
IN SEARCH OF ACTIONABLE PATTERNS OF 

LOWEST COST - A SCALABLE GRAPH METHOD  

Angelina A. Tzacheva, Arunkumar Bagavathi and Aabir K. Datta 

Department of Computer Science, University of North Carolina at Charlotte 

North Carolina, USA-28223 
aatzache@uncc.edu, abagavat@uncc.edu, adatta1@uncc.edu   

 

ABSTRACT 

Action Rules are rule based systems for discovering actionable patterns which are hidden in a large 

dataset. All recommended patterns from Action Rules incur some form of cost to the users. It is obvious 

that recommendations are interesting to the users only if the cost that the user pays for the recommended 

actions is low. In other words, the recommendations should be profitable or valuable to the user when 

they perform a chain of actions, at the lowest possible cost. In the modern era of big data, organizations 

are collecting massive amounts of data, growing constantly. Finding low cost actionable patterns for 

such large data in these domains, is time consuming and requires a scalable approach. In this work, we 

introduce the notion of Action Graph and propose an algorithm to search the Action Graph for 

actionable patterns of lowest cost. We apply the proposed algorithm to three datasets in transportation, 

medical, and business domains. Results show how these domains can benefit from the discovered 

actionable recommendations of low cost. 
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1. INTRODUCTION 

Data Mining is a stage of Knowledge Discovery in Databases, which identifies previously 

unidentified, interesting and useful patterns and trends from a large quantity data. Rule based 

knowledge discovery tasks intend to circumscribe methods that identify, learn or evolve ‘rules’ 

to store and manipulate knowledge. In the field of data mining, many algorithms are available to 

generate rules which are used for association - to find frequently associated patterns in the data 

and classification - to classify patterns to one or more classes. Rules takes the format as given in 

equation (1), where the antecedent (left side of the rule) is a conjunction of conditions and the 

consequent (right side of the rule) is a resulting pattern for the conditions in antecedent. 

condition(s) → result(s)          (1) 

The primary obstacle for such data mining and machine learning algorithms is the lack of 

actionability [1]. For example, a credit card company can assign credit scores to its customers 

based on their underlying classification model. For their low credit score customers, they may 

want to assign a person to give personal suggestions to the customer’s improve credit score. 

Action Rule is a rule based knowledge discovery technique that recommend actionable patterns 

or possible transitions from one choice to another, which the user can use to their advantage. In 

other words, Action Rules helps to reclassify the data from one category to another, 

recommending patterns to improve performance of an object or establishing better work to the 

user. For example, one would want to find actionable patterns in the data to improve his/her 

salary. Some of the applications for Action Rules are: improving customer satisfaction in 

business - suggesting how to improve the customer status from detractor to promoter, using 

online product surveys [2]. In medical domain: reducing hospital readmission in a state by 

giving actionable recommendations to doctors on certain procedures they can follow [3], and 
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suggesting how to re-classify a breast cancer tumour from malignant to benign [4]. In 

transportation domain, suggesting how to re-classify a car condition from unacceptable to 

acceptable [5]. Action Rules are extracted from Decision table [6], which is more similar to the 

relational databases. A database becomes a decision table or decision system, when the attribute 

space of the data can be split into Stable Attributes, Flexible Attributes and a Decision attribute. 

Stable attributes in any Action Rule AR remain constant or cannot form action in AR. While 

flexible attributes can change their value for example attribute a change from ai to aj. Decision 

attribute is also a flexible attribute, but it is the attribute that the user has chosen to get the final 

decision that the user need to achieve. Action Rules can take the representation as given in 

equation (2), where Ψ represents a conjunction of stable features, (α → β) represents a 

conjunction of changes in values of flexible features and (θ → φ) represents desired decision 

action. Action Rules are validated using Support, Confidence, Utility and Coverage measures. 

[(Ψ) ∧ (α → β)] → (θ → φ)          (2) 

All actionable patterns given by an Action Rule subject to certain form of cost to the user [7], 

[8]. The extracted Action Rules are more interesting to users if the system recommends more 

diverse Action Rules and if Action Rules incur less cost to the users. Cost for actions in Action 

Rules can take a form of money, time, energy, human resources, etc. [9] Recommended actions 

can cause both positive and negative impact for users. Positivity in the rules is given by the 

measure of what amount of benefit the users can obtain from the recommendations. However, a 

recommendation can create negative impact if the user cannot accommodate such actions due to 

the cost for undertaking such actions is very high and it is not feasible for them. Thus, the 

actionable recommendations from a system should cause low cost to the users to make them 

feasible. However, most of the Action Rule discovery systems [10] [11] [12] [13] do not 

consider cost effectiveness for recommendations. In [7] [14], the notion of cost of the Action 

Rules is introduced and refined. Action Rules extraction algorithms produces very large number 

of Action Rules for big datasets. Searching for low cost Action Rules from such a huge volume 

of Action Rules can be very time consuming and requires a scalable and distributed approach 

for extracting them in a reasonable timeframe. 

Distributed Processing frameworks like Hadoop [15] and Spark [16] have been introduced to 

make big data processing and data mining faster and easier. These frameworks distribute the 

data among nodes in a cluster of computers. Usually, these clusters are configured nodes of high 

computational and storage power (RAM and CPU). Thus, when the data processing work is split 

among those multiple high processing nodes, each of which performs computations on their part 

of the data, a big chunk of work gets complete quickly. Finally, when all nodes finish executing 

their tasks, the results are merged to present the final result. Apache provides innumerable 

frameworks like Hadoop [15], Spark [16], Hive, Pig to handle all such big data and distributed 

processing for multiple purposes. In this work, we use Apache Spark [16] framework for 

implementing a scalable solution to our proposed method and make it suitable for big data. 

Spark provides APIs such as MLlib [17] for Machine Learning tasks in a distributed setup, 

GraphX [18] for an efficient parallel processing in large graphs. 

In this work, we utilize Action Rules produced using distributed Action Rules extraction 

algorithm: MR-Random Forest [19] and SARGS [20]. We introduce a graph representation for 

Action Rules that we extracted called Action Graph. We construct distributed graphs based on 

action terms of derived from Action Rules and their correlations. We use Spark GraphX [18] to 

build Action Graphs and perform implement search algorithms to discover low cost Action 

Rules from the graph. We propose a distributed and a revised version of the Dijksra’s shortest 

path [21] algorithm to search the Action Graph and discover low cost Action Rules using Pregel 

API [22] provided by Apache Spark. We evaluate our method with non-distributed version of 

the Dijsktra’s algorithm and compare the times it takes to extract low cost Action Rules. 

 



2. RELATED WORKS 

More than a decade, researchers have been conducting studies on Action Rules mining to 

discovery actionable pattern from datasets. Some Action Rule discovery algorithms include: 

DEAR [10], ARAS [11] and Association Action Rules [12] in a single machine. However, with 

the advent of big data and constantly growing databases, the original Action Rules mining 

algorithms no longer can perform the mining at reasonable time. For that reason, recently, 

Tzacheva, et. al proposed MR-Random Forest algorithm [19] and Bagavathi, et. al proposed 

SARGS algorithm [20] for scalable Action Rules extraction in a distributed environment such as 

Hadoop MapReduce and Apache Spark to handle Big Data. However, these algorithms do not 

consider the Cost of the discovered Action Rules. All actionable patterns involve some form of 

Cost such as money, time, power and other resources to achieve the desired results [7]. 

Ras and Tzacheva [23] introduced the notion of cost and feasibility of Action Rules as an 

interestingness measure. They proposed a graph method for extracting feasible and low cost 

Action Rules. Ras and Tzacheva [7] proposed a heuristic search of new low cost Action Rules, 

where objects supporting new set of rules also supports existing rule set but the cost of 

reclassifying them is much lower for new rules. Later, Tzacheva and Tsay [14] proposed tree 

based method for extracting low cost Action Rules. 

Apart from Action Rules, some research has been done on extracting Actionable knowledge. 

For example, Yang, et.al [24] considered Customer Attrition in Customer Relationship 

Management (CRM) in telecommunications industry and the cost complexities involved in 

gaining profit to all customers. They proposed a method to extract low cost Actionable patterns 

for converting undesired customers to loyal ones while improve the net profit of all customers. 

Karim and Rahman [25] proposed another method to extract cost effective actionable patterns 

for customer attrition problem in post processing steps of Decision Tree and Naive Bayes 

classifiers. Su, et.al [8] proposed a method to consider positive benefits that occurs by following 

an Action Rule apart from all costs that incur from the same rule. Cui, et.al [1] proposed to 

extract optimal actionable plans during post processes of Additive Tree Model (ATM) classifier. 

These actionable patterns can change the given input to a desired one with a minimum cost. Hu, 

et.al [26] proposed an integrated framework to gather cost minimal actions sets to provide 

support for social projects stakeholders to control risks involved in risk analysis and project 

planning phases. Lately, Hu, et.al [27] developed a cost sensitive and ensemble framework to 

predict software project risk predictions and conducted large scale analysis over 60 models 327 

real world project samples. 

In this work, we propose a graph based model to extract low cost Action Rules. We use Spark 

based Action Rules extraction algorithm: SARGS [20] to obtain Action Rules. We build Action 

Graph, based on the extracted Action Rules using Spark GraphX [18]. We propose a distributed 

version of the Dijkstra shortest path [21] algorithm, and implement it via Pregel API [22] to 

extract Action Rules of lowest cost 

2. BACKGROUND – ACTION RULES, COST OF ACTION RULES AND SPARK 

In this section, we give basic knowledge about Decision system, Action Rules, Spark and 

GraphX frameworks to understand out methodology. 

2.1. Decision System 

Consider an information system given in Table 1. Information System can be represented as S = 

(X,A,V ) where,  X is a nonempty, finite set of objects: X = {x1,x2,x3,x4,x5,x6,x7,x8}, A is a 

nonempty, finite set of attributes: A = a,b,c,d and Vi is the domain of attribute a which represents 

a set of values for attribute i : i ∈ A. For example, Vb = b0,b2. 



An information system becomes a Decision system, if A = {ASt ∪ AFl ∪ d}, where d is a decision 

attribute. The user chooses the attribute d if they wants to extract desired action from di : i ∈ Vd. 

ASt is a set of Stable Attributes and AFl is a set of Flexible Attributes. For example, ZIPCODE is 

a Stable Attribute and User Ratings can be a Flexible Attribute. Let’s assume from Table1 that c 

∈ ASt. a, b ∈ AFl and d ∈ d. and the decision maker desires Action Rules that triggers the decision 

attribute change from d1 to d2 throughout this paper for examples. 

Table 1: SAMPLE DECISION SYSTEM S 

X a b c d 

x1 a1 b1 c1 d1 

x2 a3 b1 c1 d1 

x3 a2 b2 c1 d2 

x4 a2 b2 c2 d2 

x5 a2 b1 c1 d1 

x6 a2 b2 c1 d2 

x7 a2 b1 c2 d2 

x8 a1 b2 c2 d1 

 

2.2. Action Rules 

In this subsection, we give definitions of action terms, action rules and properties of action rules 

[28]. Let S = (X, {A ∪ d},V ) be a decision system, where d is a decision attribute and V = ∪Vi : i 

∈ A. Action terms can be given by the expression of (m,m1 → m2), where m ∈ A and m1,m2 ∈ Vm. 

m1 = m2 if m ∈ ASt. In that case, we can simplify the expression as (m,m1) or (m = m1). Whereas, 

m1 6= m2 if m ∈ AFl. Action Rules can take a form of t1 ∩ t2 ∩ .... ∩ tn, where ti is an atomic 

action or action term and the Action Rule is a conjunction of action terms to achieve the desired 

action based on attribute d. Example Action Rule for the Decision System in Table 1 is given 

below: (a,a1 → a2).(b,b1 → b2) ➔ (d,d1 → d2). 

2.2.1. Properties of Action Rules 

Action Rules are considered interesting based on the metrics such as Support, Confidence, 

Utility and Coverage. Higher these values, more interesting they are to the end user. Consider 

an action rule R of form: 

(Y1 → Y2) ➔ (Z1 → Z2) 

where, Y is the condition part of R and Z is the decision part of R 

Y1 is a set of all left side action terms in the condition part of R 

Y2 is a set of all right side action terms in the condition part of R 

Z1 is the decision attribute value on left side 

Z2 is the decision attribute value on right side 

In [6], the support and confidence of an action rule R is given as  

Support(R) = min{card(Y1 ∩ Z1), card(Y2 ∩ Z2)} 

 

Later, Tzacheva et.al [29] proposed a new set of formula for calculating Support and 

Confidence of Action Rules. Their idea is to reduce complexities in searching the data several 

times for Support and Confidence of an Action Rule. The new formula are given below. 



Support(R) = card(Y2 ∩ Z2) 

 

Tzacheva et. al [29] also introduced a notion of utility for Action Rules. Utility of Action Rules 

takes a following form. For most of cases Utility of Action Rules equals the Old Confidence of 

the same Action Rule. 

 
Coverage of an Action Rule means that how many decision from values, from the entire 

decision system S, are being covered by all extracted Action Rules. In other words, using the 

extracted Action Rules, Coverage defines how many data records in the decision system can 

successfully transfers from Z1 to Z2. 

 

Figure 1: Overview of Spark execution using Resilient Distributed Datasets(RDD). Tasks such 

as transformations are given to the slave nodes. Slaves after performing the tasks, cache the 

result in RAM. Results can be given back to the Driver node or can be used for another 

transformation operation 

2.3. Cost of Action Rules 

Typically, there is a cost associated with changing an attribute value from one class to another - 

more desirable one. The cost is a subjective measure, in a sense that domain knowledge from the 

user or experts in the field is necessary in order to determine the costs associated with taking the 

actions. Costs could be monetary, moral, or a combination of the two. For example, lowering the 

interest percent rate for a customer is a monetary cost for the bank; while, changing the marital 

status from ’married’ to ’divorced’ has a moral cost, in addition to any monetary costs which 

may be incurred in the process. Feasibility is an objective measure, i.e. domain independent. 

According to the cost of actions associated with the classification part of action rules, a business 

user may be unable or unwilling to proceed with them. The definition of cost was introduced by 

Tzacheva and Ras [7] as follows: 

Assume that S = (X,A,V ) is an information system. Let Y ⊆ X, b ∈ A is a flexible attribute in S 

and v1,v2 ∈ Vb are its two values. By ℘S(b,v1 → v2) we mean a number from (0,ω] which 

describes the average cost of changing the attribute value v1 to v2 for any of the qualifying 

objects in Y . These numbers are provided by experts. Object x ∈ Y qualifies for the change from 

v1 to v2, if b(x) = v1. If the above change is not feasible, then we write ℘S(b,v1 → v2) = ω. Also, if 



℘S(b,v1 → v2) < ℘S(b,v3 → v4), then we say that the change of values from v1 to v2 is more 

feasible than the change from v3 to v4. Assume an action rule r of the form: 

(b1,v1 → w1) ∧ (b2,v2 → w2) ∧ ... ∧ (bp,vp → wp) ➔ (d,k1 → k2) 

If the sum of the costs of the terms on the left hand side of the action rule is smaller than the 

cost on the right hand side, then we say that the rule r is feasible. 

2.4. Spark 

Spark [16] is a framework that is similar to MapReduce [15] to process large quantity of data 

efficiently in a parallel fashion and in a short span of time. The disadvantage of MapReduce 

framework is frequent system’s disk access for writing and reading the data between Map and 

Reduce phases. However, Spark introduces a distributed memory abstraction strategy named 

Resilient Distributed Datasets(RDD). The RDDs works by splitting the data into multiple nodes, 

do in-memory computations on whose nodes and store the results in memory itself if there are 

any available space in RAM. These results can be accessed for future processes and analyses, 

which in-turn create another RDD. Once the RAM goes out of memory, Spark uses some 

strategies to push the results that are unused for a long time to the disk. Thus, Spark cuts off 

large number of disk accesses for storing intermediate outputs like in Hadoop MapReduce. 

Spark works in a Master-Slave approach. The Driver node(Master) allocate tasks to the Worker 

nodes(Slaves). Spark preserves data-locality (i.e) locating worker nodes nearer to the current 

node which contains a part of the data. A task that the worker perform can be either a 

Transformation or an Action. During Transformation stage, computations are made on the data 

split and results are stored in-memory of the worker node. Results of all worker nodes together 

form another RDD. While the Action stage on an RDD collect results from all workers and send 

it to the driver node or save the results to a storage system. Figure 1. shows an overview of the 

execution of Spark. 

 

Figure 2: Spark Lineage Graph Example 

Spark helps machine learning algorithms which relies on multiple iterations on the given data 

with the help of RDD’s in memory computation. Spark handles node failures by having a 

lineage graph of RDDs. The lineage graph is a Directed Acyclic Graph (DAG) where each node 

represents a transformation stage. Figure 2 shows a sample lineage graph of combining RDDs 

from two inputs. When a failure occurs at a certain stage, Spark uses the last available working 

point (RDD) from the lineage graph and restart all computations from that working point rather 



than repeating the entire process from the beginning or saving the intermediate results and 

replicating them across multiple nodes. This strategy of data management, fault tolerance and 

in-memory processing make Spark to do computations faster than MapReduce 

2.5. Spark GraphX 

Spark, with its efficiency in Resilient Distributed Datasets 

(RDDs) help wide variety of applications such as Machine Learning with MLlib library [17], 

Graph Analysis with GraphX library [18]. GraphX is an embedded graph processing framework 

built on top of Apache Spark. In general, graphs can be represented as G=(V,E), where V is the 

set of vertices in G and E, which takes the general representation as eij = Edge(i,j), is the set of 

edges connecting 2 vertices (i,j) in G. GraphX treats the complete graphs as an RDD. It 

maintains the graph RDD in the type of [VD, ED], where VD and ED are other RDDs 

representing vertex properties and edge properties respectively. Figure 5 provides the simple 

GraphX framework and functions it provide to support various graph operations. GraphX 

performs graph-specific operations as a series of distributed map(), join() and reduce() functions 

of RDDs. Besides these functions, GraphX comprise of Google’s Pregel API [22]. GraphX uses 

Pregel API to perform iterative tasks like PageRank, Graph search algorithms like Depth First 

Search (DFS) and Breadth First Search (BFS) and finding shortest routes in graphs like 

Dijkstra’s algorithm. In iterative graph algorithms, vertices of the graph have to pass some 

messages to their neighbours. Since the graph is maintained as a single RDD in GraphX, the 

message passing is complicated compared to other graph libraries. The Pregel API automates 

this message sending and receiving module and provides a functionality to do these jobs 

efficiently to suit the Spark environment. GraphX also shows great speedups for iterative graph 

algorithms such as PageRank compared to other graph libraries such as GraphLab [30] and 

Giraph [31]. For iterative graph processing, GraphX provides Pregel API [22]. Pregel works in 

a message passing fashion between the graph vertices. In GraphX, Pregel has three functions: 

sendMsg() - to process and send a message to a vertex’s immediate neighbours, mergeMsg() - to 

merge all messages from a vertex’s immediate neighbors and receiveMsg() - to receive and 

process the merged message. Following these steps, each vertex can share and collect 

information with their neighbours. With this method, the information can flow from one end of 

the graph to another gradually. For iterative procedure, Pregel iterations are named as super 

steps. In each super step, each vertex executes all three above mentioned functions. 

 

Figure 3: GraphX Framework with basic graph algorithms 

4. METHODOLOGY 

In this work, we propose a graph-based method to search for optimal low cost Action Rules. To 

extract low cost Action Rules, first we extract Action Rules with a distributed mechanism: 

SARGS [20]. From the extracted Action Rules, we build an Action Graph. We then propose a 

method based on Dijkstra’s algorithm to search the Action Graph for low cost Action Rules. In 

this section, we give the SARGS algorithm, Action Graphs and our search algorithm to extract 

low cost Action Rules 



 

Figure 4: Distributed Actionable Pattern Mining using SARGS algorithm overview 

4.1. Action Rules extraction using SARGS 

The SARGS algorithm propsed in [20] uses LERS [32] and ARAS [11] methods for extracting 

Action Rules in a distributed fashion for larger datasets. Figure 4 gives an overview of the 

SARGS algorithm. SARGS algorithm consists of 3 modules namely: Data distribution, LERS 

and ARAS. 

4.1.1. Data distribution Module 

The data distribution module is to evenly distribute the data based on the decision attribute. The 

main objective of the data distribution module is to overcome the obstacle of inaccurate 

knowledge discovery while extracted in a distributed setup. The given input data is split into n 

groups, where n=no. of decision attribute vales and each group consists of records from the 

information system matching the corresponding decision value. Also, the proportion constraint 

Pg ' PS is maintained, where Pg is the proportion of records in a partition g with decision attribute 

value di and PS is the proportion of records in the given information system S with decision 

attribute value di. By this way, each partition contains same proportion of data which is equal to 

the original dataset. The final actionable knowledge from these partitions are considered to be 

equal to that of the knowledge from the single data. Figure 5 shows an example data partition 

for the information system S shown in Table 1. 

 

Figure 5: Example Data Distribution in SARGS for the Decision System given in Table 1 



4.1.2. Data distribution Module 

The second module in the SARGS algorithm is the LERS [32]. LERS is a Learning from 

Examples based on Rough Sets which extracts classification rules from the information system. 

SARGS follows distributed method of generating classification rules using LERS system. Using 

the information system S from Table 1, LERS strategy can find all certain and possible rules 

describing decision attribute d in terms of attributes a,b, and c. Since LERS follows bottomup 

strategy, it constructs classification rules with conditional part covering x attributes, then it 

continues to construct rules with conditional part of x + 1 attributes during the following 

iterations. Only marked rules from the LERS module are considered for the ARAS module. A 

classification rule ci if and only if Sci ⊆ Sd∗, where Sci is the set of rows in S that support the 

classification rule ci and Sd∗ is the set of rows in S that support the decision attribute value d∗. 

4.1.3. Modified LERS Module 

The third module in the SARGS method is the modified version of ARAS [11] and it uses all 

marked classification rules from the second (LERS) module and derives Action Rules. ARAS 

method, which extracts incomplete Action Rules, may not be useful when the user requires 

valid recommendations. Sample Action Rules from the system ARAS for the Decision System 

S given in Table 1 are given below: 

ARs1 : (d1 → d2) = (a,→ a2).(b,→ b2) ➔ (d,d1 → d2) 

ARs2 : (d1 → d2) = (a,→ a2).(c,c2) ➔ (d,d1 → d2)  

ARs3 : (d1 → d2) = (b,→ b1).(c,c2) ➔ (d,d1 → d2) 

ARs4 : (d1 → d2) = (b,→ b2).(c,c1) ➔ (d,d1 → d2) 

This method gives the modified version of ARAS module that the SARGS algorithm uses to 

extract all complete Action Rules. This algorithm extracts all missing values from the 

conditional (left) part of the given Action Rule. The algorithm then get cartesian product of all 

missing values (except the values of same attribute) and fills in the action rule. Following 

Action Rules are extracted from the decision system S given in Table 1 using SARGS method. 

AR1(d1 → d2) = (A,a1 → a2).(B,→ b2) ➔ (D,d1 → d2) 

AR2(d1 → d2) = (A,a3 → a2).(B,→ b2) ➔ (D,d1 → d2) 

4.2. Action Graphs 

We build a graph called Action Graph from the Action Rules extracted using the SARGS 

algorithm. We build Action Graph by using action terms in Action Rules and their relation with 

other action terms. In general, graphs take the representation of G = (V,E), where V is a set of 

vertices and E is a set of edges connecting vertex pairs in V. All vertices and edges can contain 

properties that combined together uniquely represent vertices and edges respectively. We 

represent our Action Graph as an undirected graph Ag = (Av, Ae). In Action Graph, we treat 

action terms that we get from Action Rules as a set of vertices (Av) and we create edge between 

a vertex pair (am,an| am,an ∈ ri), where ri is an Action Rule. We set basic properties of an action 

term such as Vertex Id, Name, Cost, Support, Neighbour Ids and Action Rules of low cost based 

on the vertex as vertex properties of the Action Graph and Cooccurrence Frequency of a vertex 

pair as an edge property. For example, red node means highest frequency, yellow node means 

medium frequency, and blue node means low frequency. Figure 6 gives a sample Action Graph 

for Action Rules extracted from Table 1 using the SARGS algorithm. 



 

Figure 6: Sample Action Graph with Vertex Properties and Edge weights; Vertex color 

represents how frequently the action term occurs, with Red being the most frequent, and Yellow 

the least frequent. 

4.3. Action Graph search algorithm for extracting Action Rules of lowest cost 

 

Algorithm 1: Action Graph Search Algorithm for Action Rules of Lowest Cost 



Algorithm 1 gives an overview of our search algorithm with functions to send, receive and 

merge messages. The basic idea behind our search algorithm is very similar to Dijkstra’s 

shortest path algorithm [21] adapted to distributed environment on cloud. In each iteration: all 

vertices share their action term with its cost with their neighbours; all vertices add action terms 

arriving from neighbours to their dictionary; all vertices combine the valid low cost action terms 

with the ones already in their dictionary; the resulting action rules are sorted by cost in 

descending order; finally, all vertices share the set of low-cost action rules with their 

neighbours; algorithm runs for n − iterations, where n is the number of action terms in the 

longest action rule, from the input list of action rules. The search algorithm takes the Action 

Graph Ag = (Av, Ae), where Av is a set of vertices or action terms and Ae is a set of edges 

connecting vertex pairs in Av, and minimum cost threshold ρ. We send an initial empty message 

to start the functions. The first function to execute is the ReceiveMsg(). For better readability we 

explain in the order of SendMsg(), MergeMsg and ReceiveMsg(). Steps 6-10 gives procedure to 

do for all vertices when they need to send a message to their immediate neighbours. Each vertex 

process each edge originating from them. For each available low cost Action Rule r, it checks if 

r ⊆ dstn.neighbors in Step 9. This step filters the dictionary in each vertex remove action terms 

that are irrelevant to the destination vertex. To avoid duplicate rules from multiple vertices, we 

send only the combination of action terms that are new to the destination vertex. In Steps 11-13 

we give a procedure for each vertex to combine messages from multiple vertices. This function 

simply combines all messages (dictionaries of action terms with their Costs) and into a single 

Dictionary. This single Dictionary is processed via the ReceiveMsg() function for processing. In 

Steps 1-5 we show the processing the ReceiveMsg() performs - for all vertices when they 

receive a message. When a vertex receives a set of action term combinations and their 

corresponding costs, it adds its own cost to produce a Low Cost Action Rule. If the total cost is 

less than or equal to the given cost threshold ρ, the vertex adds the Action Rule to its list of Low 

Cost Action Rules. The main function is described in Step 16, where we initiate the first 

messageSend() operation to v ∈ Av. First, we populate Action Rules property of each vertex to 

the combination of current vertex and its immediate neighbour and respective cost. Next, all 

vertices send an empty message to all their immediate neighbours. This continues for n 

iterations as mentioned above. Once all iterations are over, we obtain an Action Graph A0
g 

containing Action Rules along with their cost for each vertex. We then sort the rules by cost in 

Descending Order and suggest to the user the top 5 lowest cost rules for each vertex. The top 5 

lowest cost Action Rules from all vertices form the set of the discovered Action Rules of 

Lowest Cost. 

4.4. Post-processing: Action set correlations of low cost Action Rules 

By following the Algorithm1, we obtain all low cost Action Rules. Some Action terms in Action 

Rules may have high correlations. We propose a method to reduce further the cost of the 

obtained rules by considering edge weights in our Action Graph. We assign edge weights 

between two vertices or action terms based on their frequencies of co-occurring together in 

Action Rules. We define a correlation threshold η to check if two action terms in an Action Rule 

is highly correlated. We assume that two action terms ar1,br1|(ar1,br1) ∈ r1, where r1 is an Action 

Rule, to be highly correlated if their co-occurring frequency w is greater than or equal to η. We 

propose that when two action terms satisfy the w ≥ η, then the action suggested by the first term 

is expected to trigger the action suggested by the second one. Therefore, the lowest cost action 

can be dropped from the total cost. For each vertex, we define a correlation matrix, which gives 

correlation frequency between the current vertex or action term and its neighbour. Figure 7 

gives a sample correlation matrix for the action term vertex (b,1 → 2). With this correlation 

matrix, we can identify which 2 terms are highly correlated. Then we process each Action Rule 

from the dictionary of low cost Action Rules of the current vertex. When a highly correlated 

pair occurs in the Action Rule, we drop the cost of lowest cost action term. For example, cost of 



the Action Rule (b,1 → 2) ∩ (c = 1) can be reduced from 31 to 30, if the correlation threshold η 

is set to 1. 

 

Figure 7: Example Correlation Matrix of the action term (b,1 → 2) 

 

5. EXPERIMENTS AND RESULTS 

To test our methods, we use three datasets: Car Evaluation data, Mammographic Mass data, and 

the city of Charlotte North Carolina BusinessWise data. 

 

Table 2: Dataset properties 

Property Car Evaluation 

Data 

Mamm. Mass 

Data 

Business Data 

# of instances 1728 961 22441 

Attributes 7 attributes 

-Buying 

-Maintenance 

-Doors 

-Persons 

-Luggage Boot 

-Safety 

-Class 

6 attributes 

-BI-RADS 

-Patient’s age 

-Shape 

-Margin 

-Density 

-Severity 

17 attributes 
including  
-City 

-Sector 

-Site Type 

-Building 

Type 

-Estimated 

Sales 

-Total 

Employees 

Count 

Decision 

attribute 

values 

Class 

(unacc, acc, 

good, vgood) 

Severity 

(0 - benign, 

1malignant) 

Estimated 

Sales 

(<$2M,2- 

# of 

instances / 

decision 

value 

unacc - 1210 

acc - 384  

good - 69 

vgood - 65 

0 – 516 

1 - 445 

<$2M – 12503 

$2-$10M – 1927 

$10-$25M – 393 

$25-$50M – 130 

$50-$100M – 69 

$100M-$500M – 57 

>$500M – 50 

Data size 52 KB 16 KB 5.5 MB 

 



Table 3: Parameters used for Action Rules discovery using SARGS algorithm 

Property Car Evaluation 

Data 

Mamm. Mass 

Data 

Business Data 

Stable attributes Doors, Persons Age Start Year 

Required 

decision action 

(Class) 

unacc → acc 

(Severity) 

1 → 0 

Estimated 

Sales $2M − 

$10M → 

$10M − 

$24M 

Minimum 

Support α and 

Confidence β 

2, 70% 2, 70% 100, 70% 

Cost Threshold 
φ 

1500 2000 3000 

 

The Car Evaluation and Mammography are obtained from the Machine Learning repository of 

the Department of Information and Computer Science of the University of California, Irvine 

[33]. The Car Evaluation Data consists of records describing a car’s goodness and acceptability 

based on features such as buying frequency, maintenance cost, safety measure, seating capacity 

and luggage boot size. Mammographic is the most effective method for screening breast cancer. 

The Mammographic Mass data contains records that measure severity of the cancer based on 

patient’s age, cancer shape, cancer density and BI-RADS(a test score to denote how severe the 

cancer is). 

Table 4: Example Action Rules of lowest cost for Car Evaluation Dataset 

Low Cost Action Rules 

1. ARC4 : (buying, high → med) ∧ (lugBoot, med → small) ∧ (maint, low → med) ∧ 

(persons = 4) ∧ (safety, low → high) ➔ (class, unacc → acc)[Support : 

4,OldConfidence: 100%, New Confidence : 100%, Utility : 100%] COST : 1300.0 

2. ARC5 : (buying, low → med) ∧ (lugBoot, med → big) ∧ (maint, low → med) ∧ 

(persons = more) ∧ (safety, low → med) ➔ (class, unacc → acc)[Support : 

4,OldConfidence: 100%, New Confidence: 100%, Utility: 100%] COST: 1400.0 

Low Cost Action Rules after Correlation 

1. ARC4 : (buying, high → med) ∧ (lugBoot, med → small) ∧ (maint, low → med) ∧ 

(persons = 4) ∧ (safety, low → high) ➔ (class, unacc → acc) [Support: 4, Old 

Confidence: 100%, New Confidence: 100%, Utility: 100%] COST: 1000.0 

2. ARC5 : (buying, low → med) ∧ (lugBoot, med → big) ∧ (maint, low → med) ∧ (persons 

= more) ∧ (safety, low → med) ➔ (class, unacc → acc) [Support : 4,Old Confidence: 

100%, New Confidence: 100%, Utility : 100%] COST: 1100.0 

 

The city of Charlotte North Carolina BusinessWise data, which was donated by the Charlotte 

Chamber of Commerce. This data collects details of over 20,000 business companies in 

Mecklenburg county, North Carolina. The data includes their City, Start Year, Sector, 

Specialization of the company in a selected sector, Site Type, Employees count at the site, Total 

employees in the company including all branches, Site building type, Total sites and Estimated 



Sales. From this data, our focus is how to increase the Estimated Sales amounts in USD. We 

show detailed description of each dataset properties in Table 2 which we use to test our 

algorithm. 

Table 3 give parameters that we set for each dataset to collect Action Rules. For the Car 

Evaluation data, we choose Class attribute as a decision attribute and we collect Action Rules to 

help the car company to change the car from Unacceptable state to Acceptable state. For the 

Mammographic Mass data, we choose Cancer Severity as a decision attribute and we collect 

Action Rules to suggest Actions to doctors on how to reduce the tumour severity from 

Malignant to Benign. For Business Data we choose class attribute as Estimated Sales, and we 

collect Action Rules to suggest Actions to business on how to increase their Estimated Sales in 

USD from the range 2million-10million USD to 10millon-24million USD. 

With our datasets and using parameters that we set in Table 3, we run the SARGS algorithm on 

each data. We collect Action Rules which meet the minimum support(α), and minimum 

confidence(β), threshold. We record the cost(φ) for each action term. We calculate Total Cost of 

each Action Rule by adding the cost of all action terms in the rule. Usually, the cost of each 

action term is specified by an expert in the domain. For example, for the Mammography dataset, 

a medical doctor specifies the cost for the suggested actions. For Car Evaluation data, the car 

manufacturer specifies the cost for the suggested actions. However, for our experiment purpose, 

we assign a random cost number to each action term. We assign the cost of 0 for action terms 

which have stable attributes, because the stable attributes cannot be changed. For the Flexible 

Attributes, we set the cost values between 0 and 1000. In Table 4, Table 5 and Table 6, we show 

samples of Low Cost Action Rules, and Low Cost. Action rules - after post-processing steps or 

Correlation over the low cost Action Rules, for the Car Evaluation Data, Mammographic Mass 

Data and Business Data respectively. These rules support the parameters which we set in Table 

3. In Table 4, Table 5 and Table 6, low cost Action Rules are ones which has cost less than φ. 

Table 5: Example Action Rules of lowest cost for Mammographic Dataset 

Low Cost Action Rules 

1. ARM4: (BI−RADS, 6 → 4) ∧ (Density, 3 → 2) ∧ (Margin, 5 → 1) ➔ (Severity, 1 → 

0) [Support: 25, Old Confidence: 100%, New Confidence: 100%, Utility: 100%] 

COST: 550.0 

2. ARM5: (Age = 60) ∧ (BI − RADS,6 → 4) ➔ (Severity, 1 → 0) [Support: 11, Old 

Confidence: 100%, New Confidence: 100%, Utility: 100%] COST: 450.0 

3. ARM6: (BI−RADS, 6 → 4) ∧ (Margin, 5 → 1) ∧ (Shape, 3 → 2) ➔ (Severity, 1 → 0) 

[Support: 13, Old Confidence: 100%, New Confidence: 100%, Utility: 100%] COST: 

800.0 

Low Cost Action Rules after Correlation 

1. ARM4: (BI−RADS, 6 → 4) ∧ (Density, 3 → 2) ∧ (Margin, 5 → 1) ➔ (Severity, 1 → 

0) [Support: 25, Old Confidence: 100%, New Confidence: 100%, Utility: 100%] 

COST: 450.0 

2. ARM5: (Age = 60) ∧ (BI − RADS,6 → 4) ➔ (Severity, 1 → 0) [Support: 11, Old 

Confidence: 100%, New Confidence: 100%, Utility: 100%] COST: 400.0 

3. ARM6: (BI−RADS, 6 → 4) ∧ (Margin, 5 → 1) ∧ (Shape, 3 → 2) ➔ (Severity, 1 → 0) 

[Support: 13, Old Confidence: 100%, New Confidence: 100%, Utility: 100%] COST: 

600.0 

 



These Action Rules define what actions do a company/user should employ to achieve their 

desired goal. For example, the rule ARC4 recommends that if a car company decreases the Buying 

Cost from high to medium and increases the Maintenance Cost from low to medium and 

increases Safety Measures from low to high and if the Seating Capacity is 4, then the Car 

Condition may change from Unacceptable to Acceptable with the cost of 1300.0. For all 

datasets, we consider cost just as a measure of an Action Rule since the actual costs are assigned 

by experts. 

Next, we build an Action Graph using the list of extracted Action Rules as an input. We 

implement the Action Graph in both non-parallel environment, and in a clustered environment 

for performance and scalability comparison. The Non-parallel version is implemented in Java. 

The Apache Spark [16] using the Spark GraphX library. We use Scala programming language. 

We test the system on a Spark cluster running over Hadoop YARN. The cluster has 6 nodes 

connected via 10 GigaBytes per second Ethernet network. We use Pregel API [22] in Spark 

GraphX [18] framework to search the Action Graph in an iterative procedure by using the 

Algorithm described in figure Algorithm 1. This algorithm returns all low cost Action Rules 

(cost < φ). From these Action Rules, we do post processing step and highly correlating action 

terms pair (correlation frequency ≥ η). If there is any correlation pair in the Action Rule, we 

drop the lowest cost in that pair. For example, consider the low cost Action Rule ARB5 from 

Table6. Cost of this Action Rule is 1394.0. In the post-processing step, we find that the Action 

Term (EMPSITE,4−9Employees → 10 − 24Employees) of cost 504.0 co-occurs frequently with 

the action term (EMPALLSITE,25 − 49Employees → 500 − 999Employees) of cost 63.0. So, we 

consider that one of these action terms trigger the other action to happen eventually. Thus, we 

drop the cost of (EMPALLSITE,25−49Employees → 500−999Employees) and reduce the cost of 

the Action Rule to 1213.0. 

Table 6: Example Action Rules of lowest cost for Charlotte Businesswise Dataset 

Low Cost Action Rules 

1. ARB1: (EMPALLSITE, 50 – 99 Employees → 250 – 499 Employees) ∧ (EMPSITE, 50-

99 Employees → 4−9 Employees) ∧ (SECTOR, Services → Retail Trade) ∧ (STARTYR 

= 2006 − 2010) ➔ (ESTSALES, $2M − $10M → $10M − $24M) [Support: 2, Old 

Confidence: 60%, New Confidence: 66%, Utility: 90%] COST:1615.0 

2. ARB2: (CITY, Matthews → Charlotte) ∧ (EMPALLSITE, 25–49 Employees → 500–999 

Employees) ∧ (EMPSITE, 4-9 Employees → 10−24 Employees) ∧ (OWNBLDG, Y → 

N) ➔ (ESTSALES, $2M − $10M → $10M − $24M) [Support: 2, Old Confidence: 60%, 

New Confidence: 66%, Utility: 90%] COST:1276.0 

Low Cost Action Rules after Correlation 

1. ARB1: (EMPALLSITE, 50 – 99 Employees → 250 – 499 Employees) ∧ (EMPSITE, 50-

99 Employees → 4−9 Employees) ∧ (SECTOR, Services → Retail Trade) ∧ (STARTYR 

= 2006 − 2010) ➔ (ESTSALES, $2M − $10M → $10M − $24M) [Support: 2, Old 

Confidence: 60%, New Confidence: 66%, Utility: 90%] COST:1330.0 

2. ARB2: (CITY, Matthews → Charlotte) ∧ (EMPALLSITE, 25–49 Employees → 500–999 

Employees) ∧ (EMPSITE, 4-9 Employees → 10−24 Employees) ∧ (OWNBLDG, Y → 

N) ➔ (ESTSALES, $2M − $10M → $10M − $24M) [Support: 2, Old Confidence: 60%, 

New Confidence: 66%, Utility: 90%] COST:1213.0 

 



 

Figure 8: Action Graph for Action Rules from Car Evaluation Dataset 

A visualization of the Action Graph for the Car Evaluation data is shown in in Figure 6. The 

colour and size of the vertex v in the Action Graph represent how frequently a specific action 

term occurs in our Action Rules set. The more frequent action terms are shown in larger size 

nodes, and the less frequent in smaller size nodes. Also, the darker colours signify the most 

frequently occurring action terms, and the lighter colours less frequent action terms. For the Car 

Evaluation data, the action term (persons=more) occurs most frequently, is shown in the red 

colour red node in Figure 6, and the action term (safety, low → high) is the second most 

frequent term in our Action Rules set, which is shown in green colour node in Figure 6. Table 7 

gives details about the number of Action Rules, and the processing time in seconds for the 

proposed algorithm to build Action Graphs (one for each dataset) and basic properties of these 

graphs such as number of nodes and edges. 

Table 7: Action Graph Properties for different datasets 

Property Car Evaluation 

Data 

Mamm. Mass 

Data 

Business Data 

No.ofAction 

Rules 

415 290 2043 

No.ofAction 

Terms / Nodes 

33 98 224 

Minimum 

Support α and 

Confidence β 

2, 70% 2, 70% 2, 60% 

Cost Threshold 
φ 

1500 900 3000 

In Table 8, we give our system’s runtime performance comparing with non distributed version 

of the same algorithm. The distributed version of the Action Graph, which we implement in 

Apache Spark [16] using the GraphX [18] library, and the Pregel API [22], shows faster 

processing times for large datasets compared to single machine implementation in Java. 

 



Table 8: Analysis on Action Graphs for Low Cost Action Rules 

Dataset Non-distributed 

Algorithm 

Distributed 

Algorithm 

 

Car Evaluation 

Data 

1.2 mins 7.1 secs  

Mamm. Mass 

Data 

17 secs 5.8 secs  

Business Data > 10 mins 3.1 mins  

6. CONCLUSION 

The distributed version of the Action Graph Search for Lowest Cost Action Rules, which we 

implement in Apache Spark [16] using the GraphX [18] library, and the Pregel API [22], shows 

faster processing times for large datasets compared to single machine implementation in Java. 

Our proposed method presents an improvement over the Search for Action Rules of Lowest 

Costs in [7], as we use a distributed version for Graph Search, which is suitable to scale well for 

big datasets. In addition, it addresses a significant drawback of the previous method, which is 

using a heuristic search, and hence sometimes it is unable to reach the goal, and discovery any 

rules. The new proposed method always reaches the goal and discovers the rules of lowest cost. 

In the future, we plan to build a Decision Tree like structure, which can be searched, and shows 

the Lowest Cost Action Rules at the leaves of the tree. We plan to improve the support and 

confidence of the discovered Low Cost Action Rules by incorporating these parameters into the 

search procedure. We also plan to use the proposed Graph structure in order to design a 

distributed version of Association Action Rules extraction algorithm. 
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