
Actionable Pattern Mining - A Scalable Data Distribution Method Based on
Information Granules

Arunkumar Bagavathi, Abhishek Tripathi, Angelina A.Tzacheva, Zbigniew W.Ras
Department of Computer Science

University of North Carolina at Charlotte
Charlotte, NC, 28223, USA

Email: abagavat@uncc.edu,atripat4@uncc.edu,aatzache@uncc.edu,ras@uncc.edu

Abstract—Actionable patterns are a form of recommenda-
tions that gives knowledge required by the user on actions they
need to undertake to attain profit or achieve goals. Action
rule is one of the methods to mine actionable patterns that
are hidden in a large dataset. In the modern era of big
data, organizations are collecting massive amounts of data and
they keep the data updated constantly, including in major
domains like financial, medical, as well as social media and
IoT. Classical action rules extraction models, which analyze
the data in a non-distributed fashion, lacks efficiency when
processing big volumes of data and thus require a distributed
approach to extract rules. Major complications of discovering
action rules with distributed methods include data distribution
among processing nodes in the cluster and extracting mined
rule parameters like: support, confidence, utility, and coverage,
representing the entire data. In this work, we focus on data
distribution phase of the distributed actionable pattern mining
problem. Very few works have been proposed to distribute the
big data in both horizontal and vertical fashions, and extract
rules/knowledge from the distributed data. We primarily fo-
cus on the vertical data splitting strategy using information
granules, which give meaningful representations of complex
information systems as fine grained granules. We tend to make
the vertical data partitioning more logical using information
granules instead of splitting the data in random.

Keywords-Action Rules, Information granules, Vertical data
distribution, Spark

I. INTRODUCTION

Granular Computing (GrC) is a domain that makes use
of information granules for solving complex human-centric
problems [1]. The idea of granular computing is widely
used in multiple areas like data processing, machine learn-
ing, rough set theory, decision trees and artificial intelli-
gence. With the key idea of information granules, Granular
Computing can also be used in knowledge representation
and data mining. Information granules are a collection of
granules, where each granule is a set of data objects are
stacked together based on their similarity, functionality or
indistinguishability [2]. Thus a granule can be seen as a
subset of a larger problem, that can be used effectively to
solve a complex task. Information granulation is the process
of breaking a complex object into smaller pieces called in-
formation granules. Information granulation, thus can solve

more complex problems by considering meaningful levels
of granularity of the problem [3].

Discovering surprising, unknown and useful knowledge
from a massive data in the crucial task of data mining.
Most of the data mining or machine learning algorithms
manifest the relationship of data objects with other objects
(Clustering) or classes (Classification). The Rule based
learning tasks intend to circumscribe methods that identifies,
learns or evolves ’rules’ to store and manipulate knowledge.
In the field of data mining, many rule based systems like
Association Rules and Decision Rules exist to generate
rules to associate patterns and for classification respectively.
Rules takes the format as given in Equation 1, where
the antecedent(left side of the rule) is a conjunction of
conditions and the consequent (right side of the rule) is a
resulting pattern for the conditions in antecedent.

condition(s)→ result(s) (1)

Action Rule is a rule based data mining technique that
recommend possible transitions of data from one state to
another, which the user can use to their advantage. For
example, improving customer satisfaction in business [4]
and reducing hospital readmission in the medical domain
[5]. Action Rules are extracted from Decision table [6].
Action Rules can take the representation as given in Equa-
tion 2, where Ψ represents a conjunction of stable features,
(α → β) represents a conjunction of changes in values of
flexible features and (θ → φ) represents desired decision
action.

[(Ψ) ∧ (α→ β)]→ (θ → φ) (2)

More than a decade, many research have been conducted
over Action Rules extraction giving rise to several algo-
rithms like DEAR [7], ARAS [8] and Association Action
Rules [9]. These algorithms extract knowledge efficiently
when the data is small, which is not the case in this era of
big data. Limited research like MR-Random Forest[10] and
SARGS [11] has been done on extracting Action Rules in
a distributed scenario. The ultimate challenges in extracting
Action Rules in a distributed fashion is that distribution of

data among the computation nodes has to be done in such
a way that there is minimum loss of actionable knowledge
extracted from the distributed data. In this paper, we propose
a granularity based method to handle the data distribution
task and extract Action Rules efficiently using a popular
distributed computing called Spark [12]. We also apply
our algorithm to datasets in the domains of transportation,
medical and business.

II. RELATED WORKS

Although Granular computing was proposed by Zadeh [2]
purely to represent human cognition, the idea of the topic
has been adopted in multiple problems like decision trees
[13], divide and conquer [14], set theory, data reduction or
compression, discretization [15], etc. One of the applications
of information granules are finding optimal solution that
satisfies certain imprecise human assigned conditions [14].
Granular computing has been used in various image process-
ing applications, by grouping some pixels into semantically
meaningful clusters or granules[16]. Recently, Liu, et.al [17]
used information granules for time series models.

Rule based systems are used popularly in multiple ma-
chine learning methods like classification, regression and as-
sociation [18]. Rule based systems can be used for searching,
extraction and representation of knowledge find great use of
information granules to do their tasks efficiently [13]. Liu,
et.al [19] considers each rule from the learning algorithm
as a granule and use such granules for rule generation, rule
simplification and rule representation. Ahmad and Pedrycz
[20] used information granules to reduce the number of rules
given by a recommendation system, which can be helpful in
evaluating and representing rules.

Action Rules originated to help many businesses to gain
profit by finding interesting actionable patterns in the data
[6]. In the literature, Action Rules are extracted using two
methods. First method is a rule based approach, in which
intermediate classification rules are extracted first using
efficient rule generation algorithms such as LERS or ERID.
From these extracted rules, action rules are generated with
systems like DEAR [7], which extracts Action Rules from
two classification rules, or ARAS [8], which extracts Action
Rules using a single classification rule. Second method is
object-based approaches, in which the Action Rules are
extracted directly from the decision table without any inter-
mediary steps. Systems ARED [21] and Association Action
Rules [9] works in the object-based approach. Algorithms,
except association action rules, runs much faster with the
aim of extracting rules that are benefits the user to the
maximum and extracts only limited recommendations.

Considering the growth of big data, some research [10]
[11] have been done to extract Action Rules using popular
distributed computing frameworks such as MapReduce[22]
and Spark[12]. [10] proposed a method to distribute the
data in random to multiple sites, combining results from

Table I
EXAMPLE DECISION SYSTEM T

X A B C D
x1 Y N N D1

x2 Y H Y D2

x3 Y H Y D1

x4 N N N D2

x5 N H N D1

x6 N N Y D2

x7 N H Y D2

x8 N H N D1

all sites and take an average on parameters like Support and
Confidence. [11] handle the load balancing by uniformly
distributing the data into partitions based on the decision
attribute. Although some Action Rules extraction methods
are using some form of information granules, no interesting
technique were proposed on distributing the data to multiple
nodes.

In this paper, we propose a novel approach for partitioning
the given data using information granules. We also give a
new algorithm to extract all Action Rules, based on the
algorithm proposed in [9], which is the slowest among all
proposed Action Rules algorithms and compute additional
parameters like Utility and Coverage.

III. BACKGROUND KNOWLEDGE

In this section, we give basic knowledge about Decision
system, Action Rules, Spark and GraphX frameworks to
understand out methodology.

A. Decision System

Consider a decision system given in Table I
Information System can be represented as T = (X,A,V)

where,
X is a nonempty, finite set of objects: X =

{x1, x2, x3, x4, x5, x6, x7, x8}
A is a nonempty, finite set of attributes: A = A,B,C,D

and
Vi is the domain of attribute a which represents a set of

values for attribute i|i ∈ A. For example, VB = N,H .
An information system becomes Decision system, if A =

ASt ∪ AFl ∪ d, where D is a decision attribute. The user
chooses the attribute d if they wants to extract desired action
from di : i ∈ Vd. ASt is a set of Stable Attributes and
AFl is a set of Flexible Attributes. For example, ZIPCODE
is a Stable Attribute and User Ratings can be a Flexible
Attribute.

Lets assume from Table I that C ∈ ASt. A, B ∈ AFl

and D ∈ d. and the decision maker desires Action Rules
that triggers the decision attribute change from D1 to D2

throughout this paper for examples.

B. Action Rules

In this subsection, we give definitions of action terms,
action rules and properties of action rules [6]

Let T = (X,A∪ d,V) be a decision system, where d is a
decision attribute and V = ∪Vi : i ∈ A. Action terms can be
given by the expression of (m,m1 → m2), where m ∈ A
and m1,m2 ∈ Vm. m1 = m2 if m ∈ ASt. In that case,
we can simplify the expression as (m,m1) or (m = m1).
Whereas, m1 6= m2 if m ∈ AFl

Action Rules can take a form of t1 ∩ t2 ∩∩ tn, where
ti is an atomic action or action term and the Action Rule is
a conjunction of action terms to achieve the desired action
based on attribute D. Example Action Rule is given below:
(a, a1 → a2).(b, b1 → b2) −→ (D,D1 → D2)

1) Properties of Action Rules: Action Rules are con-
sidered interesting based on the metrics such as Support,
Confidence, Utility and Coverage. Higher these values, more
interesting they are to the end user.

Consider an action rule R of form:
(Y1 → Y2) −→ (Z1 → Z2) where,
Y is the condition part of R
Z is the decision part of R
Y1 is a set of all left side action terms in the condition

part of R
Y2 is a set of all right side action terms in the condition

part of R
Z1 is the decision attribute value on left side
Z2 is the decision attribute value on right side
In [6], the support and confidence of an action rule R is

given as
Support(R) = min{card(Y1 ∩ Z1), card(Y2 ∩ Z2)}

Confidence(R) = [card(Y1∩Z1)
card(Y1)

] · [card(Y2∩Z2)
card(Y2)

]

Later, Tzacheva et.al [23] proposed a new set of formula
for calculating Support and Confidence of Action Rules.
Their idea is to reduce complexities in searching the data
several times for Support and Confidence of an Action Rule.
The new formula are given below.
Support(R) = {card(Y2 ∩ Z2)

Confidence(R) = [card(Y2∩Z2)
card(Y2)

]
Tzacheva et. al [23] also introduced a notion of utility

for Action Rules. Utility of Action Rules takes a following
form. For most of cases Utility of Action Rules equals the
Old Confidence of the same Action Rule.
Utility(R) = [card(Y1∩Z1)

card(Y1)
]

Coverage of an Action Rule means that how many de-
cision from values, from the entire decision system S, are
being covered by all extracted Action Rules. In other words,
using the extracted Action Rules, Coverage defines how
many data records in the decision system can successfully
transfers from Z1 to Z2

C. Spark

Spark [12] is a framework that is similar to MapReduce
[22] to process large quantity of data in a parallel fashion.
Spark introduces a distributed memory abstraction strategy

named Resilient Distributed Datasets(RDD) that can do in-
memory computations on nodes distributed in a cluster.
Results of each operation are stored in memory itself, which
can be accessed for future processes and analyses, which
in-turn creates another RDD. Thus, Spark cuts-off large
number of disk accesses for storing intermediate outputs like
in Hadoop MapReduce. Spark functions in two stages: 1.
Transformation, 2. Action. During the Transformation stage,
computations are made on data splits and results are stored in
worker nodes memory as RDD. While the Action stage on an
RDD collect results from all workers and send it to the driver
node or save the results to a storage unit. With RDDs Spark
helps machine learning algorithms to skip innumerable disk
access during the iterations.

IV. METHODOLOGY

A. Data distribution strategy based on granules

The basic advantage of information granularity is that we
can break bigger problems into fine grained granules. Since
our problem is with distribution of data, we incorporate in-
formation granules to our method. Algorithm 1 gives a brief
description about the process we use to measure overlaps
between 2 granules and sub granules in each granules.

Algorithm 1 Granule Based Data Distribution
Require: partitions, dataSplit1, dataSplit2

split1Sum← 0.0
2: for data1 in dataSplit1 do

subpartitions←[]
4: subpartitionsCount← 0

for data2 in dataSplit2 do
6: commonLines← data1.lines ∩ data2.lines

if commonLines 6= ∅ then
8: subpartitions.addAll(commonLines)

subpartitionsCount+ = 1
10: if |subpartitions| == |data1.lines| then

split1Sum+ = 1/subpartitionsCount
12: break

split2Sum← 0.0
14: for data2 in dataSplit2 do

subpartitions←[]
16: subpartitionsCount← 0

for data1 in dataSplit1 do
18: commonLines← data1.lines ∩ data2.lines

if commonLines 6= ∅ then
20: subpartitions.addAll(commonLines)

subpartitionsCount+ = 1
22: if |subpartitions| == |data2.lines| then

split2Sum+ = 1/subpartitionsCount
24: break

split1Avg = split1Sum/|dataSplit1|
26: split2Avg = split2Sum/|dataSplit2|

return split1Avg − split2Avg

Table II
SUB-GRANULES OF GRANULES: A,B AND C,D

A,B C,D
Y,N - {x1} N,D1 - {x1, x5, x8}

Y,H - {x2, x3} Y,D2 - {x2, x6, x7}
N,N - {x4, x6} Y,D1 - {x3}

N,H - {x5, x7, x8} N,D2 - {x4}

By granules, we mean a finite set of attributes from the
attribute set A from the information system. For our initial
experiments, we examine all combinations of 2 granules
from the information system and minimize the correlations
of granules given by Equation 3, where C(G) represents
correlation of a sub-granule with sub-granules of the other
granule and m,n represents number of combinations of
values of granules 1 and 2 respectively.

m∑
i=1

C(Gi) +
n∑

j=1

C(Gj)

2
(3)

We now give an example on our optimization process
for the given Information System T in Table I. Since
we are handling data partitioning, we are taking attribute
types(Stable,Flexible and Decision attributes) into consid-
eration. Given an information system T, we run our op-
timization(minimizing Equation 3) on all granules: ({A,B}
and {C,D},{A,C} and {B,D} . . .). Example of such com-
binations and sub-granules are given in Table II. In the
given example, the number of sub-granules, m,n = 4. We
measure the correlation of each sub-granule(C(Gi),C(Gj))
by checking the overlap count of the sub-granule with sub-
granules of other granule. For example, C(GY,H) = 1

2 , since
Y,H from A,B overlaps with Y,D2 and Y,D1 of the granule
C,D.

The complete optimization is handled in a distributed
fashion using the Spark framework [12] and getting scores of
each granule are done much efficiently. A brief description
about our optimization process has been given in Figure 1.

B. Scalable association action rules extraction

In this work, we follow a parallelized version of Asso-
ciation Action Rules [9] extraction technique in contrast to
the parallel Action Rules extraction technique followed by
horizontal data splitting approach [11]. Association Action
Rules extraction is an exhaustive A-Priori based method of
Association Rules extraction [24], which extracts the com-
plete set of Action Rules by taking combinations of action
terms through an iterative procedure. A-Priori algorithm [25]
is used mostly in market basket analysis to trace transactions
that appears together at great frequency. Association Action
Rules method does not scale very well with high dimensional
data and lacks efficiency in running time. In this work,
we create partitions by splitting the data by attributes in
a high dimension data as given in section IV-A. We perform
Association Action Rule extraction algorithm on each of

those partitions in parallel, which allows for much faster
computational time for Association Action Rules extraction
in Cloud platforms.

Figure 2 presents an example vertical data partitioning
with the sample Decision system in Table I. Our algorithm
runs separately on each partition, does transformations like
map(), flatmap() functions and combine results with join()
and groupBy() operations. Algorithm 2 gives our new algo-
rithm to extract all possible Action Rules from the data in
a parallel fashion.

Algorithm 2 ActionRulesExtract
Require: data of type (rid, rvalues)) and dFROM , dTO

values
procedure MYPROCEDURE

2: dA := (s ∈ r|r ∈ data|(s, rid)).groupByKey()
cOLD ← dA

4: i← 2
parallel:

6: while i 6= n do:
c ← data.flatmap(r =>

(comb(rvalues, i)), rid)
8: cNEW ← c.groupByKey()

cV ALID ← cNEW .filter()
10: cFROM ← cV ALID.filter(dFROM)

cTO ← cV ALID.filter(dTO)
12: if cFROM = ∅ or cTO = ∅ then break

atomic← cFROM .jon(cTO).filter()
14: actionsupp ← (r ∈ atomic —

findSupp(r)).filter()
if actionsupp = ∅ then break

16: atomicFROM ← atomic.filter()
atomicTO ← atomic.filter()

18: aFROM ← atomicFROM .join(cOLD)
aTO ← atomicTO.join(cOLD)

20: actionconf ← aFROM .join(aTO)
actions← actionsupp.join(actionconf)

22: collect actions
cOLD := cNEW

24: i := i+ 1

Our algorithm gets the pre-processed data (rid, rvalues)
as input, where rid is the row id and rvalues is a list of
values for each record in the data. The algorithm also takes
decision from (dFROM) and decision to (dTO) values as
parameters. In Step 2 dA gets all distinct attribute values and
their corresponding data row indexes.

Finding Support and Confidence is an iterative procedure.
It takes O(nd) times to find for all Action Rules, where n
is the number of Action Rules and d is the number of data
records. To reduce this time complexity, we store a set of
data row indexes of each attribute value in a Spark RDD.
In the first iteration, the dA RDD acts as a seed for all

Figure 1. Data Distribution Strategy based on information granules

Figure 2. Example Vertical Data Distribution for Table 1

following transformations. The algorithm runs maximum of
(n) iterations, where n is the number of attributes in the
data. During the ith iteration, the algorithm extracts Action
Rules with i-1 action set pairs on the left hand side of
the rule. Step 8 uses flatMap() transformation on the data
to collect all possible i combinations from a data record.
We sort the combination of attribute values since they act
as key for upcoming join() and groupBy() operations. We
also attach a row id rid to all combinations to get the
support (which data records contains a particular pattern)
of each combination with the use of Spark’s groupByKey()
method in Step 9. In Step 10, we perform sequential filtering
to find combinations for which the indexes count is less
than the given support threshold supp. From the filtered
combinations, we get combinations (cFROM and cTO) that
has decision from dFROM value and decision to dTO values
in Step 11 and Step 12 respectively. In Step 14, we join
cFROM and cTO based on attribute names, filter outdFROM

and dTO values since we know the decision action, which
is not required in finding confidence of Action Rules.

We then calculate actual support of the resultant Action
Rules and filter out rules that has support atleast the given
support threshold supp in Step 15 and reformat it to the form

given in Equation 2. Steps 14-21 are just used to calculate
confidence of an Action Rule from collected support values
of the rule. We now join Action Rules with Support from
Step 15 and Action Rules with Confidence from Step 21
to get final set of Action Rules. In Step 23, we assign
new combination(cNEW) to the old combinations(cOLD)
and pass the same to the next iteration.

V. EXPERIMENTS AND RESULTS

To test our methods, we use three datasets: Car Evaluation
data [26], Mammographic Mass data [26], and the Net
Promoter Score dataset data [27].

The Car Evaluation and Mammography are obtained
from the Machine Learning repository of the Department
of Information and Computer Science of the University of
California, Irvine [26]. The Car Evaluation Data consists
of records describing a car’s goodness and acceptability.
Mammographic is the most effective method for screening
breast cancer. Since these datasets are relatively small in
size, in order to test them for scalability with the proposed
distributed processing algorithms, we replicate their data
rows 1024 and 2056 times respectively for CarEvaluation
and MammographicMass datasets, in order to increase data
size. For the Car Evaluation data, we choose Class attribute
as a decision attribute and we collect Action Rules to help
the car company to change the car from Unacceptable state
to Acceptable state. For the Mammographic Mass data,
we choose Cancer Severity as a decision attribute and we
collect Action Rules to reduce the severity from Malignant
to Benign.

The NPS (Net Promoter Score) [27] dataset is collected
customer feedback data related to heavy equipment repair.
The entire dataset consists of 38 companies and 340,000
customer surveys across sites from USA and Canada. All
customer surveys are saved into database with each question
(benchmark) as one feature in the dataset. Benchmarks
include numerical scores (0-10) representing the quality of
service: e.g. if job done correctly, are you satisfied with
the job, likelihood to refer, etc. The decision attribute in
the dataset is PromoterStatus which labels each customer

Table III
DATASET PROPERTIES

Property Car Evaluation
Data

Mamm. Mass
Data

NPS Data:
Company 16

NPS Data:
Company 16 31

NPS Data:
Company 17

NPS Data:
Company 30

Attributes 7 attributes
-Buying
-Maintenance
-Doors
-Persons
-Luggage Boot
-Safety
-Class

6 attributes
-BI-RADS
-Patient’s age
-Shape
-Margin
-Density
-Severity

20 attributes
including
- Client Name
- Division
- Benchmark:
Dealer
communication
- Benchmark:
Overall
satisfaction
- Benchmark:
Technician
communication

23 attributes
including
- Survey Type
- Survey Name
- Benchmark:
Order accuracy
- Benchmark:
Personnel
knowledge
- Benchmark:
Time taken to
place order

22 attributes
including
- Channel Type
- Division
- Benchmark:
Ease of ordering
- Benchmark:
Parts availability
- Benchmark:
Referral behavior

23 attributes
including
- Channel type
- Survey name
- Benchmark:
Ease of using
online store
- Benchmark:
Likelihood to be
a repeat customer
- Benchmark:
How orders are
placed

Decision attribute
values

Class
(unacc, acc,
good, vgood)

Severity
(0 - benign, 1-
malignant)

Estimated Sales (Detractor Passive Promoter)

of instances /
decision value

unacc - 1210
acc - 384
good - 69
vgood - 65

0 - 516
1 - 445

Detractor - 61
Passive - 180
Promoter - 939

Detractor - 65
Passive - 190
Promoter - 1806

Detractor - 22
Passive - 61
Promoter - 459

Detractor - 94
Passive - 391
Promoter - 2821

Replication Fac-
tor

1024 2048 N/A

of instances 1,769,472 1,968,128 1180 2078 547 3335

as either promoter, passive or detractor. The decision
problem here is to improve customer satisfaction / loyalty
as measured by Net Promoter Score. The goal of applying
action rules to solve the problem is to find minimal sets of
actions so that to ”reclassify” customer from ”Detractor” to
”Promoter” and the same improve NPS. For our experiments,
we used survey given by customers for 4 companies over the
year of 2015. Table III gives an overview of some properties
of all datasets that we used to test our methods.

Table IV
PARAMETERS USED IN ALL ACTION RULE DISCOVERY ALGORITHMS

Property Car Evalua-
tion Data

Mamm. Mass
Data

NPS Data

Stable
attributes

Maintenance,
Buying Price,
Doors

Age Survey name
Survey type
Division
Channel type
Client name

Required deci-
sion action

(Class)
unacc→ acc

(Severity)
1→ 0

Promoter
Status
Detractor →
Promoter

Minimum
Support α and
Confidence β

2048, 70% 4096, 70% 2, 80%

In Table V, we give Action Rules extracted from all
datasets used in experiments. These Action Rules provide ac-
tionable recommendations to users who wants to achieve the
desired decision action. For example, from Table V, when
a user wants to achieve the action Class, unacc → acc,

our system give actionable recommendations to achieve that
goal. Action Rules ARC1 and ARC2 in Table V are example
recommendations given by our system for the appropriate
parameters given in Table IV. For example, Action Rule
ARC1 recommends if the car company maintains Buying
cost to medium and Maintenance Cost to Very high and
decrease the Seating capacity from More than 4 to 4 and
increase Safety measures from medium to high with support
of 1107 and minimum confidence of 74%

Figure 3. Speed Performance of Non-parallel and Parallel algorithms of
Association Action Rules extraction

Similarly, due to space constraints, we give only sample
Action Rules for all NPS datasets: 16, 16 31, 17 and 30 in
Table V. In all cases, we use parameters given in Table IV.
For example, consider ARN1 which recommends that if the
company can improve user’s ratings on Completion of repair
correctly from 5 points to 10 pints and improve user’s ratings

Table V
ACTION RULES OF CAR EVALUATION AND MAMMOGRAPHIC MASS

DATASETS

Car Evaluation Data

1) ARC1 : (buying = med) ∧ (maint = vhigh) ∧
(persons,more → 4) ∧ (safety,med → high) =⇒
(class, unacc → acc)[Support : 1107, OldConfidence :
74%, NewConfidence : 100%, Utility : 74%

2) ARC2 : (buying = med) ∧ (maint = vhigh) ∧
(persons,more → 4) ∧ (safety,med → high) =⇒
(class, unacc → acc)[Support : 1353, OldConfidence :
85%, NewConfidence : 100%, Utility : 85%

Mammographic Mass Data

1) ARM1 : (BIRADS, 6 → 2) ∧ (Density, 4 → 3) =⇒
(Severity, 1 → 0)[Support : 12288, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]

2) ARM2 : (Age = 42) ∧ (Density, 1 → 3) ∧
(Shape = 1) =⇒ (Severity, 1 → 0)[Support :
10240, OldConfidence : 100%, NewConfidence :
100%, Utility : 100%]

Business Datasets

1) ARN1 : (Benchmark : Service −
RepairCompletedCorrectly, 5 → 10) ∧ (Benchmark :
Service − TechnicianCommunication, 3 → 9) =⇒
(PromoterStatus,Detractor → Promoter)[Support :
2.0, OldConfidence : 90.0%, NewConfidence :
90.0%, Utility : 100.0%]

2) ARN2 : (BenchmarkPartsOrderAccuracy, 3 → 10) ∧
(ClientName = HOLTCAT)→ (Division = Parts)∧
(BenchmarkPartsT imeitTooktoP laceOrder, 4 →
9) =⇒ (PromoterStatus,Detractor →
Promoter)[Support : 2.0, OldConfidence :
80.0%, NewConfidence : 100.0%, Utility : 80.0%]

Table VI
PERFORMANCE, IN TERMS OF NUMBER OF RESULTING ACTION RULES,

USING PARALLEL AND NON-PARALLEL VERSIONS OF ASSOCIATION
ACTION RULES EXTRACTION METHODS FOR ALL DATASETS

Dataset Non-parallel algo-
rithm

Parallel algorithm

Car Evaluation data 3500 3496
Mammographic
Mass data

5790 5756

NPS data: 16 900 798
NPS data: 16 31 83643 83000
NPS data: 17 37256 37000
NPS data: 30 184000 182000

on Technician communication from 3 points to 9 points, the
company can convert some Detractors to Promoters with
support of 2.0 and confidence of 90.0%.

In Figure 3, we give run time analysis of Association
Action rules extraction methods implemented in non-parallel
method and our technique of splitting the data by attributes
using information granules and extracting Association Ac-
tion rules in parallel using Apache Spark framework. As
mentioned earlier, since Association Action rules method-
ology is a complex algorithm, we can see fro the Figure 3

that non-parallel method takes long time to give actionable
recommendations. On the other hand, our method takes only
fraction of minutes. The speed increases when the data set
size increases. For example, for NPS data: company 30,
which is the largest in our datasets, the non-parallel version
takes around an 60 minutes to produce results, while our
method takes 3 minutes.

In Table VI, we compare number of Action Rules ex-
tracted by our parallel and non-parallel algorithms. Due to
the data partitioning step involved in our method, we lose
some Action Rules. In Table VII, we give Coverage measure
of Action Rules extracted for each dataset and compare
them with Coverage of Action Rules extracted using non-
parallel methods. In 50% of our experiments we are able to
achieve the same coverage as Action Rules extracted using
non-parallel approach. From this table, we can assure that
our method of extracting Action Rules using the distributed
computing framework like Spark [12] can produce results in
a faster runtime by losing only a limited knowledge.

VI. CONCLUSION

Action Rules are recently being used in variety of domains
like medicine, business and natural language processing.
A distributed approach to derive Action Rules from the
given data can benefit many such domains. In the presented
work, we proposed a novel method that divides the data
using information granules rather than performing random
distribution. This method provides more coherent optimiza-
tion for data partitioning by taking correlations of granules
with other granules. Combining this data partitioning method
with Action Rules extraction produces higher quality rules,
with good processing time for larger datasets. The downside
of the proposed approach can be taking combinations of
rules from multiple partitions, which can become complex
when each partition produce large number of rule. Thus the
proposed method can be improved in the future by designing
an approximation function for vertical data partitioning. The
data partitioning can be done in such a way that we simply
merge all rules from multiple partitions instead of combining
or taking cartesian product of rules.

REFERENCES

[1] J. T. Yao, A. V. Vasilakos, and W. Pedrycz, “Granular
computing: perspectives and challenges,” IEEE Transactions
on Cybernetics, vol. 43, no. 6, pp. 1977–1989, 2013.

[2] L. A. Zadeh, “Toward a theory of fuzzy information granula-
tion and its centrality in human reasoning and fuzzy logic,”
Fuzzy sets and systems, vol. 90, no. 2, pp. 111–127, 1997.

[3] W.-Z. Wu, Y. Leung, and J.-S. Mi, “Granular computing and
knowledge reduction in formal contexts,” IEEE transactions
on knowledge and data engineering, vol. 21, no. 10, pp.
1461–1474, 2009.

[4] J. Kuang, A. Daniel, J. Johnston, and Z. W. Raś, “Hierarchi-
cally structured recommender system for improving nps of
a company,” in International Conference on Rough Sets and
Current Trends in Computing. Springer, 2014, pp. 347–357.

Table VII
PERFORMANCE OF ALGORITHMS FOR ALL DATASETS IN TERMS OF A

COVERAGE MEASURE

Dataset Non-parallel
algorithm

Parallel algo-
rithm - Ran-
dom distribu-
tion

Parallel algo-
rithm - Gran-
ule distribu-
tion

Car Evaluation
data

99.5% 99% 99%

Mammographic
Mass data

94% 92.53% 92.53%

NPS data: 16 89.2% 86.9% 86.9%
NPS data:
16 31

73% 70.77% 70.77%

NPS data: 17 72.7% 72.7% 72.7%
NPS data: 30 75.5% 75.5% 75.5%

[5] M. Al-Mardini, A. Hajja, L. Clover, D. Olaleye, Y. Park,
J. Paulson, and Y. Xiao, “Reduction of hospital readmissions
through clustering based actionable knowledge mining,” in
Web Intelligence (WI), 2016 IEEE/WIC/ACM International
Conference on. IEEE, 2016, pp. 444–448.

[6] Z. W. Ras and A. Wieczorkowska, “Action-rules: How to
increase profit of a company,” in European Conference
on Principles of Data Mining and Knowledge Discovery.
Springer, 2000, pp. 587–592.

[7] L.-S. Tsay* and Z. W. Raś, “Action rules discovery: system
dear2, method and experiments,” Journal of Experimental &
Theoretical Artificial Intelligence, vol. 17, no. 1-2, pp. 119–
128, 2005.

[8] Z. W. Raś, E. Wyrzykowska, and H. Wasyluk, “Aras: Action
rules discovery based on agglomerative strategy,” in Interna-
tional Workshop on Mining Complex Data. Springer, 2007,
pp. 196–208.

[9] Z. W. Ras, A. Dardzinska, L.-S. Tsay, and H. Wasyluk,
“Association action rules,” in Data Mining Workshops, 2008.
ICDMW’08. IEEE International Conference on. IEEE, 2008,
pp. 283–290.

[10] A. A. Tzacheva and Z. W. Ras, “Association action rules
and action paths triggered by meta-actions,” in Granular
Computing (GrC), 2010 IEEE International Conference on.
IEEE, 2010, pp. 772–776.

[11] A. Bagavathi, P. Mummoju, K. Tarnowska, A. A. Tzacheva,
and Z. W. Ras, “Sargs method for distributed actionable
pattern mining using spark,” in 2017 IEEE International
Conference on Big Data (Big Data), Dec 2017, pp. 4272–
4281.

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica, “Re-
silient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing,” in Proceedings of the 9th
USENIX Conference on Networked Systems Design and Im-
plementation, ser. NSDI’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 2–2.

[13] H. Liu and A. Gegov, “Collaborative decision making by
ensemble rule based classification systems,” in Granular
Computing and Decision-Making. Springer, 2015, pp. 245–
264.

[14] A. Skowron and J. Stepaniuk, “Modeling of high quality
granules,” in International Conference on Rough Sets and
Intelligent Systems Paradigms. Springer, 2007, pp. 300–309.

[15] V. Kreinovich, “Interval computations as an important part of
granular computing: an introduction,” Handbook of Granular
Computing, pp. 1–31, 2008.

[16] H. Li, L. Zhang, B. Huang, and X. Zhou, “Sequential three-
way decision and granulation for cost-sensitive face recogni-
tion,” Knowledge-Based Systems, vol. 91, pp. 241–251, 2016.

[17] S. Liu, W. Pedrycz, A. Gacek, and Y. Dai, “Development of
information granules of higher type and their applications to
granular models of time series,” Engineering Applications of
Artificial Intelligence, vol. 71, pp. 60–72, 2018.

[18] H. Liu, A. Gegov, and F. Stahl, “Categorization and con-
struction of rule based systems,” in International Conference
on Engineering Applications of Neural Networks. Springer,
2014, pp. 183–194.

[19] H. Liu, A. Gegov, and M. Cocea, “Rule-based systems: a
granular computing perspective,” Granular Computing, vol. 1,
no. 4, pp. 259–274, 2016.

[20] S. S. S. Ahmad and W. Pedrycz, “The development of
granular rule-based systems: a study in structural model
compression,” Granular Computing, vol. 2, no. 1, pp. 1–12,
2017.

[21] S. Im and Z. W. Raś, “Action rule extraction from a decision
table: Ared,” in International Symposium on Methodologies
for Intelligent Systems. Springer, 2008, pp. 160–168.

[22] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[23] S. R. A.A. Tzacheva, C.C. Sankar and R. Shankar, “Support
confidence and utility of action rules triggered by meta-
actions,” in proceedings of 2016 IEEE International Con-
ference on Knowledge Engineering and Applications, ser.
ICKEA 2016. IEEE Computer Society, 2016.

[24] M. Hahsler and R. Karpienko, “Visualizing association rules
in hierarchical groups,” Journal of Business Economics,
vol. 87, no. 3, pp. 317–335, 2017.

[25] S. Rathee, M. Kaul, and A. Kashyap, “R-apriori: an efficient
apriori based algorithm on spark,” in Proceedings of the 8th
Workshop on Ph. D. Workshop in Information and Knowledge
Management. ACM, 2015, pp. 27–34.

[26] M. Lichman, “Uci machine learning repository,” Irvine, CA,
USA, Tech. Rep., 2013.

[27] Z. W. Ras, K. A. Tarnowska, J. Kuang, L. Daniel, and
D. Fowler, “User friendly nps-based recommender system for
driving business revenue,” in International Joint Conference
on Rough Sets. Springer, 2017, pp. 34–48.

