathi, and
A. A. Tzacheva. Actionable pattern discovery for
sentiment analysis on twitter data in clustered en-
vironment. Journal of Intelligent & Fuzzy Systems,
(Preprint):1–15, 2018.

[20] Z. W. Ras, A. Dardzinska, L.-S. Tsay, and H. Wasyluk.
Association action rules. In Data Mining Workshops,
2008. ICDMW’08. IEEE International Conference on,
pages 283–290. IEEE, 2008.

[21] Z. W. Ras and A. Wieczorkowska. Action-rules: How
to increase profit of a company. In European Con-
ference on Principles of Data Mining and Knowledge
Discovery, pages 587–592. Springer, 2000.

[22] Z. W. Raś, E. Wyrzykowska, and H. Wasyluk. Aras:
Action rules discovery based on agglomerative strat-
egy. In International Workshop on Mining Complex
Data, pages 196–208. Springer, 2007.

[23] B. Strack, J. P. DeShazo, C. Gennings, J. L. Olmo,
S. Ventura, K. J. Cios, and J. N. Clore. Impact
of hba1c measurement on hospital readmission rates:
analysis of 70,000 clinical database patient records.
BioMed research international, 2014, 2014.

[24] L.-S. Tsay* and Z. W. Raś. Action rules discov-
ery: system dear2, method and experiments. Journal
of Experimental & Theoretical Artificial Intelligence,
17(1-2):119–128, 2005.

[25] A. A. Tzacheva, A. Bagavathi, and P. D. Ganesan. Mr-
random forest algorithm for distributed action rules
discovery. International Journal of Data Mining &
Knowledge Management Process (IJDKP), 6(5):15–
30, 2016.

[26] A. A. Tzacheva and Z. W. Ras. Association action
rules and action paths triggered by meta-actions. In
Granular Computing (GrC), 2010 IEEE International
Conference on, pages 772–776. IEEE, 2010.

[27] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Sto-
ica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Pro-
ceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12, pages
2–2, Berkeley, CA, USA, 2012. USENIX Association.

[28] B. Zheng, J. Zhang, S. W. Yoon, S. S. Lam, M. Kha-
sawneh, and S. Poranki. Predictive modeling of hos-
pital readmissions using metaheuristics and data min-
ing. Expert Systems with Applications, 42(20):7110–
7120, 2015.

