
IN SEARCH OF ACTIONABLE PATTERNS OF

LOWEST COST - A SCALABLE GRAPH METHOD

Angelina A. Tzacheva, Arunkumar Bagavathi and Aabir K. Datta

Department of Computer Science, University of North Carolina at Charlotte

North Carolina, USA-28223
aatzache@uncc.edu, abagavat@uncc.edu, adatta1@uncc.edu

ABSTRACT

Action Rules are rule based systems for discovering actionable patterns which are hidden in a large

dataset. All recommended patterns from Action Rules incur some form of cost to the users. It is obvious

that recommendations are interesting to the users only if the cost that the user pays for the recommended

actions is low. In other words, the recommendations should be profitable or valuable to the user when

they perform a chain of actions, at the lowest possible cost. In the modern era of big data, organizations

are collecting massive amounts of data, growing constantly. Finding low cost actionable patterns for

such large data in these domains, is time consuming and requires a scalable approach. In this work, we

introduce the notion of Action Graph and propose an algorithm to search the Action Graph for

actionable patterns of lowest cost. We apply the proposed algorithm to three datasets in transportation,

medical, and business domains. Results show how these domains can benefit from the discovered

actionable recommendations of low cost.

KEYWORDS

Low Cost Action Rules, Action Graph, Graph Search, GraphX, Pregel

1. INTRODUCTION

Data Mining is a stage of Knowledge Discovery in Databases, which identifies previously

unidentified, interesting and useful patterns and trends from a large quantity data. Rule based

knowledge discovery tasks intend to circumscribe methods that identify, learn or evolve ‘rules’

to store and manipulate knowledge. In the field of data mining, many algorithms are available to

generate rules which are used for association - to find frequently associated patterns in the data

and classification - to classify patterns to one or more classes. Rules takes the format as given in

equation (1), where the antecedent (left side of the rule) is a conjunction of conditions and the

consequent (right side of the rule) is a resulting pattern for the conditions in antecedent.

condition(s) → result(s) (1)

The primary obstacle for such data mining and machine learning algorithms is the lack of

actionability [1]. For example, a credit card company can assign credit scores to its customers

based on their underlying classification model. For their low credit score customers, they may

want to assign a person to give personal suggestions to the customer’s improve credit score.

Action Rule is a rule based knowledge discovery technique that recommend actionable patterns

or possible transitions from one choice to another, which the user can use to their advantage. In

other words, Action Rules helps to reclassify the data from one category to another,

recommending patterns to improve performance of an object or establishing better work to the

user. For example, one would want to find actionable patterns in the data to improve his/her

salary. Some of the applications for Action Rules are: improving customer satisfaction in

business - suggesting how to improve the customer status from detractor to promoter, using

online product surveys [2]. In medical domain: reducing hospital readmission in a state by

giving actionable recommendations to doctors on certain procedures they can follow [3], and

mailto:aatzache@uncc.edu
mailto:abagavat@uncc.edu
mailto:adatta1@uncc.edu

suggesting how to re-classify a breast cancer tumour from malignant to benign [4]. In

transportation domain, suggesting how to re-classify a car condition from unacceptable to

acceptable [5]. Action Rules are extracted from Decision table [6], which is more similar to the

relational databases. A database becomes a decision table or decision system, when the attribute

space of the data can be split into Stable Attributes, Flexible Attributes and a Decision attribute.

Stable attributes in any Action Rule AR remain constant or cannot form action in AR. While

flexible attributes can change their value for example attribute a change from ai to aj. Decision

attribute is also a flexible attribute, but it is the attribute that the user has chosen to get the final

decision that the user need to achieve. Action Rules can take the representation as given in

equation (2), where Ψ represents a conjunction of stable features, (α → β) represents a

conjunction of changes in values of flexible features and (θ → φ) represents desired decision

action. Action Rules are validated using Support, Confidence, Utility and Coverage measures.

[(Ψ) ∧ (α → β)] → (θ → φ) (2)

All actionable patterns given by an Action Rule subject to certain form of cost to the user [7],

[8]. The extracted Action Rules are more interesting to users if the system recommends more

diverse Action Rules and if Action Rules incur less cost to the users. Cost for actions in Action

Rules can take a form of money, time, energy, human resources, etc. [9] Recommended actions

can cause both positive and negative impact for users. Positivity in the rules is given by the

measure of what amount of benefit the users can obtain from the recommendations. However, a

recommendation can create negative impact if the user cannot accommodate such actions due to

the cost for undertaking such actions is very high and it is not feasible for them. Thus, the

actionable recommendations from a system should cause low cost to the users to make them

feasible. However, most of the Action Rule discovery systems [10] [11] [12] [13] do not

consider cost effectiveness for recommendations. In [7] [14], the notion of cost of the Action

Rules is introduced and refined. Action Rules extraction algorithms produces very large number

of Action Rules for big datasets. Searching for low cost Action Rules from such a huge volume

of Action Rules can be very time consuming and requires a scalable and distributed approach

for extracting them in a reasonable timeframe.

Distributed Processing frameworks like Hadoop [15] and Spark [16] have been introduced to

make big data processing and data mining faster and easier. These frameworks distribute the

data among nodes in a cluster of computers. Usually, these clusters are configured nodes of high

computational and storage power (RAM and CPU). Thus, when the data processing work is split

among those multiple high processing nodes, each of which performs computations on their part

of the data, a big chunk of work gets complete quickly. Finally, when all nodes finish executing

their tasks, the results are merged to present the final result. Apache provides innumerable

frameworks like Hadoop [15], Spark [16], Hive, Pig to handle all such big data and distributed

processing for multiple purposes. In this work, we use Apache Spark [16] framework for

implementing a scalable solution to our proposed method and make it suitable for big data.

Spark provides APIs such as MLlib [17] for Machine Learning tasks in a distributed setup,

GraphX [18] for an efficient parallel processing in large graphs.

In this work, we utilize Action Rules produced using distributed Action Rules extraction

algorithm: MR-Random Forest [19] and SARGS [20]. We introduce a graph representation for

Action Rules that we extracted called Action Graph. We construct distributed graphs based on

action terms of derived from Action Rules and their correlations. We use Spark GraphX [18] to

build Action Graphs and perform implement search algorithms to discover low cost Action

Rules from the graph. We propose a distributed and a revised version of the Dijksra’s shortest

path [21] algorithm to search the Action Graph and discover low cost Action Rules using Pregel

API [22] provided by Apache Spark. We evaluate our method with non-distributed version of

the Dijsktra’s algorithm and compare the times it takes to extract low cost Action Rules.

2. RELATED WORKS

More than a decade, researchers have been conducting studies on Action Rules mining to

discovery actionable pattern from datasets. Some Action Rule discovery algorithms include:

DEAR [10], ARAS [11] and Association Action Rules [12] in a single machine. However, with

the advent of big data and constantly growing databases, the original Action Rules mining

algorithms no longer can perform the mining at reasonable time. For that reason, recently,

Tzacheva, et. al proposed MR-Random Forest algorithm [19] and Bagavathi, et. al proposed

SARGS algorithm [20] for scalable Action Rules extraction in a distributed environment such as

Hadoop MapReduce and Apache Spark to handle Big Data. However, these algorithms do not

consider the Cost of the discovered Action Rules. All actionable patterns involve some form of

Cost such as money, time, power and other resources to achieve the desired results [7].

Ras and Tzacheva [23] introduced the notion of cost and feasibility of Action Rules as an

interestingness measure. They proposed a graph method for extracting feasible and low cost

Action Rules. Ras and Tzacheva [7] proposed a heuristic search of new low cost Action Rules,

where objects supporting new set of rules also supports existing rule set but the cost of

reclassifying them is much lower for new rules. Later, Tzacheva and Tsay [14] proposed tree

based method for extracting low cost Action Rules.

Apart from Action Rules, some research has been done on extracting Actionable knowledge.

For example, Yang, et.al [24] considered Customer Attrition in Customer Relationship

Management (CRM) in telecommunications industry and the cost complexities involved in

gaining profit to all customers. They proposed a method to extract low cost Actionable patterns

for converting undesired customers to loyal ones while improve the net profit of all customers.

Karim and Rahman [25] proposed another method to extract cost effective actionable patterns

for customer attrition problem in post processing steps of Decision Tree and Naive Bayes

classifiers. Su, et.al [8] proposed a method to consider positive benefits that occurs by following

an Action Rule apart from all costs that incur from the same rule. Cui, et.al [1] proposed to

extract optimal actionable plans during post processes of Additive Tree Model (ATM) classifier.

These actionable patterns can change the given input to a desired one with a minimum cost. Hu,

et.al [26] proposed an integrated framework to gather cost minimal actions sets to provide

support for social projects stakeholders to control risks involved in risk analysis and project

planning phases. Lately, Hu, et.al [27] developed a cost sensitive and ensemble framework to

predict software project risk predictions and conducted large scale analysis over 60 models 327

real world project samples.

In this work, we propose a graph based model to extract low cost Action Rules. We use Spark

based Action Rules extraction algorithm: SARGS [20] to obtain Action Rules. We build Action

Graph, based on the extracted Action Rules using Spark GraphX [18]. We propose a distributed

version of the Dijkstra shortest path [21] algorithm, and implement it via Pregel API [22] to

extract Action Rules of lowest cost

2. BACKGROUND – ACTION RULES, COST OF ACTION RULES AND SPARK

In this section, we give basic knowledge about Decision system, Action Rules, Spark and

GraphX frameworks to understand out methodology.

2.1. Decision System

Consider an information system given in Table 1. Information System can be represented as S =

(X,A,V) where, X is a nonempty, finite set of objects: X = {x1,x2,x3,x4,x5,x6,x7,x8}, A is a

nonempty, finite set of attributes: A = a,b,c,d and Vi is the domain of attribute a which represents

a set of values for attribute i : i ∈ A. For example, Vb = b0,b2.

An information system becomes a Decision system, if A = {ASt ∪ AFl ∪ d}, where d is a decision

attribute. The user chooses the attribute d if they wants to extract desired action from di : i ∈ Vd.

ASt is a set of Stable Attributes and AFl is a set of Flexible Attributes. For example, ZIPCODE is

a Stable Attribute and User Ratings can be a Flexible Attribute. Let’s assume from Table1 that c

∈ ASt. a, b ∈ AFl and d ∈ d. and the decision maker desires Action Rules that triggers the decision

attribute change from d1 to d2 throughout this paper for examples.

Table 1: SAMPLE DECISION SYSTEM S

X a b c d

x1 a1 b1 c1 d1

x2 a3 b1 c1 d1

x3 a2 b2 c1 d2

x4 a2 b2 c2 d2

x5 a2 b1 c1 d1

x6 a2 b2 c1 d2

x7 a2 b1 c2 d2

x8 a1 b2 c2 d1

2.2. Action Rules

In this subsection, we give definitions of action terms, action rules and properties of action rules

[28]. Let S = (X, {A ∪ d},V) be a decision system, where d is a decision attribute and V = ∪Vi : i

∈ A. Action terms can be given by the expression of (m,m1 → m2), where m ∈ A and m1,m2 ∈ Vm.

m1 = m2 if m ∈ ASt. In that case, we can simplify the expression as (m,m1) or (m = m1). Whereas,

m1 6= m2 if m ∈ AFl. Action Rules can take a form of t1 ∩ t2 ∩ ∩ tn, where ti is an atomic

action or action term and the Action Rule is a conjunction of action terms to achieve the desired

action based on attribute d. Example Action Rule for the Decision System in Table 1 is given

below: (a,a1 → a2).(b,b1 → b2) ➔ (d,d1 → d2).

2.2.1. Properties of Action Rules

Action Rules are considered interesting based on the metrics such as Support, Confidence,

Utility and Coverage. Higher these values, more interesting they are to the end user. Consider

an action rule R of form:

(Y1 → Y2) ➔ (Z1 → Z2)

where, Y is the condition part of R and Z is the decision part of R

Y1 is a set of all left side action terms in the condition part of R

Y2 is a set of all right side action terms in the condition part of R

Z1 is the decision attribute value on left side

Z2 is the decision attribute value on right side

In [6], the support and confidence of an action rule R is given as

Support(R) = min{card(Y1 ∩ Z1), card(Y2 ∩ Z2)}

Later, Tzacheva et.al [29] proposed a new set of formula for calculating Support and

Confidence of Action Rules. Their idea is to reduce complexities in searching the data several

times for Support and Confidence of an Action Rule. The new formula are given below.

Support(R) = card(Y2 ∩ Z2)

Tzacheva et. al [29] also introduced a notion of utility for Action Rules. Utility of Action Rules

takes a following form. For most of cases Utility of Action Rules equals the Old Confidence of

the same Action Rule.

Coverage of an Action Rule means that how many decision from values, from the entire

decision system S, are being covered by all extracted Action Rules. In other words, using the

extracted Action Rules, Coverage defines how many data records in the decision system can

successfully transfers from Z1 to Z2.

Figure 1: Overview of Spark execution using Resilient Distributed Datasets(RDD). Tasks such

as transformations are given to the slave nodes. Slaves after performing the tasks, cache the

result in RAM. Results can be given back to the Driver node or can be used for another

transformation operation

2.3. Cost of Action Rules

Typically, there is a cost associated with changing an attribute value from one class to another -

more desirable one. The cost is a subjective measure, in a sense that domain knowledge from the

user or experts in the field is necessary in order to determine the costs associated with taking the

actions. Costs could be monetary, moral, or a combination of the two. For example, lowering the

interest percent rate for a customer is a monetary cost for the bank; while, changing the marital

status from ’married’ to ’divorced’ has a moral cost, in addition to any monetary costs which

may be incurred in the process. Feasibility is an objective measure, i.e. domain independent.

According to the cost of actions associated with the classification part of action rules, a business

user may be unable or unwilling to proceed with them. The definition of cost was introduced by

Tzacheva and Ras [7] as follows:

Assume that S = (X,A,V) is an information system. Let Y ⊆ X, b ∈ A is a flexible attribute in S

and v1,v2 ∈ Vb are its two values. By ℘S(b,v1 → v2) we mean a number from (0,ω] which

describes the average cost of changing the attribute value v1 to v2 for any of the qualifying

objects in Y . These numbers are provided by experts. Object x ∈ Y qualifies for the change from

v1 to v2, if b(x) = v1. If the above change is not feasible, then we write ℘S(b,v1 → v2) = ω. Also, if

℘S(b,v1 → v2) < ℘S(b,v3 → v4), then we say that the change of values from v1 to v2 is more

feasible than the change from v3 to v4. Assume an action rule r of the form:

(b1,v1 → w1) ∧ (b2,v2 → w2) ∧ ... ∧ (bp,vp → wp) ➔ (d,k1 → k2)

If the sum of the costs of the terms on the left hand side of the action rule is smaller than the

cost on the right hand side, then we say that the rule r is feasible.

2.4. Spark

Spark [16] is a framework that is similar to MapReduce [15] to process large quantity of data

efficiently in a parallel fashion and in a short span of time. The disadvantage of MapReduce

framework is frequent system’s disk access for writing and reading the data between Map and

Reduce phases. However, Spark introduces a distributed memory abstraction strategy named

Resilient Distributed Datasets(RDD). The RDDs works by splitting the data into multiple nodes,

do in-memory computations on whose nodes and store the results in memory itself if there are

any available space in RAM. These results can be accessed for future processes and analyses,

which in-turn create another RDD. Once the RAM goes out of memory, Spark uses some

strategies to push the results that are unused for a long time to the disk. Thus, Spark cuts off

large number of disk accesses for storing intermediate outputs like in Hadoop MapReduce.

Spark works in a Master-Slave approach. The Driver node(Master) allocate tasks to the Worker

nodes(Slaves). Spark preserves data-locality (i.e) locating worker nodes nearer to the current

node which contains a part of the data. A task that the worker perform can be either a

Transformation or an Action. During Transformation stage, computations are made on the data

split and results are stored in-memory of the worker node. Results of all worker nodes together

form another RDD. While the Action stage on an RDD collect results from all workers and send

it to the driver node or save the results to a storage system. Figure 1. shows an overview of the

execution of Spark.

Figure 2: Spark Lineage Graph Example

Spark helps machine learning algorithms which relies on multiple iterations on the given data

with the help of RDD’s in memory computation. Spark handles node failures by having a

lineage graph of RDDs. The lineage graph is a Directed Acyclic Graph (DAG) where each node

represents a transformation stage. Figure 2 shows a sample lineage graph of combining RDDs

from two inputs. When a failure occurs at a certain stage, Spark uses the last available working

point (RDD) from the lineage graph and restart all computations from that working point rather

than repeating the entire process from the beginning or saving the intermediate results and

replicating them across multiple nodes. This strategy of data management, fault tolerance and

in-memory processing make Spark to do computations faster than MapReduce

2.5. Spark GraphX

Spark, with its efficiency in Resilient Distributed Datasets

(RDDs) help wide variety of applications such as Machine Learning with MLlib library [17],

Graph Analysis with GraphX library [18]. GraphX is an embedded graph processing framework

built on top of Apache Spark. In general, graphs can be represented as G=(V,E), where V is the

set of vertices in G and E, which takes the general representation as eij = Edge(i,j), is the set of

edges connecting 2 vertices (i,j) in G. GraphX treats the complete graphs as an RDD. It

maintains the graph RDD in the type of [VD, ED], where VD and ED are other RDDs

representing vertex properties and edge properties respectively. Figure 5 provides the simple

GraphX framework and functions it provide to support various graph operations. GraphX

performs graph-specific operations as a series of distributed map(), join() and reduce() functions

of RDDs. Besides these functions, GraphX comprise of Google’s Pregel API [22]. GraphX uses

Pregel API to perform iterative tasks like PageRank, Graph search algorithms like Depth First

Search (DFS) and Breadth First Search (BFS) and finding shortest routes in graphs like

Dijkstra’s algorithm. In iterative graph algorithms, vertices of the graph have to pass some

messages to their neighbours. Since the graph is maintained as a single RDD in GraphX, the

message passing is complicated compared to other graph libraries. The Pregel API automates

this message sending and receiving module and provides a functionality to do these jobs

efficiently to suit the Spark environment. GraphX also shows great speedups for iterative graph

algorithms such as PageRank compared to other graph libraries such as GraphLab [30] and

Giraph [31]. For iterative graph processing, GraphX provides Pregel API [22]. Pregel works in

a message passing fashion between the graph vertices. In GraphX, Pregel has three functions:

sendMsg() - to process and send a message to a vertex’s immediate neighbours, mergeMsg() - to

merge all messages from a vertex’s immediate neighbors and receiveMsg() - to receive and

process the merged message. Following these steps, each vertex can share and collect

information with their neighbours. With this method, the information can flow from one end of

the graph to another gradually. For iterative procedure, Pregel iterations are named as super

steps. In each super step, each vertex executes all three above mentioned functions.

Figure 3: GraphX Framework with basic graph algorithms

4. METHODOLOGY

In this work, we propose a graph-based method to search for optimal low cost Action Rules. To

extract low cost Action Rules, first we extract Action Rules with a distributed mechanism:

SARGS [20]. From the extracted Action Rules, we build an Action Graph. We then propose a

method based on Dijkstra’s algorithm to search the Action Graph for low cost Action Rules. In

this section, we give the SARGS algorithm, Action Graphs and our search algorithm to extract

low cost Action Rules

Figure 4: Distributed Actionable Pattern Mining using SARGS algorithm overview

4.1. Action Rules extraction using SARGS

The SARGS algorithm propsed in [20] uses LERS [32] and ARAS [11] methods for extracting

Action Rules in a distributed fashion for larger datasets. Figure 4 gives an overview of the

SARGS algorithm. SARGS algorithm consists of 3 modules namely: Data distribution, LERS

and ARAS.

4.1.1. Data distribution Module

The data distribution module is to evenly distribute the data based on the decision attribute. The

main objective of the data distribution module is to overcome the obstacle of inaccurate

knowledge discovery while extracted in a distributed setup. The given input data is split into n

groups, where n=no. of decision attribute vales and each group consists of records from the

information system matching the corresponding decision value. Also, the proportion constraint

Pg ' PS is maintained, where Pg is the proportion of records in a partition g with decision attribute

value di and PS is the proportion of records in the given information system S with decision

attribute value di. By this way, each partition contains same proportion of data which is equal to

the original dataset. The final actionable knowledge from these partitions are considered to be

equal to that of the knowledge from the single data. Figure 5 shows an example data partition

for the information system S shown in Table 1.

Figure 5: Example Data Distribution in SARGS for the Decision System given in Table 1

4.1.2. Data distribution Module

The second module in the SARGS algorithm is the LERS [32]. LERS is a Learning from

Examples based on Rough Sets which extracts classification rules from the information system.

SARGS follows distributed method of generating classification rules using LERS system. Using

the information system S from Table 1, LERS strategy can find all certain and possible rules

describing decision attribute d in terms of attributes a,b, and c. Since LERS follows bottomup

strategy, it constructs classification rules with conditional part covering x attributes, then it

continues to construct rules with conditional part of x + 1 attributes during the following

iterations. Only marked rules from the LERS module are considered for the ARAS module. A

classification rule ci if and only if Sci ⊆ Sd∗, where Sci is the set of rows in S that support the

classification rule ci and Sd∗ is the set of rows in S that support the decision attribute value d∗.

4.1.3. Modified LERS Module

The third module in the SARGS method is the modified version of ARAS [11] and it uses all

marked classification rules from the second (LERS) module and derives Action Rules. ARAS

method, which extracts incomplete Action Rules, may not be useful when the user requires

valid recommendations. Sample Action Rules from the system ARAS for the Decision System

S given in Table 1 are given below:

ARs1 : (d1 → d2) = (a,→ a2).(b,→ b2) ➔ (d,d1 → d2)

ARs2 : (d1 → d2) = (a,→ a2).(c,c2) ➔ (d,d1 → d2)

ARs3 : (d1 → d2) = (b,→ b1).(c,c2) ➔ (d,d1 → d2)

ARs4 : (d1 → d2) = (b,→ b2).(c,c1) ➔ (d,d1 → d2)

This method gives the modified version of ARAS module that the SARGS algorithm uses to

extract all complete Action Rules. This algorithm extracts all missing values from the

conditional (left) part of the given Action Rule. The algorithm then get cartesian product of all

missing values (except the values of same attribute) and fills in the action rule. Following

Action Rules are extracted from the decision system S given in Table 1 using SARGS method.

AR1(d1 → d2) = (A,a1 → a2).(B,→ b2) ➔ (D,d1 → d2)

AR2(d1 → d2) = (A,a3 → a2).(B,→ b2) ➔ (D,d1 → d2)

4.2. Action Graphs

We build a graph called Action Graph from the Action Rules extracted using the SARGS

algorithm. We build Action Graph by using action terms in Action Rules and their relation with

other action terms. In general, graphs take the representation of G = (V,E), where V is a set of

vertices and E is a set of edges connecting vertex pairs in V. All vertices and edges can contain

properties that combined together uniquely represent vertices and edges respectively. We

represent our Action Graph as an undirected graph Ag = (Av, Ae). In Action Graph, we treat

action terms that we get from Action Rules as a set of vertices (Av) and we create edge between

a vertex pair (am,an| am,an ∈ ri), where ri is an Action Rule. We set basic properties of an action

term such as Vertex Id, Name, Cost, Support, Neighbour Ids and Action Rules of low cost based

on the vertex as vertex properties of the Action Graph and Cooccurrence Frequency of a vertex

pair as an edge property. For example, red node means highest frequency, yellow node means

medium frequency, and blue node means low frequency. Figure 6 gives a sample Action Graph

for Action Rules extracted from Table 1 using the SARGS algorithm.

Figure 6: Sample Action Graph with Vertex Properties and Edge weights; Vertex color

represents how frequently the action term occurs, with Red being the most frequent, and Yellow

the least frequent.

4.3. Action Graph search algorithm for extracting Action Rules of lowest cost

Algorithm 1: Action Graph Search Algorithm for Action Rules of Lowest Cost

Algorithm 1 gives an overview of our search algorithm with functions to send, receive and

merge messages. The basic idea behind our search algorithm is very similar to Dijkstra’s

shortest path algorithm [21] adapted to distributed environment on cloud. In each iteration: all

vertices share their action term with its cost with their neighbours; all vertices add action terms

arriving from neighbours to their dictionary; all vertices combine the valid low cost action terms

with the ones already in their dictionary; the resulting action rules are sorted by cost in

descending order; finally, all vertices share the set of low-cost action rules with their

neighbours; algorithm runs for n − iterations, where n is the number of action terms in the

longest action rule, from the input list of action rules. The search algorithm takes the Action

Graph Ag = (Av, Ae), where Av is a set of vertices or action terms and Ae is a set of edges

connecting vertex pairs in Av, and minimum cost threshold ρ. We send an initial empty message

to start the functions. The first function to execute is the ReceiveMsg(). For better readability we

explain in the order of SendMsg(), MergeMsg and ReceiveMsg(). Steps 6-10 gives procedure to

do for all vertices when they need to send a message to their immediate neighbours. Each vertex

process each edge originating from them. For each available low cost Action Rule r, it checks if

r ⊆ dstn.neighbors in Step 9. This step filters the dictionary in each vertex remove action terms

that are irrelevant to the destination vertex. To avoid duplicate rules from multiple vertices, we

send only the combination of action terms that are new to the destination vertex. In Steps 11-13

we give a procedure for each vertex to combine messages from multiple vertices. This function

simply combines all messages (dictionaries of action terms with their Costs) and into a single

Dictionary. This single Dictionary is processed via the ReceiveMsg() function for processing. In

Steps 1-5 we show the processing the ReceiveMsg() performs - for all vertices when they

receive a message. When a vertex receives a set of action term combinations and their

corresponding costs, it adds its own cost to produce a Low Cost Action Rule. If the total cost is

less than or equal to the given cost threshold ρ, the vertex adds the Action Rule to its list of Low

Cost Action Rules. The main function is described in Step 16, where we initiate the first

messageSend() operation to v ∈ Av. First, we populate Action Rules property of each vertex to

the combination of current vertex and its immediate neighbour and respective cost. Next, all

vertices send an empty message to all their immediate neighbours. This continues for n

iterations as mentioned above. Once all iterations are over, we obtain an Action Graph A0
g

containing Action Rules along with their cost for each vertex. We then sort the rules by cost in

Descending Order and suggest to the user the top 5 lowest cost rules for each vertex. The top 5

lowest cost Action Rules from all vertices form the set of the discovered Action Rules of

Lowest Cost.

4.4. Post-processing: Action set correlations of low cost Action Rules

By following the Algorithm1, we obtain all low cost Action Rules. Some Action terms in Action

Rules may have high correlations. We propose a method to reduce further the cost of the

obtained rules by considering edge weights in our Action Graph. We assign edge weights

between two vertices or action terms based on their frequencies of co-occurring together in

Action Rules. We define a correlation threshold η to check if two action terms in an Action Rule

is highly correlated. We assume that two action terms ar1,br1|(ar1,br1) ∈ r1, where r1 is an Action

Rule, to be highly correlated if their co-occurring frequency w is greater than or equal to η. We

propose that when two action terms satisfy the w ≥ η, then the action suggested by the first term

is expected to trigger the action suggested by the second one. Therefore, the lowest cost action

can be dropped from the total cost. For each vertex, we define a correlation matrix, which gives

correlation frequency between the current vertex or action term and its neighbour. Figure 7

gives a sample correlation matrix for the action term vertex (b,1 → 2). With this correlation

matrix, we can identify which 2 terms are highly correlated. Then we process each Action Rule

from the dictionary of low cost Action Rules of the current vertex. When a highly correlated

pair occurs in the Action Rule, we drop the cost of lowest cost action term. For example, cost of

the Action Rule (b,1 → 2) ∩ (c = 1) can be reduced from 31 to 30, if the correlation threshold η

is set to 1.

Figure 7: Example Correlation Matrix of the action term (b,1 → 2)

5. EXPERIMENTS AND RESULTS

To test our methods, we use three datasets: Car Evaluation data, Mammographic Mass data, and

the city of Charlotte North Carolina BusinessWise data.

Table 2: Dataset properties

Property Car Evaluation

Data

Mamm. Mass

Data

Business Data

of instances 1728 961 22441

Attributes 7 attributes

-Buying

-Maintenance

-Doors

-Persons

-Luggage Boot

-Safety

-Class

6 attributes

-BI-RADS

-Patient’s age

-Shape

-Margin

-Density

-Severity

17 attributes
including
-City

-Sector

-Site Type

-Building

Type

-Estimated

Sales

-Total

Employees

Count

Decision

attribute

values

Class

(unacc, acc,

good, vgood)

Severity

(0 - benign,

1malignant)

Estimated

Sales

(<$2M,2-

of

instances /

decision

value

unacc - 1210

acc - 384

good - 69

vgood - 65

0 – 516

1 - 445

<$2M – 12503

$2-$10M – 1927

$10-$25M – 393

$25-$50M – 130

$50-$100M – 69

$100M-$500M – 57

>$500M – 50

Data size 52 KB 16 KB 5.5 MB

Table 3: Parameters used for Action Rules discovery using SARGS algorithm

Property Car Evaluation

Data

Mamm. Mass

Data

Business Data

Stable attributes Doors, Persons Age Start Year

Required

decision action

(Class)

unacc → acc

(Severity)

1 → 0

Estimated

Sales $2M −

$10M →

$10M −

$24M

Minimum

Support α and

Confidence β

2, 70% 2, 70% 100, 70%

Cost Threshold
φ

1500 2000 3000

The Car Evaluation and Mammography are obtained from the Machine Learning repository of

the Department of Information and Computer Science of the University of California, Irvine

[33]. The Car Evaluation Data consists of records describing a car’s goodness and acceptability

based on features such as buying frequency, maintenance cost, safety measure, seating capacity

and luggage boot size. Mammographic is the most effective method for screening breast cancer.

The Mammographic Mass data contains records that measure severity of the cancer based on

patient’s age, cancer shape, cancer density and BI-RADS(a test score to denote how severe the

cancer is).

Table 4: Example Action Rules of lowest cost for Car Evaluation Dataset

Low Cost Action Rules

1. ARC4 : (buying, high → med) ∧ (lugBoot, med → small) ∧ (maint, low → med) ∧

(persons = 4) ∧ (safety, low → high) ➔ (class, unacc → acc)[Support :

4,OldConfidence: 100%, New Confidence : 100%, Utility : 100%] COST : 1300.0

2. ARC5 : (buying, low → med) ∧ (lugBoot, med → big) ∧ (maint, low → med) ∧

(persons = more) ∧ (safety, low → med) ➔ (class, unacc → acc)[Support :

4,OldConfidence: 100%, New Confidence: 100%, Utility: 100%] COST: 1400.0

Low Cost Action Rules after Correlation

1. ARC4 : (buying, high → med) ∧ (lugBoot, med → small) ∧ (maint, low → med) ∧

(persons = 4) ∧ (safety, low → high) ➔ (class, unacc → acc) [Support: 4, Old

Confidence: 100%, New Confidence: 100%, Utility: 100%] COST: 1000.0

2. ARC5 : (buying, low → med) ∧ (lugBoot, med → big) ∧ (maint, low → med) ∧ (persons

= more) ∧ (safety, low → med) ➔ (class, unacc → acc) [Support : 4,Old Confidence:

100%, New Confidence: 100%, Utility : 100%] COST: 1100.0

The city of Charlotte North Carolina BusinessWise data, which was donated by the Charlotte

Chamber of Commerce. This data collects details of over 20,000 business companies in

Mecklenburg county, North Carolina. The data includes their City, Start Year, Sector,

Specialization of the company in a selected sector, Site Type, Employees count at the site, Total

employees in the company including all branches, Site building type, Total sites and Estimated

Sales. From this data, our focus is how to increase the Estimated Sales amounts in USD. We

show detailed description of each dataset properties in Table 2 which we use to test our

algorithm.

Table 3 give parameters that we set for each dataset to collect Action Rules. For the Car

Evaluation data, we choose Class attribute as a decision attribute and we collect Action Rules to

help the car company to change the car from Unacceptable state to Acceptable state. For the

Mammographic Mass data, we choose Cancer Severity as a decision attribute and we collect

Action Rules to suggest Actions to doctors on how to reduce the tumour severity from

Malignant to Benign. For Business Data we choose class attribute as Estimated Sales, and we

collect Action Rules to suggest Actions to business on how to increase their Estimated Sales in

USD from the range 2million-10million USD to 10millon-24million USD.

With our datasets and using parameters that we set in Table 3, we run the SARGS algorithm on

each data. We collect Action Rules which meet the minimum support(α), and minimum

confidence(β), threshold. We record the cost(φ) for each action term. We calculate Total Cost of

each Action Rule by adding the cost of all action terms in the rule. Usually, the cost of each

action term is specified by an expert in the domain. For example, for the Mammography dataset,

a medical doctor specifies the cost for the suggested actions. For Car Evaluation data, the car

manufacturer specifies the cost for the suggested actions. However, for our experiment purpose,

we assign a random cost number to each action term. We assign the cost of 0 for action terms

which have stable attributes, because the stable attributes cannot be changed. For the Flexible

Attributes, we set the cost values between 0 and 1000. In Table 4, Table 5 and Table 6, we show

samples of Low Cost Action Rules, and Low Cost. Action rules - after post-processing steps or

Correlation over the low cost Action Rules, for the Car Evaluation Data, Mammographic Mass

Data and Business Data respectively. These rules support the parameters which we set in Table

3. In Table 4, Table 5 and Table 6, low cost Action Rules are ones which has cost less than φ.

Table 5: Example Action Rules of lowest cost for Mammographic Dataset

Low Cost Action Rules

1. ARM4: (BI−RADS, 6 → 4) ∧ (Density, 3 → 2) ∧ (Margin, 5 → 1) ➔ (Severity, 1 →

0) [Support: 25, Old Confidence: 100%, New Confidence: 100%, Utility: 100%]

COST: 550.0

2. ARM5: (Age = 60) ∧ (BI − RADS,6 → 4) ➔ (Severity, 1 → 0) [Support: 11, Old

Confidence: 100%, New Confidence: 100%, Utility: 100%] COST: 450.0

3. ARM6: (BI−RADS, 6 → 4) ∧ (Margin, 5 → 1) ∧ (Shape, 3 → 2) ➔ (Severity, 1 → 0)

[Support: 13, Old Confidence: 100%, New Confidence: 100%, Utility: 100%] COST:

800.0

Low Cost Action Rules after Correlation

1. ARM4: (BI−RADS, 6 → 4) ∧ (Density, 3 → 2) ∧ (Margin, 5 → 1) ➔ (Severity, 1 →

0) [Support: 25, Old Confidence: 100%, New Confidence: 100%, Utility: 100%]

COST: 450.0

2. ARM5: (Age = 60) ∧ (BI − RADS,6 → 4) ➔ (Severity, 1 → 0) [Support: 11, Old

Confidence: 100%, New Confidence: 100%, Utility: 100%] COST: 400.0

3. ARM6: (BI−RADS, 6 → 4) ∧ (Margin, 5 → 1) ∧ (Shape, 3 → 2) ➔ (Severity, 1 → 0)

[Support: 13, Old Confidence: 100%, New Confidence: 100%, Utility: 100%] COST:

600.0

These Action Rules define what actions do a company/user should employ to achieve their

desired goal. For example, the rule ARC4 recommends that if a car company decreases the Buying

Cost from high to medium and increases the Maintenance Cost from low to medium and

increases Safety Measures from low to high and if the Seating Capacity is 4, then the Car

Condition may change from Unacceptable to Acceptable with the cost of 1300.0. For all

datasets, we consider cost just as a measure of an Action Rule since the actual costs are assigned

by experts.

Next, we build an Action Graph using the list of extracted Action Rules as an input. We

implement the Action Graph in both non-parallel environment, and in a clustered environment

for performance and scalability comparison. The Non-parallel version is implemented in Java.

The Apache Spark [16] using the Spark GraphX library. We use Scala programming language.

We test the system on a Spark cluster running over Hadoop YARN. The cluster has 6 nodes

connected via 10 GigaBytes per second Ethernet network. We use Pregel API [22] in Spark

GraphX [18] framework to search the Action Graph in an iterative procedure by using the

Algorithm described in figure Algorithm 1. This algorithm returns all low cost Action Rules

(cost < φ). From these Action Rules, we do post processing step and highly correlating action

terms pair (correlation frequency ≥ η). If there is any correlation pair in the Action Rule, we

drop the lowest cost in that pair. For example, consider the low cost Action Rule ARB5 from

Table6. Cost of this Action Rule is 1394.0. In the post-processing step, we find that the Action

Term (EMPSITE,4−9Employees → 10 − 24Employees) of cost 504.0 co-occurs frequently with

the action term (EMPALLSITE,25 − 49Employees → 500 − 999Employees) of cost 63.0. So, we

consider that one of these action terms trigger the other action to happen eventually. Thus, we

drop the cost of (EMPALLSITE,25−49Employees → 500−999Employees) and reduce the cost of

the Action Rule to 1213.0.

Table 6: Example Action Rules of lowest cost for Charlotte Businesswise Dataset

Low Cost Action Rules

1. ARB1: (EMPALLSITE, 50 – 99 Employees → 250 – 499 Employees) ∧ (EMPSITE, 50-

99 Employees → 4−9 Employees) ∧ (SECTOR, Services → Retail Trade) ∧ (STARTYR

= 2006 − 2010) ➔ (ESTSALES, $2M − $10M → $10M − $24M) [Support: 2, Old

Confidence: 60%, New Confidence: 66%, Utility: 90%] COST:1615.0

2. ARB2: (CITY, Matthews → Charlotte) ∧ (EMPALLSITE, 25–49 Employees → 500–999

Employees) ∧ (EMPSITE, 4-9 Employees → 10−24 Employees) ∧ (OWNBLDG, Y →

N) ➔ (ESTSALES, $2M − $10M → $10M − $24M) [Support: 2, Old Confidence: 60%,

New Confidence: 66%, Utility: 90%] COST:1276.0

Low Cost Action Rules after Correlation

1. ARB1: (EMPALLSITE, 50 – 99 Employees → 250 – 499 Employees) ∧ (EMPSITE, 50-

99 Employees → 4−9 Employees) ∧ (SECTOR, Services → Retail Trade) ∧ (STARTYR

= 2006 − 2010) ➔ (ESTSALES, $2M − $10M → $10M − $24M) [Support: 2, Old

Confidence: 60%, New Confidence: 66%, Utility: 90%] COST:1330.0

2. ARB2: (CITY, Matthews → Charlotte) ∧ (EMPALLSITE, 25–49 Employees → 500–999

Employees) ∧ (EMPSITE, 4-9 Employees → 10−24 Employees) ∧ (OWNBLDG, Y →

N) ➔ (ESTSALES, $2M − $10M → $10M − $24M) [Support: 2, Old Confidence: 60%,

New Confidence: 66%, Utility: 90%] COST:1213.0

Figure 8: Action Graph for Action Rules from Car Evaluation Dataset

A visualization of the Action Graph for the Car Evaluation data is shown in in Figure 6. The

colour and size of the vertex v in the Action Graph represent how frequently a specific action

term occurs in our Action Rules set. The more frequent action terms are shown in larger size

nodes, and the less frequent in smaller size nodes. Also, the darker colours signify the most

frequently occurring action terms, and the lighter colours less frequent action terms. For the Car

Evaluation data, the action term (persons=more) occurs most frequently, is shown in the red

colour red node in Figure 6, and the action term (safety, low → high) is the second most

frequent term in our Action Rules set, which is shown in green colour node in Figure 6. Table 7

gives details about the number of Action Rules, and the processing time in seconds for the

proposed algorithm to build Action Graphs (one for each dataset) and basic properties of these

graphs such as number of nodes and edges.

Table 7: Action Graph Properties for different datasets

Property Car Evaluation

Data

Mamm. Mass

Data

Business Data

No.ofAction

Rules

415 290 2043

No.ofAction

Terms / Nodes

33 98 224

Minimum

Support α and

Confidence β

2, 70% 2, 70% 2, 60%

Cost Threshold
φ

1500 900 3000

In Table 8, we give our system’s runtime performance comparing with non distributed version

of the same algorithm. The distributed version of the Action Graph, which we implement in

Apache Spark [16] using the GraphX [18] library, and the Pregel API [22], shows faster

processing times for large datasets compared to single machine implementation in Java.

Table 8: Analysis on Action Graphs for Low Cost Action Rules

Dataset Non-distributed

Algorithm

Distributed

Algorithm

Car Evaluation

Data

1.2 mins 7.1 secs

Mamm. Mass

Data

17 secs 5.8 secs

Business Data > 10 mins 3.1 mins

6. CONCLUSION

The distributed version of the Action Graph Search for Lowest Cost Action Rules, which we

implement in Apache Spark [16] using the GraphX [18] library, and the Pregel API [22], shows

faster processing times for large datasets compared to single machine implementation in Java.

Our proposed method presents an improvement over the Search for Action Rules of Lowest

Costs in [7], as we use a distributed version for Graph Search, which is suitable to scale well for

big datasets. In addition, it addresses a significant drawback of the previous method, which is

using a heuristic search, and hence sometimes it is unable to reach the goal, and discovery any

rules. The new proposed method always reaches the goal and discovers the rules of lowest cost.

In the future, we plan to build a Decision Tree like structure, which can be searched, and shows

the Lowest Cost Action Rules at the leaves of the tree. We plan to improve the support and

confidence of the discovered Low Cost Action Rules by incorporating these parameters into the

search procedure. We also plan to use the proposed Graph structure in order to design a

distributed version of Association Action Rules extraction algorithm.

REFERENCES

[1] Z. Cui, W. Chen, Y. He, and Y. Chen, “Optimal action extraction for random forests and boosted trees,”

in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. ACM, 2015, pp. 179–188.
[2] J. Kuang, A. Daniel, J. Johnston, and Z. W. Ras, “Hierarchically´ structured recommender system for

improving nps of a company,” in International Conference on Rough Sets and Current Trends in

Computing. Springer, 2014, pp. 347–357.
[3] M. Al-Mardini, A. Hajja, L. Clover, D. Olaleye, Y. Park, J. Paulson, and Y. Xiao, “Reduction of hospital

readmissions through clustering based actionable knowledge mining,” in Web Intelligence (WI), 2016

IEEE/WIC/ACM International Conference on. IEEE, 2016, pp. 444– 448.
[4] A. A. Tzacheva, E. A. Koenig, and J. R. Pardue, “Actions ontology system for action rules discovery in

mammographic mass data,” in Proceedings of the International Conference on Data Mining (DMIN).
The Steering Committee of The World Congress in Computer Science, Computer Engineering and

Applied Computing (WorldComp), 2013, p. 1.
[5] A. A. Tzacheva, C. C. Sankar, S. Ramachandran, and R. A. Shankar, “Support confidence and utility of

action rules triggered by metaactions,” in Knowledge Engineering and Applications (ICKEA), IEEE

International Conference on. IEEE, 2016, pp. 113–120.
[6] Z. W. Ras and A. Wieczorkowska, “Action-rules: How to increase profit of a company,” in European

Conference on Principles of Data Mining and Knowledge Discovery. Springer, 2000, pp. 587–592.
[7] Z. W. Ras and A. A. Tzacheva, “In search for action rules of the lowest´ cost,” in Monitoring, Security,

and Rescue Techniques in Multiagent Systems. Springer, 2005, pp. 261–272.

[8] P. Su, D. Li, and K. Su, “An expected utility-based approach for mining action rules,” in Proceedings of

the ACM SIGKDD Workshop on Intelligence and Security Informatics, ser. ISI-KDD ’12. New York, NY,

USA: ACM, 2012, pp. 9:1–9:4. [Online]. Available:
http://doi.acm.org/10.1145/2331791.2331800

[9] A. A. Tzacheva, R. S. Shankar, R.A, and A. Bagavathi, “Action rules of lowest cost and action set

correlations,” in Fundamenta Informaticae Journal, European Association for Theoretical Computer

Science (EATCS), IOS Press.
[10] L.-S. Tsay* and Z. W. Ras, “Action rules discovery: system dear2,´ method and experiments,” Journal of

Experimental & Theoretical Artificial Intelligence, vol. 17, no. 1-2, pp. 119–128, 2005.
[11] Z. W. Ras, E. Wyrzykowska, and H. Wasyluk, “Aras: Action rules´ discovery based on agglomerative

strategy,” in International Workshop on Mining Complex Data. Springer, 2007, pp. 196–208.
[12] Z. W. Ras, A. Dardzinska, L.-S. Tsay, and H. Wasyluk, “Association action rules,” in Data Mining

Workshops, 2008. ICDMW’08. IEEE International Conference on. IEEE, 2008, pp. 283–290.
[13] S. Im and Z. W. Ras, “Action rule extraction from a decision table:´ Ared,” in International Symposium

on Methodologies for Intelligent Systems. Springer, 2008, pp. 160–168.
[14] A. A. Tzacheva and L.-S. Tsay, “Tree-based construction of low-cost action rules,” Fundamenta

Informaticae, vol. 86, no. 1, 2, pp. 213–225, 2008.
[15] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Communications of

the ACM, vol. 51, no. 1, pp. 107–113, 2008.
[16] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I.

Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing,” in

Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, ser.

NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 2–2. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2228298.2228301
[17] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde, S.

Owen et al., “Mllib: Machine learning in apache spark,” The Journal of Machine Learning Research, vol.

17, no. 1, pp. 1235–1241, 2016.
[18] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica, “Graphx: Graph

processing in a distributed dataflow framework.” in OSDI, vol. 14, 2014, pp. 599–613.
[19] A. A. Tzacheva and Z. W. Ras, “Association action rules and action paths triggered by meta-actions,” in

Granular Computing (GrC), 2010 IEEE International Conference on. IEEE, 2010, pp. 772–776.
[20] A. Bagavathi, P. Mummoju, K. Tarnowska, A. A. Tzacheva, and Z. W. Ras, “Sargs method for

distributed actionable pattern mining using spark,” in 2017 IEEE International Conference on Big Data

(Big Data), Dec 2017, pp. 4272–4281.
[21] M. M. Rathore, A. Ahmad, A. Paul, and G. Jeon, “Efficient graphoriented smart transportation using

internet of things generated big data,” in Signal-Image Technology & Internet-Based Systems (SITIS),

2015 11th International Conference on. IEEE, 2015, pp. 512–519.
[22] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski, “Pregel: a

system for large-scale graph processing,” in Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data. ACM, 2010, pp. 135–146.
[23] Z. W. Ras, A. A. Tzacheva, L.-S. Tsay, and O. Giirdal, “Mining for interesting action rules,” in Intelligent

Agent Technology, IEEE/WIC/ACM International Conference on. IEEE, 2005, pp. 187–193.
[24] Q. Yang, J. Yin, C. Ling, and R. Pan, “Extracting actionable knowledge from decision trees,” IEEE

Transactions on Knowledge and data Engineering, vol. 19, no. 1, pp. 43–56, 2007.
[25] M. Karim and R. M. Rahman, “Decision tree and naive bayes algorithm for classification and generation

of actionable knowledge for direct marketing,” Journal of Software Engineering and Applications, vol. 6,

no. 04, p. 196, 2013.

[26] Y. Hu, J. Du, X. Zhang, X. Hao, E. Ngai, M. Fan, and M. Liu, “An integrative framework for intelligent

software project risk planning,” Decision Support Systems, vol. 55, no. 4, pp. 927–937, 2013.
[27] Y. Hu, B. Feng, X. Mo, X. Zhang, E. Ngai, M. Fan, and M. Liu, “Costsensitive and ensemble-based

prediction model for outsourced software project risk prediction,” Decision Support Systems, vol. 72, pp.

11–23, 2015.
[28] Z. W. Ras and A. Dardzi´ nska, “From data to classification rules and´ actions,” International Journal of

Intelligent Systems, vol. 26, no. 6, pp. 572–590, 2011.
[29] S. R. A.A. Tzacheva, C.C. Sankar and R. Shankar, “Support confidence and utility of action rules

triggered by meta-actions,” in proceedings of 2016 IEEE International Conference on Knowledge

Engineering and Applications, ser. ICKEA 2016. IEEE Computer Society, 2016.
[30] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein, “Distributed graphlab: a

framework for machine learning and data mining in the cloud,” Proceedings of the VLDB Endowment,

vol. 5, no. 8, pp. 716–727, 2012.
[31] C. Avery, “Giraph: Large-scale graph processing infrastructure on hadoop,” Proceedings of the Hadoop

Summit. Santa Clara, vol. 11, no. 3, pp. 5–9, 2011.
[32] S. M. J.W. Grzymala-Busse and Y. Yao, “An empirical comparison of rule sets induced by lers and

probabilistic rough classification,” in Rough Sets and Intelligent Systems. Springer, 2013, vol. 1, pp. 261–

276.
[33] M. Lichman, “UCI machine learning repository,” Irvine, CA, USA, Tech. Rep., 2013.

Authors

Angelina A. Tzacheva is a Teaching Associate Professor at the Department of

Computer Science at the University of North Carolina at Charlotte.

Her research interests include: data mining and knowledge discovery

in databases, multimedia and distributed databases, and big data

analytics.

Arunkumar Bagavathi is a Ph.D candidate of Computer Science department at

the University of North Carolina at Charlotte. He received his Master’s

degree specialized in data mining from the University of North

Carolina at Charlotte in 2016. His research interests include data

mining and knowledge discovery, big data analytics, cloud computing

and network analysis and representation.

Aabir Kumar Dutta is a Master’s student in the department of Computer

Science at the University of North Carolina at Charlotte. His research

interests include Data Mining, Knowledge Discovery and Machine

Learning.

