
Actionable Pattern Discovery for Sentiment

Analysis on Twitter Data in Clustered

Environment

Jaishree Ranganathan, Allen S. Irudayaraj, Arunkumar Bagavathi, and Angelina A. Tzacheva

Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA

Email: {jrangan1, airudaya, abagavat, aatzache}@uncc.edu

Abstract. Actionable Patterns are desired knowledge to be mined from large datasets. Action Rules are vital data mining

method for gaining actionable knowledge from the datasets. They recommend actions which users can undertake to their ad-

vantage, or to accomplish their goal. Meta actions are the sub-actions to the Action Rules, which intends to change the attribute

value of an object, under consideration, to attain the desirable value. The essence of this paper is to propose a new optimized

and more promising system, in terms of speed and efficiency, for generating meta-actions by implementing Specific Action

Rule discovery based on Grabbing strategy (SARGS) algorithm, and to apply that for Sentiment Analysis on Twitter data. We

perform a comparative analysis of meta-actions generating algorithmic implementation in Apache Spark driven system, con-

ventional Hadoop driven system and Single node machine using the Twitter social networking data and evaluate the results.

We implement corpus based Sentimental Analysis of social networking data, and test the total time taken by the systems and

their sub components for the data processing. Results show faster computational time for Spark system compared to Hadoop

MapReduce and Single node machine for the meta-action generation methods.

Keywords: Sentiment Analysis, Natural Language Processing, Action Rules, Meta-Actions, Apache Spark, Hadoop MapRe-

duce.

1. Introduction

Social interaction websites like Facebook, Flickr, and

Twitter have added a new dimension to the social life of

internet-aware people. This trend provides a huge amount of

raw data that can be processed to generate useful or struc-

tured information. Data mining techniques are used to ana-

lyze huge volume of data, to identify the underlying data

patterns and to reveal the hidden knowledge. Data digitiza-

tion in social networking and the extensibility of the plat-

form for social networking, from micro devices like watches

and smart phones to macro devices like desktops and lap-

tops, have greatly contributed to the huge amount of struc-

tured and unstructured data that can be processed to gener-

ate sensible and meaningful information. Action-ability ex-

tends the concept of data analysis to a level further, by

which the user can attain his/her intended action through

deducing the Action Rules from the dataset.

The attributes in a dataset are divided into flexible attrib-

utes, Flexible attributes are those for which the state can

change and the stable attributes are those for which the state

is always fixed. [1]. The Action Rules are specific data pat-

terns extracted from huge dataset which intends to change

the current value of the flexible attribute, under considera-

tion, to a desired value. An association rule is a rule extract-

ed from an information system that describes a cascading

effect of changes of attribute values listed in the left-hand

side of a rule [6] on changes of attribute values listed in its

right-hand side.

New algorithms have been proposed in the past decade to

find some special actions based on the discovered patterns

in the form of Action Rules. Action Rules propose an ac-

tionable knowledge that the user can undertake to his/her

advantage. An Action Rule extracted from a decision system

describes a possible transition of an object from one state to

another state with respect to decision attribute [11]. Authors

in [3] [5] [11] [12] [13] [14] proposed variety of algorithms

to extract Action Rules from the given dataset. The eccen-

tric exponential increase in the data in recent years, causes

delay in computations on tasks that are dependent on Action

Rules and thus causing applications relied on Action Rules

to be slow. Hence, this mandate need to develop viable,

scalable, time efficient and distributed methods to work on

such huge volume of data for generating action.

Distributed database systems are the most appropriate

system to handle huge data sets. They have substantiated the

reliability and efficiency for storage and processing bulk

data sets. Apache provides various open source like Hadoop

[4], Spark [21] [8], Hive, and Pig to process and handle

huge data in the distributed system [2]. Hadoop is a distrib-

uted computing framework, to work with large datasets,

across multiple computers, using a single programming

model in a parallel fashion. This parallel processing aspect

of the distributed computing plays a vital role in the cost of

the processing time. Hadoop aims to provide scalable and

fault tolerant computations on the given data. The main

components of Hadoop are HDFS [17], YARN [20] and

MapReduce [4].

Hadoop Distributed File System - HDFS is the data stor-

age unit of the MapReduce operations. HDFS also keeps

track of machines holding the data for a job [17]. Yet anoth-

er Resource Negotiator - YARN [20] is an extra feature to

the upgraded version Apache Hadoop framework. YARN

supports multiple applications like MapReduce, Spark [8]

[21], Storm, etc.

MapReduce is an open source cluster computing frame-

work which uses HDFS to save and process huge data sets.

The MapReduce framework works in such a way that it di-

vides the input data into size mutable input splits and cas-

cades them to the clusters [Hadoop performance prediction].

By default, the input splits are 64MB individually. The

MapReduce works in 2 phases, map and reduce. In the map

phase, the input splits are processed in parallel fashion in the

cluster and the intermediate results are stored on local disk.

In the reduce phase the intermediate results are combined

and saved in the HDFS. The frequent access to the HDFS

system makes it less suitable for iterative algorithms.

Apache Spark addresses the issue with the concept of Re-

silient Distributed Dataset. Its in-memory data operations

makes it well-suited for applications involving iterative ma-

chine learning and graph algorithms. In this paper, we pre-

sent a system SARGS (Specific Action Rule discovery

based on Grabbing Strategy) which is an alternative to

ARoGS [13] and implement the system in Spark like our old

system MR-Random Forest algorithm for Distributed Ac-

tion rule Discovery [18] using Hadoop MapReduce, to ex-

tract Action Rules from the twitter data in the HDFS. The

primary intent of the Action Rules generated is to provide

viable suggestions to make a twitter user positive. Finally,

we compare our current proposed system against our old

Hadoop system of extracting and single node machine.

The rest of this paper is organized as follows. Section II

gives the related works. In Section III, we discuss about the

algorithms and technologies we used for this system. Sec-

tion IV presents experiment and results in which the current

system results are compared with the previous system. Sec-

tion V concludes the paper.

2. Related Work

The data mining algorithms can be divided into two well

established categories: Supervised Learning and Unsuper-

vised Learning.

Supervised learning algorithms, provide prior knowledge

of the class attributes for datasets.

Unsupervised learning, the dataset has no class attribute

and the task is to find similar instances and find significant

patterns in dataset. For example, it can be used to identify

events on Twitter data, because the frequency of tweeting is

different for various events. Also by this method tweets can

be grouped based on the times at which they appear and

hence, identify the tweets’ corresponding real-world events.

This section describes related research works with respect to

social media data, Action Rules and performance of distrib-

uted frameworks.

2.1. Sentiment Analysis and Twitter Data

The following research papers primarily performed sen-

timental analysis on twitter data.

Authors A. Balahur et.al [7] employs hybrid approach,

using supervised learning with Support Vector Machines

Sequential Minimal optimization (Platt 1998) linear kernel,

on unigram and bigram features, , emotion lists, slang lists

and other social media emotion features for a lexicon based

sentimental analysis on the twitter data. The analysis in-

volves two phases, preprocessing and then sentiment classi-

fications. The processed tweets are then passed through the

sentiment classification module. Training models were de-

veloped on the cluster of computers using Weka data soft-

ware.

Authors A. Agarwal et.al [9] performed sentimental anal-

ysis on the twitter data. As part of the paper, they primarily

experimented three types of models, unigram model, a fea-

ture based model and a tree kernel based model for two

classification tasks, binary task which classifies the senti-

ment to positive and negative and 3-way task which classi-

fies the sentiment to neutral along with the positive and

negative category. The twitter data is first preprocessed us-

ing emotion dictionary, acronym dictionary and stop word

dictionary. The comparative analysis on the models by ex-

periment proved that tree kernel and feature based models

outperform the unigram baseline.

Authors A. Chellal et.al [10] proposed multi-criterion real

time tweet summarization based upon adaptive method.

This method provides new relevant and non-redundant in-

formation about an event as soon as it occurs. The tweets

selection is based on the following three criterions: informa-

tiveness, novelty and relevance with regards of the user’s

interest which are combined as conjunctive condition. Ex-

periments were carried out on TREC MB RTF-2015 data set.

Authors Yu. Xu et.al [15] proposed methods to infer a

user’s expertise based on their posts on the popular micro-

blogging site twitter. They proposed a sentiment-weighted

and topic relation-regularized learning model. Sentiment

intensity of a tweet is used to evaluate user’s expertise and

the relatedness between expertise topics is exploited to

model inference problem. The following four common met-

rics were used for evaluation: accuracy, precision, recall and

F1- score

Authors F. Marquez et.al [23] proposed a simple model

for transferring sentiment labels from words to tweets and

vice versa by representing both tweets and words using fea-

ture vectors residing in the same feature space. Tweet cen-

troid model developed in this paper outperformed the classi-

fication performance of the popular emoticon-based method

for data labelling and better results than a classifier trained

from tweets labelled based on the polarity of their words.

2.2. Action Rules Mining

The following research papers deal with Action Rule

mining.

Action Rules was first introduced in [11] by Z. W. Ras

and A. Wieczorkowska. Action Rules have been extracted

using two approaches for more than a decade. One approach

is using rule-based approach which extracts intermediate

classification rules using algorithms like LERS [5] (to ex-

tract classification rules from complete information system)

or ERID [3] (to extract rules from incomplete information

system) from which Action Rules can be extracted using

system DEAR [11] (uses two classification rules to get Ac-

tion Rules) or system ARoGS [13] (uses single classifica-

tion rule to extract Action Rules). Second approach is ob-

ject-based -approach to extract Action Rules directly from

the information system, without pre-existing classification

rules, using system ARED [6] or Association Action Rules

[14]. In this paper, we focus on rule- based approach much

like ARoGS [13] and to generate Action Rules.

Performance prediction on Hadoop based distribution

systems are generally carried out in two ways. First ap-

proach is the machine learning approach, which is often

used to predict system performance leveraging past system

execution data [9] and can achieve reasonable prediction

accuracy. But this requires training the dataset. Second ap-

proach is the modelling based approach. Unlike the machine

learning approach, modeling based approaches predict per-

formance through modeling system behavior [9], and often

can provide a better understanding regarding internal execu-

tion of a program and resulting performance.

2.3. Performance Prediction Analysis for Distributed

Framework

The following research papers deal with performance

prediction analysis for distributed processing frameworks.

Authors G. Song et.al [25] propose a framework to pre-

dict the performance of a Hadoop MapReduce job. The

framework comprises of two modules which are, a light-

weight job analyzer module and prediction module. The job

analyzer module analyzes the submitted job and collects

features related to the jobs and parameters related to the

clusters. The prediction module makes use of the collected

parameters to train the developed local linear model using

local weighted linear regression method. The experimental

results vouch the accuracy of the method’s performance

prediction.

Authors K. Wang et.al [24] propose a framework to pre-

dict the performance of Spark jobs. They apply analytical

approaches to predict the performance of Apache Spark jobs.

They leverage the multi-stage execution structure of Apache

Spark jobs to develop hierarchical models that can effective-

ly capture the execution behavior of different execution

stages. They predict the job performance based on the lim-

ited scale execution job performance data on cluster. The

experimental results show that the prediction accuracy eval-

uated for iterative and non- iterative algorithms is found to

be high for execution time and memory, however the I/O

cost prediction varied for different applications.

Authors A. Tzacheva et.al [1] have performed senti-

mental analysis on the twitter data via Action Rules generat-

ed. They implemented the ARoGS [14] algorithm proposed

by Ras and Wyrzykowska, to generate the Action Rules.

The real-time twitter data is extracted from the twitter API

and then fed into the Hadoop Distributed File System –

HDFS using MapReduce. Stanford core Natural Language

Processing – NLP library was used to identify the polarity

attribute through parts of speech (POS) of the tweets.

MapReduce programs implementing the ARoGS algorithm

was implemented on the twitter data. Experiments were

conducted to generate Action Rules to make the user posi-

tive and increase the friends count.

In this work, we adapt the Action Rules mining algorithm

[13] for twitter data processing. We follow model based

approach to evaluate the existing single node machine mod-

el, MapReduce model [1] and our proposed Spark model for

the Action Rule mining implementation on twitter data. We

extend the work proposed by A. Tzacheva et.al [1] by in-

corporating Spark model for Action Rule mining and com-

paring performance with the MapReduce model. The pro-

posed model involves simulation of the Action Rules gener-

ation by modifying the number of nodes in the cluster. Fur-

ther, we perform sentiment analysis of twitter data based on

discovering actionable patterns through Action Rules.

3. Methodology

The primary focus of this work is to evaluate the pro-

posed Spark driven system implementing the Action Rule

mining algorithm on twitter data, for making the users more

positive, against the existing MapReduce driven system and

single node machine. The Action Rule mining comprises of

the six phases: data collection, pre-processing, classification,

sentiment analysis, Action Rule generation, Summarization.

3.1. Pre-Processing

In Pre-processing phase, we perform discretization on the

following attributes, friends count, and followers count by

placing their values into intervals. As part of this phase, we

perform data cleaning for missing values, feature selection

and remove unnecessary values. We retained the following

attributes Retweet Count, Is Favorited, User ID, Tweet Text,

User Language, User Friends Count, User Favorites Count,

and User Followers Count.

Fig. 1. Actionable Pattern Mining system for Twitter Sentiment Analysis

3.2. Sentiment Analysis

In this phase, we add two additional attributes to the ex-

isting attribute set, first is sentiment attribute which can take

the following values: positive, negative, neutral, very posi-

tive, very negative and the second is action attribute with

attribute verb for actionable pattern mining because verbs

suggest actionable knowledge. The latter was taken from the

extracted part of speech from the tweets.
Stanford core NLP powered by Java was used for senti-

ment analysis. This NLP suite provides set of natural lan-
guage analysis tools. The basic distribution provides model
files for the analysis of well-edited english, but the engine is
compatible with models for other languages. [16] This NLP
suite provides various annotators making use of java's
Unicode support, by default UTF-8 encoding but also sup-
ports any character encoding. POS - Part of speech, Label
tokens with their part-of-speech(POS) tag, using a maxi-
mum entropy POS tagger. Out of the annotators we are us-
ing tokenizer, part-of-speech, sentiment analysis in our work.

Fig. 2. Sentiment Analysis

Fig. 3. Part-Of-Speech Tagger - Verbs

3.3. Classification

We used LERS [26] algorithm to extract classification
rules from twitter data. Classified each tweet as positive,
negative, neutral, very positive, very negative. LERS [26] is

a Learning from Examples based on Rough Sets which we
use to extract classification rules from the information sys-
tem. Our implementation follows distributed strategy of
generating classification rules using LERS system. Figure 3.
gives the LERS algorithm. Using the information system S
from Table 1., LERS strategy can find all certain and possi-
ble rules describing decision attribute d in terms of attributes
a, b, and c. LERS can be used as a data strategy to generate
classification rules. LERS produces a set of certain and pos-
sible rules [26]. We consider only marked certain rules to
construct the Action Rules. Since LERS follows bottom-up
strategy, it constructs rules with a conditional part of length
x, then it continues to construct rules with a conditional part
of length x+1 during the following iterations.

For the information system given in Table 1, consider
the following as decision support:

(d1) * = {x1, x2, x5, x8} (1)
(d2) * = {x3, x4, x6, x7} (2)

Table 1

Sample Information System

X A B C D

x1 a1 b1 c1 d1

x2 a3 b1 c1 d1

x3 a2 b2 c1 d2

x4 a2 b2 c2 d2

x5 a2 b1 c1 d1

x6 a2 b2 c1 d2

x7 a2 b1 c2 d2

x8 a1 b2 c2 d1

LERS module given in Figure.4. For the given information

system S, extracts certain and possible rules which are given

in Table 2.

3.4. Actionable Pattern Mining – Action Rules

ARoGS is Action Rules Discovery Based on Grabbing

Strategy, which uses LERS. It was given by Ras and

Wyrzykowska in paper [14] as an alternative to system

DEAR [19] which extracts Action Rules from a pair of clas-

sification rules. The foremost advantage of using ARoGS is

that it uses single classification rule to provoke Action

Rules. ARoGS uses LERS kind of algorithm to extract Ac-

tion Rules, without the need of verifying the validity of the

certain relations. It just should check if these relations are

marked previously by LERS. ARoGS presumes that system

LERS construct classification rules describing target deci-

sion value. Fig 4. And Fig 5. Together gives the algorithm

of ARoGS Fig. 6.

Fig. 4. LERS Algorithm

Table 2

LERS Example for Information System S

Iteration Attribute

Value Sup-

port

Certain

rules

Possible

Rules

1 (a1) * = {x1,

x8} - marked

(a2) * = {x3,
x4, x5, x6, x7}

(a3) * = {x2}

- marked

(b1) * = {x1,

x2, x5, x7}

(b2) * = {x3,

x4, x6, x8}

(c1) * = {x1,

x2, x3, x5, x6}

 (c2) *
 = {x4,

x7, x8}

a1 → d1

a3 → d1

a2 → d1

a2 → d2

b1 → d1

b1 → d2

b2 → d1

b2 → d2

c1 → d1

c1 → d2

c2 → d1

 c2 → d2

 (a2, b1) * =

{x5, x7}

(a2, b2) * =

a2 ^ b2

→ d2

a2 ^ c2

a2 ^ b1 →

d1

a2 ^ b1 →

{x3, x4, x6} –

marked

(a2, c1) * =

{x3, x5, x6}

(a2, c2) * =

{x4, x7} -

marked

(b1, c1) * =

{x1, x2, x5} -

marked

(b1, c2) * =

{x7} - marked

(b2, c1) * =

{x3, x6} -

marked
(b2, c2) * =

{x4, x8}

→ d2

b1 ^ c1

→ d1

b1 ^ c2

→ d2

b2 ^ c2

→ d2

d2

a2 ^ c1 →

d1

a2 ^ c1 →

d2

b2 ^ c2 → d1

b2 ^ c2 → d2

 (a2, b1, c1) * =

{x5} – marked

a2 ^ b1 ^ c1

→ d1

Algorithm AR takes each candidate classification rule and

form an Action Rule schema which in turn is given to the

algorithm ARoGS to build a cluster of Action Rules around

each schema. For the classification rules in Table II, algo-

rithm AR generates following set of Action Rule schema:
ARs1 (d1 → d2) =

(A, → a2) ^ (B, → b2) ➔ (D, d1 → d2) (3)
ARs2 (d1 → d2) =

 (A, → a2) ^ (C, c2) ➔ (D, d1 → d2) (4)
ARs3 (d1 → d2) =

 (B, → b1) ^ (C, c2) ➔ (D, d1 → d2) (5)

ARs4 (d1 → d2) =

(B, → b2) ^ (C, c1) ➔ (D, d1 → d2) (6)

Fig. 5. AR (Action Rules) Algorithm in distributed environment using

MapReduce

Fig. 6. ARoGs (Action Rules Discovery Based on Grabbing Strategy) in a

distributed environment using MapReduce.

Algorithm ARoGS Fig. 6 takes each Action Rule sche-
ma and using their flexible and stable attributes, generates
following Action Rules which imply d1 → d2. For the Ac-
tion Rule schema ARs1, the algorithm ARoGS finds all
missing flexible attributes AM: {a1, a3, b1}. Each missing
flexible attribute is filled into appropriate action terms. In
ARoGS, the maximum number of Action Rules generated =
AM. For ARs1, ARoGS produces following Action Rules:

AR1 (d1 → d2) =

(A, a1 → a2) ^ (B, → b2) ➔ (D, d1 → d2) (7)
AR2 (d1 → d2) =

(A, a3 → a2) ^ (B, → b2) ➔ (D, d1 → d2) (8)

Let an action rule R takes a form of:

(Y1 → Y2) ➔ (Z1 → Z2) (9)

where,
Y is the condition part of R
Z is the decision part of R

 Y1 is a set of all left side of the all condition action terms
Y1 is a set of all right side of the all condition action

terms
Z1 is the decision attribute value on left side
Z2 is the decision attribute value on right side

3.5. Support and Confidence of Action Rules

Let an Action Rule R takes a form of: (Y1 → Y2) → (Z1 → Z2)

where, Y is the condition part of R, Z is the decision part of R.

Y1 is a set of all left side of the all condition action terms Y2 is a

set of all right side of the all condition action terms Z1 is the deci-

sion attribute value on left side Z2 is the decision attribute value on

right side.

In [13], the support and confidence of an Action Rule R
is given as,

Support(R) = min {card (Y1 ∩ Z1), card (Y2 ∩ Z2)} (10)
Confidence(R) =
[card (Y1∩Z1)] / Card (Y1)· [card (Y2∩Z2)] / card (Y2)(11)

In this paper, we use the following support and confi-

dence formula given by Tzacheva et.al [18] to reduce the
complexity.

Support(R) = {card (Y2 ∩ Z2) (12)
Confidence(R) = [card (Y2∩Z2)] /Card (Y2) (13)

3.6. Distributed Actionable Pattern Mining – MR Random

Forest Hadoop

MR - Random-Forest algorithm for distributed Action

Rules discovery using Apache Hadoop framework [22] and

Google MapReduce [29]. An overview of the proposed al-

gorithm is shown on Fig 8. We take as an input a set of

files: the data, the attribute names, user specified parameters

such as: minimum support, and confidence thresholds, sta-

ble attribute names, flexible attribute names, decision attrib-

ute choice, decision attribute value to change from, and de-

cision attribute value to change to, which is the desired val-

ue of decision attribute (desired object state). We import

these input files into the HDFS (Hadoop Distributed File

System).

Fig. 8. MR – Overview of MapReduce execution. The data partitions and

results from Map and Reduce tasks reside in the distributed file system.

The Map tasks and Reduce tasks are done in the distributed systems in a

parallel fashion

3.7. SARGS (Specific Action Rule Discovery Based on

Grabbing Strategy)

The Action Rules generated in section B comprises only one spe-

cific action terms. The left side of other action terms are empty.

These Action Rules can give only a limited knowledge to the user

and leave the clueless due to the lack of specific action terms. In

this paper, we propose a new algorithm Specific Action Rule dis-

covery based on Grabbing Strategy (SARGS) as an alternative to

the algorithm ARoGS to fill all missing values in the Action Rule

schema in an efficient time.

Fig. 8. MR – Random Forest Algorithm for Distributed Action Rules Dis-

covery

Algorithm SARGS takes each Action Rule schema and finds all

missing flexible attribute values. The algorithm then combines

each missing value with other values giving a complete set of val-

ues that can fill all missing(left-side) of the conditional part of the

Action Rule. For example, consider the Action Rule schema ARs1

shown in Section B. The algorithm SARGS finds all missing flexi-

ble attribute values AM: {{a1, a3}, {b1}}. Note that AM takes a

form of main set containing a collection of multiple sets.

The algorithm then combines each element in the inner set with

other elements in other inner sets. Thus, we get a combination of

attribute values AC 1 = {a1, b1} and AC 2 = {a3, b1}. The algo-

rithm puts each combination into corresponding Action Rule

schema to generate following Action Rules:

New AR (Action Rules) Algorithm in a distributed envi-
ronment using MapReduce

AR3: (d1 → d2) =
(A, a1 → a2). (B, b1 → b2) → (D, d1 →d2) (14)

AR4: (d1 → d2) =
(A, a3 → a2). (B, b1 → b2) → (D, d1→d2) (15)

Unlike the algorithm ARoGS, algorithm SARGS does

not produce any incomplete Action Rules. Instead it pro-
vides more specific Action Rules.

3.8. Distributed Action Rule Mining in Spark

Spark [21] is a framework like MapReduce [4] to pro-
cess large quantity of data in a short span of time. Spark
introduces a distributed memory abstraction method called
Resilient Distributed Datasets (RDD). Spark framework can
outperform Hadoop MapReduce because of its in-memory

capability, especially for iterative algorithms. Sparks per-
forms as shown in Fig. 9. In [18], Hadoop manages data
distribution over the nodes in a cluster and all algorithms
ARoGS [13] and Association Action Rules [14], are imple-
mented using MapReduce. When Hadoop manages data
distribution, there are some possibilities that all records of
single decision value move to a single Partition which can
cause some loss of valuable Action Rules. In this paper, we
propose a method similar to stratified sampling for data dis-
tribution to all partitions. We split the given data into groups
where each group consists of records matching single deci-
sion value. We then measure how much proportion of data
each decision value takes. According to this proportion, we
take random samples of data from each group. By this way,
each partition contains same proportion of data which is
equal to the original dataset.

Fig. 9. Overview of Spark execution using Resilient Distributed Datasets
(RDD). Tasks such as transformations are given to the slave nodes. Slaves

after performing the tasks, cache the result in RAM. Results can be given

back to the Driver node.

 Fig. 10. Data Distribution to partitions

Fig 10. Shows an example data partition for the infor-
mation system S shown in Table1. Our algorithms LERS
and SARGS executes on each of these partitions and final
Action Rules are grouped together. In Spark, reading each
file: attributes, parameters and data creates three different
RDDs. We manually split the data file into ’d’ files, where d
is a distinct number of decision values. Each file contains
samples of records from the given data file. Spark on read-
ing each of these files create ’d’ RDDs. We also broadcast
RDDs created from reading attributes and parameters file,
so that all nodes can access them. Algorithms LERS and
SARGS runs on each of d RDDs using Map Partition func-
tion, which is used to perform computations on each and
every partition of data, and results in their own set of Action
Rules with support and confidence. All Action Rules from
the Map Partition function are sorted by the attribute name
and returned as (Key, Value) pairs. We chose Action Rule
to be a Key and support and confidence pair to be a Value.
We then use groupByKey method to group all supports and
confidences of a single Action Rule and aggregate them to
calculate final support ′fs′ and confidence ′fc′ of an Action
Rule. We output these Action Rules to a text file if fs > =
minimumSupport and fc > = minimumConfidence. Now we
describe the LERS, ARoGS algorithms and new SARGS
method in detail. Consider an information system S:

S = (X, A, VA) (16)
where,
X is a set of objects: X = {x1, x2, x3, x4, x5}
A is a set of attributes: A = A, B, C, D and
VA represents a set of values for each attribute in A. For

Example, VB =b0,b2.

We use the sample information system S shown in Table

I to demonstrate outputs from the above-mentioned algo-
rithms. Consider attribute C to be a Stable Attribute, attrib-
utes A, B to be Flexible Attributes, attribute D to be the De-
cision Attribute, and that the user desires the decision value
to change from d1 to d2. Also, consider that the user is inter-
ested in Action Rules with minimum support of 1 and mini-
mum confidence of 80%. Instead of giving the data entirely
to the Spark, we do some pre-processing step to make parti-
tions of data to be given to Spark. All algorithms are then
made to run on each partition of data. Following sub- sec-
tions talk about our implementation of these algorithms in a
distributed environment.

4. Experiments and Results

The Action Rules generated as part of the experiment fo-
cuses on suggesting how to improve emotions from negative
to positive, neutral to positive and to increase the friends
count. For this experiment, we used live tweets extracted
using Twitter Search API on the latest tweets. The Twitter
Search API searches against a sampling of recent tweets pub-

lished in the past 7 days. Our data contains the following
attributes: Retweet count, IsFavorited, User ID, Friends
count, Favorites count, Followers count, Tweet text, User
language, Tweet sentiment, Tweet verb. We analyzed 40,000
instances with 9 attributes. Table 3 and 4. gives the descrip-
tion about the dataset such as number of instances, attribute
names, decision attribute values and data size. The Hadoop
research cluster at University of North Carolina Charlotte
was used to perform the experiments. This cluster has 6
nodes connected via 10 gigabits per second Ethernet network.

Fig. 12. Spark Lineage Graph Example

Table 3

Properties of Datasets

SNo Property Twitter Data

1 # of in-
stances

40000

2 Attributes 9

3 Decision
attribute
values

Tweet Sentiment UserFriendsCount

Positive, Nega-
tive, Neutral

Increased numeric
value than current

Table 4

Sample Data with Sentiment Analysis Results

ReTweet IsFavorited UserId FriendsCount

0 FALSE 898290540 283

0 FALSE 262194433 860

FavouritesCount Followers Count UserLanguage

242 62 En

302 688 En

Tweet Text Tweet sentiment Verb

RAY OF SUNSHINE Neutral NULL

LOVE OF MY LIFE Neutral NULL

We used Action Rules to suggest how to change from
positive to negative and neutral to negative sentiment. Also,
to change from lower number of friends count to higher
number of friends. Three experiments were conducted on
both Hadoop and the Spark systems, for improving the emo-
tions of the users from neutral to positive, negative to posi-
tive and to improve the friends and

followers count. The results are tabulated, and the details
of each experiments are debriefed below:

4.1. Experiment 1

This experiment is focused in improving the user friends
and followers count. The input attribute details are as fol-
lows: Stable Attributes are User Id and UserLanguage; Deci-
sion attribute is UserFriendsCount; Minimum support is 2
and confidence is 60%. The sample Action Rule generated
for the experiment is recorded in the Table 5 and Table 6.

4.2. Experiment 2

This experiment is focused in transforming the tweet sen-
timent attribute value from negative to positive. The input
attribute details are as follows: Stable Attribute is UserLan-
guage; Decision attribute is Tweet Sentiment; Minimum
support is 2 and confidence is 60%. The sample Action Rule
generated for the experiment is recorded in the Table 7 and
Table 8.

4.3. Experiment 3

This experiment is focused in transforming the tweet sen-
timent attribute value from negative to positive. The input
attribute details are as follows: Stable Attribute is UserLan-
guage; Decision attribute is Tweet Sentiment; Minimum
support is 2 and confidence is 60%. The sample Action Rule
generated for the experiment is recorded in the Table 9 and
Table 10.

Table 5

Sample action rule for experiment 1 change from class UserFriendsCount:
Low to Higher number of friends for single node and Hadoop system

Single Node Action Rules Hadoop Action Rules

(TweetSentiment, Nega-
tive -> Positive) ^ (UserFavor-
itesCount, 0-100 -> 10001-
15000) ^ (UserFollow-
ersCount, 0-100 -> 1001-
5000) ^ (UserLanguage = pt)
=> (UserFriendsCount, 0-100 -
> 1001-5000) [Support: 2, Old
Confidence: 67%, New Confi-
dence: 100%]

(TweetSentiment, Nega-
tive -> Neutral) ^ (UserFavor-
itesCount, 0-100 -> 5001-
10000) ^ (UserLanguage = it)
=> (UserFriendsCount, 0-100 -
> 1001-5000) [Support: 2, Old
Confidence: 60%, New Confi-
dence: 100%]

Table 6

Sample action rule for experiment 1change from class UserFriendsCount:
Low to Higher number of friends for Hadoop and Spark System

Table 7

Sample action rule generated by the system for experiment 2 change class
Tweet Sentiment from Negative to Positive for Hadoop and Spark System

MRRandom on Hadoop
(Action Rules)

SARGS on Spark (Action
Rules)

 (UserFavoritesCount
UserFavoritesCount10001-
15000-
>UserFavoritesCount101-
200)^(UserFollowersCount
UserFollowersCount0-100-
>UserFollowersCount201-
300) ==> (TweetSentiment
"TweetSentimentNegative-
>TweetSentimentPositive)
[Support:- 2 ; New Confi-
dence:- 100.0% ; Old Confi-
dence:- 100.0%]"

(UserFavoritesCount, 501-600
-> 30000-Above) ^ (UserFollow-
ersCount, 201-300 -> 5001-
10000) ^ (UserFriendsCount,
301-400 -> 201-300) ^ (Us-
erLanguage = en) => (TweetSen-
timent, Negative -> Positive)
[Support: 2, Old Confidence:
100%, New Confidence: 100%]

Table 8

Sample action rule generated by the system for experiment 2 change class

Tweet Sentiment from Negative to Positive for Single node and Hadoop
System

Single Node Action Rules Hadoop Action Rules

UserFavoritesCount,
10001-15000 -> 601-700) ^
(UserFollowersCount, 101-200
-> 301-400) ^ (UserFriend-
sCount, 301-400 -> 701-800)
=> (TweetSentiment, Negative
-> Positive) [Support: 2, Old
Confidence: 60%, New Confi-
dence: 100%]

(UserFavoritesCount, 0-
100 -> 601-700) ^ (UserFol-
lowersCount, 5001-10000 ->
301-400) ^ (UserFriendsCount,
201-300 -> 701-800) =>
(TweetSentiment, Negative ->
Positive) [Support: 2, Old
Confidence: 100%, New Con-
fidence: 100%]

Table 9

Sample action rule generated by the system for experiment 3 change class
Tweet Sentiment from Neutral to Positive for Hadoop and Spark System

MR Random on Hadoop (Action
Rules)

SARGS on Spark
(Action Rules)

 (UserFavoritesCount UserFavor-
itesCount10001-15000-
>UserFavoritesCount1001-
5000)^(IsFavorited IsFavorited-
FALSE-
>IsFavorited-
FALSE)^(UserFollowersCount
UserFollowersCount1001-5000-
>UserFollowersCount301-
400)^(UserFriendsCount UserF-
riendsCount301-400-
>UserFriendsCount101-200) ==>
(TweetSentiment "TweetSentiment-
Neutral->TweetSentimentPositive)
[Support:- 2 ; New Confidence:-
100.0% ; Old Confidence:-
100.0%]"

(UserFavor-
itesCount, 401-500 ->
30000-Above) ^
(UserFollowersCount,
0-100 -> 5001-10000) ^
(UserFriendsCount,
101-200 -> 201-300) ^
(UserLanguage = en)
=> (TweetSentiment,
Neutral -> Positive)
[Support: 2, Old Confi-
dence: 69%, New Con-
fidence: 100%]

Table 10

Sample action rule generated by the system for experiment 3 change class

Tweet Sentiment from Neutral to Positive for Single node and Hadoop
System

Our experiments show that with the volume of Twitter

data, the processing of the proposed algorithm runs faster on
distributed environment than on single machine. The exper-
imental results explaining the time taken for the Hadoop and
Spark system to generate the Action Rules and the number
of Action Rules generated are tabulated in the table 11.

Table 11

Duration and Action Rules Count of both Systems

Exp

#nodes Hadoop Spark

minutes Action
Rules
count

minutes Action
Rules
count

1 1 1.38 75

4 1.25 213

2 1 1.17 2345

4 3.52 614

3 1 1.75 1071

4 4.47 357

MR Random

on Hadoop (Action Rules)

SARGS on Spark

(Action Rules)

(TweetSentiment TweetSentiment-

Positive->TweetSentimentNeutral)

^(UserFollowersCount UserFollow-

ersCount0-100-> UserFollow-

ersCount 1001-

5000)^(UserFavoritesCount UserFa-

vouritesCount601-700-> UserFavour-

itesCount0-100)^(IsFavourited ->

IsFavourited-

FALSE)(UserFriendCount “UserF-

riendsCount0-100-> UserFriend-

sCount1001-5000)[Support:- 3;

NewConfidence:-

100%,OldConfidence:- 100%]”

(UserFavourites

Count,100-200->30000-

Above)

^(UserFollowersCount,

0-100->901-1000)^

(UserLanguage=fr)

= => (UserFriends

Count,0-100 -> 1001-

5000) [Support:- 3, Old-

Confidence:-77%, New-

confidence:- 100%

Single Node Action Rules Hadoop Action Rules

(UserFavoritesCount,
30000-Above -> 601-700) ^
(UserFollowersCount, 20001-
25000 -> 301-400) ^ (UserF-
riendsCount, 101-200 -> 701-
800) => (TweetSentiment, Neu-
tral -> Positive) [Support: 2, Old
Confidence: 66%, New Confi-
dence: 100%]

(UserFavoritesCount,
30000-Above -> 601-700) ^
(UserFollowersCount, 20001-
25000 -> 301-400) ^ (UserF-
riendsCount, 101-200 -> 701-
800) => (TweetSentiment, Neu-
tral -> Positive) [Support: 2, Old
Confidence: 66%, New Confi-
dence: 100%]

The Action Rules are assessed using the support and

confidence metrics. User specified threshold of support 2,
and confidence 60% were applied.

5. Conclusion

This work proposed a new approach to analyze sentiment
of twitter data through mining actionable patterns via action
rules. We suggest actions that can be undertaken to reclassify
user sentiment from negative to positive and negative to neu-
tral using comments. We also suggest action of how users
can increase theirs friends, favorites, and followers count.
We provide implementation on both single machine and a
cloud distributed environment for scalability purpose. We
compare the results with single machine implementation,
distributed Hadoop MapReduce framework and Spark sys-
tem. Our experiments show that with the volume of Twitter
data, the processing of the proposed algorithm runs faster
Spark system than on Hadoop system and single machine.

Also, the proposed Spark system implements the upgrad-
ed algorithm Specific Action Rule discovery based on Grab-
bing Strategy (SARGS) as an optimized alternative to system
ARoGS [14] to extract complete Action Rules like system
DEAR [11], ARED [5] and Association Action Rules [6].
The reduced time cost for our system in comparison with the
conventional Hadoop system for distributed Action Rule
mining attributes to the Apache Spark’s ability to perform in-
memory computations and reduced communication cost
compared to Hadoop MapReduce. We have also given more
appropriate way of partitioning the data to be given to multi-
ple nodes to extract Action Rules from them.

 In future, we plan to introduce more robust and auto-

mated method of data sampling based not only on the deci-

sion attribute but also on stable and flexible attributes. We

plan to test our system with more real-time large datasets to

test and improve system’s scalability and feasibility. We also

plan to expand our Sentiment Analysis to automatic detec-

tion of Emotions in Tweets, and mine actionable recom-

mendations for altering the user emotions to more positive

ones.

References

[1] A.A. Tzacheva, J. Ranganathan, A.Bagavathi, “Action Rules for
sentimental analysis using Twitter”, International Journal of Social
Network Mining, 2017, in press.

[2] A. Bagavathi, A.A. Tzacheva, “Rule Based Systems in Distributed
Environment: Survey”, in Proceedings of International Conference on
Cloud Computing and Applications (CCA17), 3rd World Congress on
Electrical Engineering and Computer Systems and Science (EECSS’
17), June 4-6 2017, Rome, Italy, pp 1-17

[3] A. Dardzinska, Z.W. Ras, “Extracting Rules from Incomplete Deci-
sion Systems: System ERID”, in Foundations and Novel Approaches
in Data Mining, (Eds. T.Y. Lin, S. Ohsuga, C.J. Liau, X. Hu), Ad-
vances in Soft Computing, Vol. 9, Springer,2006, 143-154

[4] J.Dean and S. Ghemawat (2004), MapReduce: Simplified
Dataprocessing on large clusters in proceedings of the 6th conference
on Symposium on Operating Systems Design and Implementation
Volume 6, ser. OSDI’04, Berkeley, CA, USA, USENIX Association,
2004, pp.10-10.

[5] S. Im, Z.W. Ras. (2008), Action rule extraction from a decision table:
ARED. Foundations of Intelligent Systems, Proceedings of ISMIS’08,
A. An et al. (Eds.), Springer, LNCS, Vol. 4994, 2008, pp. 160-168.

[6] Z.W. Ra´s, A. Dardzi´nska, L.-S. Tsay, H. Wasyluk (2008), Associa-
tion Action Rules, IEEE/ICDM Workshop on Mining Complex Data
(MCD 2008), Pisa, Italy, ICDM Workshops Proceedings, IEEE Com-
puter Society, 2008, pp. 283-290.

[7] A. Balahur, “Sentimental Analysis in social media texts” European
Commission Joint Research Centre Vie E. Fermi 2749 21027 Ispra
(VA), Italy

[8] M. Zaharia et al. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. NSDI 2012, pp. 15-
28.

[9] A. Agarwal, B. Xie, I. Vovsha, O. Rambow and R. Passonneau, “Sen-
timent Analysis of Twitter Data” Workshop on Language in Social
Media LSM, Portland, Oregon, USA, 2011, pp. 30-38

[10] A. Chellal, M. Boughanem and B. Dousset, “Multi-criterion real time
tweet summarization based upon adapive threshold,” 2016
IEEE/WIC/ACM International Conference on Web Inteligence, pp.
264-271

[11] Z.W. Ras, A. Wieczorkowska (2000), Action-Rules: How to increase
profit of a company, in Principles of Data Mining and Knowledge
Discovery, Proceedings of PKDD 2000, Lyon, France, LNAI, No.
1910, Springer, pp. 587-592.

[12] Z.W. Ras, L.S. Tsay (2003), Discovering extended action-rules, Sys-
tem DEAR, in Intelligent Information Systems 2003, Advances in
Soft Computing, Proceedings of the IIS’2003 Symposium, Zakopane,
Poland, Springer, pp. 293-300.

[13] Z.W. Ras, A. Dardzinska (2006), Action Rules discovery, a new
simplified strategy, Foundations of Intelligent Systems, LNAI, No.
4203, Springer, pp. 445-453.

[14] Z. W. Ras, E. Wyrzykowska (2007), ARoGS: Action Rules discovery
based on Grabbing Strategy and LERS, in Proceedings of 2007
ECML/PKDD Third International Workshop on Mining Complex
Data (MCD 2007), Univ. of Warsaw, Poland, 2007, pp. 95-105.

[15] Y. Xu, D. Zhou and S. Lawless, “Inferring your expertise from twit-
ter: Integrating Sentiment and Topic Relatedness,” 2016
IEEE/WIC/ACM International Conference on Web Intelligence, pp
121-128

[16] M. Christopher D., M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard,
and D. McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations,
pp. 55-60.

[17] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. 2010. The Ha-
doop Distributed File System. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Tech- nologies (MSST)
(MSST ’10). IEEE Computer Society, Washington, DC, USA, pp. 1-
10.

[18] A.A Tzacheva, A. Bagavathi, and P.D. Ganesan, ”MR - Random
Forest Algorithm for Distributed Action Rules Discovery”, in Interna-
tional Journal of Data Mining & Knowledge Management Process
(IJDKP), 2016, Vol. 6, No. 5., pp.15-30.

[19] Z.W. Ras, L.S. Tsay (2003), Discovering extended action-rules, Sys-
tem DEAR, in Intelligent Information Systems 2003, Advances in
Soft Computing, Proceedings of the IIS’2003 Symposium, Zakopane,
Poland, Springer, pp. 293-300.

[20] V. K. Vavilapalli, A. C. Murthy, C. Douglas, et. al. 2013. Apache
Hadoop YARN: yet another resource negotiator. In Proceedings of
the 4th annual Symposium on Cloud Computing (SOCC ’13). ACM,
New York, NY, USA, Article 5, 16 pages

[21] M. Zaharia et al. “Spark: Cluster Computing with Working Sets”,
HotCloud 2010.

[22] A.A. Tzacheva, C.C. Sankar, S. Ramachandran, R.A. Shankar (2016),
Support Confidence and Utility of Action Rules Triggered by Meta-
Actions, in proceedings of 2016 IEEE International Conference on
Knowledge Engineering and Applications (ICKEA 2016), Singapore,
pp 113-120

[23] F. Bravo-Marquez, E. Frank and B. Pfahringer, “From opinion lexi-
cons to sentiment classification of tweets and vice versa: a transfer
learning approach,” 2016 IEEE/WIC/ACM International Conference
on Web Intelligence, pp 145-152

[24] K. Wang and M. Maifi Hasan Khan, “Performance prediction for
Apache Spark platform” 2015 IEEE 17th International Conference on
High Performance Computing and Communications (HPCC), 2015
IEEE 7th International Symposium on Cyberspace Safety and Securi-
ty (CSS), and 2015 IEEE 12th International Conf on Embedded
Software and Systems (ICESS), pp 166-173

[25] G. Song, Z. Meng, F. Huet, F. de ric Magoule`s, L. Yu and X. Lin, “A
Hadoop MapReduce Performance Prediction Method“ 2013 IEEE In-
ternational Conference on High Performance Computing and Com-
munications & 2013 IEEE International Conference on Embedded
and Ubiquitous Computing, pp-820-825

[26] J. W. Grzymała-Busse, S. R. Marepally, Y. Yao (2013), An Empirical

http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf

Comparison of Rule Sets Induced by LERS and Probabilistic Rough
Classification, in Rough Sets and Intelligent Systems, Vol. 1, Spring-
er, pp. 261-276.

[27] A. Bialecki, M.Cafarella, D.Cutting and O. Omalley (2005), Hadoop:
A Framework for running applications on large clusters built of
commodity hardware. [http://lucene.apache.org/hadoop] . Vol .11,
2005. [12] J.Dean and S. Ghemawat (2004), MapReduce: Simplified
Dataprocessing on large clusters in proceedings of the 6th conference
on Symposium on Operating Systems Design and Implementation –
Volume 6, ser. OSDI’04, Berkeley, CA, USA, USENIX Association,
2004, pp.10-10.

