
Discovery of Action Rules at Lowest Cost in Spark

Angelina A. Tzacheva, Arunkumar Bagavathi, Lavanya Ayila

Department of Computer Science

University of North Carolina at Charlotte, NC

{aatzache, abagavat, layila}@uncc.edu

Abstract— Action Rules or Actionable patterns is a type of

rule-based approach in data mining that recommends to a user

specific actions, in order to achieve a desired result or goal. The

amount of data in the world is growing at an exponential rate,

doubling almost every two years. Distributed computing

platforms like Hadoop and Spark, have eased the computation of

this high velocity data. Leveraging these cutting-edge

technologies in the field of Data Mining to process huge volumes

of data can improve the performance and allow user to gain

insights from large datasets with quick turnaround time. In this

paper, we present an approach for discovering low cost

actionable patterns, and provide actionable recommendations.

We adapt this algorithm to distributed environment using

Apache Spark framework. We evaluate the performance of the

algorithm with two datasets in transportation and medical

domain.

Keywords— Data Mining, Action Rules, Apache Spark, Cost of

Action Rules

I. INTRODUCTION

Data Mining is the process of analyzing large datasets to
find interesting behavioral patterns or hidden opportunities
from the underlying data in order to transform and improve.
The advent of the Internet and digitization of data has led to
overwhelming increase of data in many fields including
commercial, medical, industrial, and financial. Data mining
techniques aid organizations and users to analyze this ever-
expanding universe of digital data and get the most out of the
data without getting lost in detail. Wide ranges of sophisticated
data mining algorithms are available to classify the data, cluster
the data, and identify associations or to find sequential patterns
within the data. Though these algorithms produce useful
information from the data, they do not focus on providing
actionable knowledge that help users to precisely identify
lucrative actions and make better decisions to maximize
opportunities. Action rules addresses this problem by providing
actionable solutions that describes possible transition of objects
from one state to another, to improve the condition of an object
with respect to a distinguished attribute called a decision
attribute [1]. The attributes used to describe the transition of
class or decision attribute can group into two groups namely –
Stable Attributes and Flexible Attributes. Values of stable
attributes cannot form actionable patterns and acts more like
constants, whereas the values of flexible attributes are open to
changes and contribute for actionable solutions to for the
transition of decision attribute.

Action Rule patterns are interesting, if the extracted rules
are diverse. The patterns are diverse if its elements differ
significantly from each other. The more diverse the extracted
patterns are, the more interesting they are. Little research has
been done to measure interestingness of association rules [17]
or action rules. Action Rules of low cost are considered
patterns of high interest. Action Rules costs the user or
company in some form of money or resources like energy,
power and human resources to make the recommended
changes to achieve the desired action or goal. However, most
of the Action Rules extraction algorithms does not guarantee
the cost economic recommendations to the user or company.
To address this problem, Tzacheva et.al. [5] provided heuristics
for finding cost and feasibility of the discovered Action Rules.
They suggest a heuristic strategy for creating new Action
Rules, where objects supporting the new Action Rule also
support the initial Action Rule but the cost of reclassifying
them is lower or even much lower for the new rule. In this way,
the rules constructed are of more interest to the users and in the
context of a business action plan. However, the data deluge in
recent times poses challenges with the current algorithm’s
implementation to store, process, analyze the huge volume of
data, and produce results within acceptable time limits. Hence,
there is a need to rely on the capabilities of distributed
computing and parallel processing techniques to process such
datasets in near real time and monetize the Action Rules
generated.

Many open source frameworks like Apache Hadoop,
Apache Spark, Hive, Storm etc. are available today to perform
distributed processing on such huge volumes of data on
clusters of machines in a distributed fashion. Hadoop
MapReduce [9] is a framework that is more suitable for batch
processing, but carries the overhead of multiple disk read
writes to the distributed file system. This makes MapReduce
inappropriate for many data mining and machine learning
algorithms. Spark [2] on the other hand, is an in-memory
distributed data analysis and cluster computing platform
designed to process large datasets using a single programming
model. It can achieve up to a 100 times faster processing speed
than Hadoop map-reduce when running in-memory and up to
10 times faster when running on disk.

The design goal of Apache Spark is to reduce disk access
and provide more support to the iterative algorithms. It also
supports batch jobs, machine learning jobs, and interactive
querying and includes real-time data stream processing. It uses
DAG (Directed Acyclic Graph) engine to optimize its
workflows and to provide fault tolerance through the concept

of lineage. In this paper, we use the power of Apache Spark to
extract low cost Action Rules. We also compare the new
method with the algorithm working in non-distributed fashion
in terms of performance and the quality of low cost Action
Rules recommendations given by the algorithms.

II. RELATED WORK

Ras and Wyrzykowska [1] initially introduced the notion

of Action Rules and brings in the idea of generating special

type of rules, which provides suggestions to re-classify objects

with respect to decision attribute, from a database. Further, in

the paper by Tzacheva and Ras [5], the notion of a cost and

feasibility of an Action Rule was proposed. They suggest a

heuristic strategy for creating new Action Rules, where

objects supporting the new Action Rule also support the initial

Action Rule but the cost of reclassifying them is lower or even

much lower for the new rule. In this way, the rules constructed

are of more interest to the users.

A number of algorithms are available in the literature for

Action Rules extraction. Ras and Tsay [14] proposed a

strategy to extract Action Rules with the help of two

classification rules. Ras and Wyrzykowska [6] proposed a new

simplified strategy for Action Rule extraction. This strategy

suggests that, extracting Action Rules no longer requires pairs

of classification rules, but rather “grab” the objects. Im, et.al

[15] proposed a new approach for extracting simple Action

Rules directly from the given data without producing any

classification rules. Mining Action Rules from scratch [3],

which presents an exhaustive method, would supply us with

all important rules. Clearly, the space of such rules is quite

huge, so a generalization technique, such as creating

summaries, would provide great means for reducing the space

and furnish the user with the essence of the actionable

knowledge.
Tzacheva [4] introduced a generalization technique, which

creates summaries of Action Rules, by utilizing an exhaustive
method. The author provided great means for reducing the
output space and furnished the user with the essence of the
actionable knowledge. The paper introduced the notion of
diversity of Action Rule summaries, and suggested removing
the high cost rules, when creating summaries, in order to
additionally decrease the space of Action Rules.

Action Rules of low cost are interesting patterns, because

they are both actionable patterns, and they help the user to

achieve their goals at lowest known cost. The cost of applying

the suggested actions, can take the form of money or resources

such as monetary cost, energy consumption, human resources,

or even moral costs, in order to make the recommended

changes to achieve the desired goal, or benefit. In this work,

we adapt a lowest cost Action Rule mining method by

Tzacheva et.al. [5] to a distributed framework for processing.

We propose this distributed implementation to address the

ever growing size of data, and the advent of BigData, since the

currently existing algorithm does not support such large

amounts of data.

In this work, we present an approach, to compute Action

Rules of lowest cost for large datasets using Spark distributed

framework to adapt the algorithm, and provide scalability with

very large datasets. Performance and computational efficiency

of the algorithm are studied. We perform experiments with the

adapted Action Rules at lowest cost algorithm with Car

Evaluation Dataset, and Mammographic mass Datasets in a

distributed setup using Apache Spark.

III. METHODOLOGY

We implement the proposed algorithm in [11] for

distributed discovery of Action Rules at lowest cost using

Apache Spark framework [2] and Hadoop Distributed File

System (HDFS) [7] thereby, improving the computational

performance, fault tolerance and high availability of the

system. In the upcoming sections, we give some background

knowledge about Action Rules, a detailed overview of

distributed computing frameworks, algorithm to extract

Action Rules using such distributed computing frameworks

and algorithms for recommending lowest cost Action Rules.

A. Action Rules

In this section, we define Action Rules and give an
example of extracting them.

An information system S in “Table I” is defined in
“Equation (1)”:

 S = (X, A, VA) (1)

where,

X is a set of objects: X = {x1, x2, x3, x4, x5, x6, x7, x8}

A is a set of attributes: A = {a, b, c, d} and
VA represents a set of values for each attribute in A.

For example, VB = {b1, b2}

TABLE I. INFORMATION SYSTEM S

X a B c D

x1 a1 b1 c1 d1

x2 a3 b1 c1 d1

x3 a2 b2 c1 d2

x4 a2 b2 c2 d2

x5 a2 b1 c1 d1

x6 a2 b2 c1 d2

x7 a2 b1 c2 d2

x8 a1 b2 c2 d1

We extract Action Rules from a special variety of an
information system called Decision Table. Information system
S becomes Decision table SD, when we divide the attribute
space in S into three different types attributes: Stable Attributes
(AS), Flexible Attributes (AF) and Decision Attribute(s) (AD).
Stable attributes are the one, which cannot change their values
and does not form actionable patterns in the Action Rules.
However, values in Flexible attributes can change and

eventually become actionable patterns. Decision attribute is
also a flexible attribute, on which the user wants to change
values from d1 to d2. Decision attribute in the decision table

should satisfy the property of AD {AS AF}. Thus, attribute
space in decision table can take a representation of “Equation
(2)”:

 A = {AS AF AD} (2)

Action Rules from S gives a recommendation of changing
which attributes value can result in the desired decision action.
An example Action Rule for the Information System S,
considering attribute c as a Stable attribute and attribute d as a
Decision attribute is given below in “Equation (3)”:

 (a, a2 → a1) ˄ (b, b2 → b1) ˄ (c, c1) (d, d1 → d2) (3)

The above Action Rule means that if the attribute a change
its value from a2 to a1, the attribute b change its value from b2
to b1 and the attribute c remains at the value c1, the resulting
action (d1 → d2) is possible. Action Rules can find applications
in many fields like in the Medical domain, Action Rules can
help improving patient’s health and in the Business domain,
Action Rules can help improving the revenue of a company.

For each extracted Action Rules, we also find their
corresponding Support and Confidence. Support specifies how
many records in the dataset support the extracted Action Rule.
Confidence specifies how the Action Rule is confident with the
whole dataset. We use “Equation (4)” and “Equation(5)”, given
in [13], for calculating Support and Confidence respectively of
any Action Rule R.

Support(R) = card(Y2 ∩ Z2) (4)
 Confidence(R) = [card(Y2 ∩ Z2) / card(Y2)] (5)

where,
Y2 – right side of all atomic action terms in the precedent

part of the Action Rule R

Z2 – right side value of decision action term, which is
present in the antecedent part of the Action Rule R

A wide range of distributed frameworks are available that
follows the approach of “Moving compute to data” instead of
“Moving data to compute”, which is highly suitable while
dealing with large datasets. Next sections provide a detail
overview of the frameworks and the reason why Spark
performs the best over other frameworks for current scenario.

B. Hadoop MapReduce

J. Dean and S. Ghemawat, from Google, in [9] proposed a
distributed computing programming model called MapReduce,
which has a potential to perform parallel processing of large
datasets on a cluster of nodes or computers in a fault tolerant
manner. It aims at providing the right level of abstraction by
separating what to do from how to do and lets the user
concentrate on how to put their methods or algorithms into
MapReduce programming model, while leaving the complex
functionalities like data distribution, task parallelization, load
balancing and fault-tolerance to be handled by the framework.

Hadoop at its core contains two main components: HDFS
(Hadoop Distributed File System) and MapReduce. HDFS is a
high-bandwidth, highly available, fault-tolerant distributed file
system that stores data as chunks on local disks of nodes in the
cluster. It preserves data locality by assuring that distance
between data node and slave node is minimum.

MapReduce paradigm has two phases: Map and Reduce. In
both phases the function takes input and produces output as
<Key, Value> pairs. A Master node is responsible for handling
the whole MapReduce execution process. It assigns map and
reduce tasks to the worker nodes. Initially, the master node
runs its map phase on worker nodes marked as mappers. As the
map function runs on a small chunk of a large dataset, the
results generated from this phase are usually intermediate
results. At the end of map phase, each map function writes its
intermediate output of <Key, Value> pairs back into HDFS.
The worker nodes now marked as reducers, collects the
intermediate results, sorts them, and performs computations
like aggregation on the collection. One or more reduce
functions collects all <Key,Values_list>. The results from
reduce phase are outputted as <Key, Value> pairs and are
written on to HDFS. These output results can form as input to
any other MapReduce task or other applications to perform
other computations. Hadoop achieves fault tolerance and data
loss by storing each data chunk across different nodes of a
cluster by a replication factor of three. “Fig. 1” provides an
overview of MapReduce execution phase is shown.

Fig. 1. Overview of Hadoop MapReduce execution.

C. Spark

Though MapReduce proves to be a good framework to deal
with distributed parallel computing operations, it carries
disadvantages such as multiple disk read writes for accessing
and storing the data for each MapReduce phase. Due to such
overhead, iterative machine-learning algorithms like
classification and clustering perform poorly on Hadoop. Spark
[2] introduces an in-memory distributed data analysis and
cloud computing platform that avoids frequent disk access to
the data nodes. It achieves this by using Resilient Distributed
Datasets (RDD) [8], an abstraction over a giant set of data on
which spark allows performing Transformations and Actions.

Spark reads the data from the input files, split them into
different partitions and store them in node memory as an RDD.
Thus, RDDs represent a collection of items distributed across
many compute nodes that can be manipulated in parallel. The
driver node is responsible for allocating the tasks among

multiple worker nodes where the data resides. Tasks allotted to
worker nodes can be either Transformations or Actions.

Fig. 2. Overview of Spark execution

Spark is a lazy execution engine. It separates its operation

of transformations and actions. The transformations are lazily

evaluated or run only when needed. However, action

operations execute immediately. Spark transformation

operations on an RDD does not show a result until Spark

notices an action operation on it. When the Spark execution

encounters an action operation, it finds the most efficient way

to calculate results thus optimizing the workflow and

improving computation efficiency.
When a job is submitted on Spark, it builds an execution

plan where it keeps track of all the things that are chained
together from different RDDs and how they connect to each
other and based on that information it constructs a directed
acyclic graph (DAG). In this process, Spark breaks down the
job into stages that are created based on chunks of processing
that can be done in parallel manner without shuffling things
around. Each stage is split into parallelizable tasks which may
be distributed across multiple worker nodes. The result of all
worker nodes together forms another RDD. Action task
collects the resulting RDDs and send the collection to the
driver node or save the collection to a storage system like
databases. An overview of Spark execution is shown in “Fig.
2”.

Fig. 3. Sample Lineage Graph in Spark

Spark supports the processing of iterative data science and
machine learning algorithms, due to the in-memory computing
model, which it employs on RDDs. It handles fault tolerance
by maintaining a lineage graph of RDDs. Lineage graph is a
directed acyclic graph (DAG), which represents the path that
the Spark execution (Transformations and Actions) takes on
each node. When a failure occurs at any stage, Spark uses last
available working point RDD from the DAG, and restarts all
computations from that RDD instead of replicating the data
partition across multiple nodes. “Fig. 3” depicts a sample
lineage graph of combining RDDs from two inputs. The
support for processing iterative algorithms and strategy of fault
tolerance, data management makes us to choose Spark for
running our algorithm.

 Now we describe the various steps involved in extracting
the lowest cost Action Rules, which includes Action Rules
extraction from scratch, discuss the existing algorithm to get
low cost Action Rules by considering the correlations between
individual atomic action sets and presents the proposed
algorithm to find low cost Action Rules using the Spark
framework.

D. Distributed Actionable Pattern Discovery

In our work, we use the algorithm defined by Bagavathi et.
al. [11] to extract Action Rules. The proposed algorithm acts as
an alternative to the ARAS algorithm implemented in Hadoop
MapReduce [12]. Even though the ARAS method extracts
Action Rules in reasonable amount of time, it produces some
incomplete Action Rules for Information System S given in
“Table I” like the “Equation (6)” and “Equation(7)”:

(a, a2 → a1) ˄ (b, → b1) (d, d2 → d1) (6)

 (a, → a1) ˄ (c, c2) (d, d2 → d1) (7)

Fig. 4. Action Rules extraction algorithm in a distributed environment

To overcome the problem of incomplete Action Rules
generated, the above algorithm takes all possible combination
of missing values in Action Rules and fills out the missing
values that has greater Support and Confidence. Since Spark
handles all combinations in-memory with RDDs, detecting
suitable combinations are much faster than to perform the same
in Hadoop MapReduce. “Fig. 4” shows the distributed
algorithm in detail.

E. Action Set Correlations and Lowest Cost Action Rules

 Tzacheva and Ras [16] proposed an approach for
discovering Action Rules of lowest cost by taking into account
the correlations between individual atomic action terms or sets.
An atomic action term is an expression that defines a valid
transition of state for a single distinct attribute. For example,
(a, a1→a2) is an atomic action term, which defines a transition
of state for the attribute a from a1 to a2, where a1, a2 ∈ Va.
Here, the attribute a is a flexible attribute, since it changes its
state from a1 to a2. An action term ‘t’ consists of all atomic
action sets contained in it. Action Rules are composition of n −
pair terms, means it contains ‘n’ atomic action terms. For
example, a 2 − pair action set can be represented as “Equation
(8)”.

 t = (a, a1→a2) ˄ (b, b1) (8)

 It consists of two atomic action terms, namely (a, a1→a2)
and (b, b1).

 Our method extracts all atomic action sets from the list of
Action Rules discovered, and builds a Correlation Matrix as
shown in “Fig. 5”, which shows the most frequent pairs of
atomic action sets within the list of Action Rules, which occurs
atleast the user’s frequency ϑ times in the entire Action Rules
set.

Fig. 5. 1-Pair Correlation Matrix

An atomic action term pair is frequent if it satisfies the
minimum frequency threshold ϑ of the user. Initially, the
algorithm scans the correlation matrix to find all 1-pair action
term combinations that are frequent and marks them. In the
next step, the algorithm constructs 2-pair correlation matrix by
combining the marked sets from the 1-pair correlation matrix.
The process continues until no more action set pairs are
marked in a correlation matrix.

 The approach assumes that if an action set pair is marked
frequent, then there exists a correlation between the changes
which each individual atomic action set triggers. For example,
in an Action Rule r1 in “Equation (9)”.

 r1 = [a2 ˄ c3] ˄ [(b, b1→b3) ˄ (d, d1→d2)] ⇒ (e, e1→e2) (9)

 Here, if the 2-pair action set [(b, b1→b3) ˄ (d, d1→d2)] is
frequent, then the changes that occur when (b, b1 → b3) happen
are considered to correlate with the changes that occur when
(d, d1 → d2) happen. “Fig. 6” gives a sample 2-pair correlation
matrix.

Fig. 6. 2-Pair Correlation Matrix

 A cost ρ is given to all atomic action terms, which is a
number in the range (0, ω], by the experts working in the
problem domain.

 ρ(b, v1 → v2) (10)

For example, “Equation (10)” denotes the average cost of
changing the attribute b from v1 to v2. To lower the cost of an
Action Rule, the strategy proposes, if there is a frequent action
set pair in the Action Rule, and then the atomic action set of the
lowest cost within the pair can only be considered for
recommending Action Rule to the user to achieve the desired
change. This is because paying the cost to make the changes of
one atomic action set to occur, would most probably trigger the
changes in the correlated atomic action sets to occur as well.

F. Action Set Correlations in Spark

Fig. 7. Finding Correlations in a distributed environment using Spark

 In this section, we propose a distributed implementation of
the Action Set Correlations method by using the Apache Spark
framework. The proposed algorithm is shown on “Fig.7”.

In this work, we use Apache Spark to find correlation
matrices and low-cost Action Rule recommendations for
Action Rules extracted from the given datasets using the
proposed algorithm from [11]. Since Spark, by its design to
work efficiently for iterative algorithms, suits well for finding
correlation matrices iteratively from the given set of Action
Rules. Fig. 7 shows the algorithm for calculating the frequent
action set pairs that meets minimum frequency threshold. The
algorithm given in “Fig. 7” starts building 1-item action terms
from the input Action Rules and counts frequency of each
single action terms. The algorithm emits the action term only if
the frequency of the action term is greater than the user’s
threshold ϑ. Algorithm runs iteratively, finding 2-items, 3-items
and so on until the algorithm does not emits atleast one
frequent action term pair.

All frequent action set pairs are stored in a separate file. A
separate Spark program detect the low cost action term for all
frequent action terms from this file and outputs patterns like in
“Equation (11)”:

 [t1 t2 t3 ….. tn] tm (11)

“Equation (11)” represents that when a pattern of t1 t2 t3
….. tn occurs in the input Action Rules, we should replace this
pattern with tm, which obviously reduces the cost of the Action
Rule.

The proposed algorithm also handles a sampling method,
similar to stratified sampling, of the data instead of giving
control to Spark to do randomly partition the data. The input
data file is manually split into ‘d’ groups, where d is the
number of distinct decision attribute values. We then measure
how much proportion of data each decision value takes.
According to this proportion, we take random samples of data
from each group creating ‘n’ partitions, where n is the number
of partitions. In this way, each data partition contains same
proportion of decision values, which is equal to the original
dataset. Spark reads each partition and create RDDs. The
algorithm also executes on each RDDs using Spark’s
MapPartition function. The MapPartition function performs
computations on each partition of the data, and each partition
outputs a set of Action Rules with corresponding support and
confidence for each rule. The resulting Action Rules from the
MapPartition function are sorted by the attribute name and
outputted as <Key, Value> pairs. Action rules are considered as
the Key part and support and confidence pair of the Action
Rule to be the corresponding Value part. The groupByKey
method is then applied on the RDDs to group all supports and
confidences of a unique Action Rule and aggregate them to
compute final support ‘fs’ and confidence ‘fc’ of an Action
Rule. The Action Rules which meet minimum threshold levels
of support and confidence i.e., fs > = minimumSupport and fc >
= minimumConfidence are written as output into a text file.

IV. EXPERIMENT AND RESULTS

 To evaluate our approach in a distributed environment we
used Car Evaluation dataset and Mammographic Mass dataset
[10] from the University of California, Irvine’s Machine
Learning Repository maintained by the Department of
Information and Computer Science. We compare the results
with the efficiency to generate lowest cost Action Rules using
the existing algorithm. As our approach aims in adapting the
algorithm that computes the lowest cost of Action Rules to
work with bigger datasets, and as the original datasets are
relatively small, we replicate the original datasets multiple
times to test the performance of our proposed approach in a
distributed environment. “Table II” provides all details about
both the datasets such as number of instances, replication
factor, attributes, and decision attribute values.

 The Car Evaluation dataset is about evaluating cars on their
acceptability condition based on buying price, maintenance
cost, and other characteristics of the cars such as number of
doors, number of persons it can carry, luggage boot size and
safety measures provided. For the purpose of this study, the
attributes {# Persons, Doors} are considered as stable
attributes, and the attributes {Buying, LuggageBoot, Safety,
Maintenance} are considered as flexible attributes. We choose
the attribute Class as the decision attribute, which is also a
flexible attribute.

TABLE II. PROPERTIES OF CAR EVALUATION AND
MAMMOGRAPHIC DATASETS

Property Car Evaluation Data Mammographic Mass

Data

of instances 1728 961

Attributes 7 attributes

•Buying

•Maintenance

•Doors

•Persons

•Luggage Boot

•Safety

•Class

6 attributes

•BI-RADS

•Patient’s age

•Shape

•Margin

•Density

•Severity

Decision attribute

values

Class

(unacc, acc, good,

vgood)

Severity

(0 – benign,

1- malignant)

of instances /

decision value

unacc – 1210

acc – 384

good – 69

vgood - 65

0 – 516

1 – 445

Replication Factor 1024 2048

of instances after

replication

1,769,472 1,968,128

Original data size 52 KB 16 KB

Data size after

replication

52 MB 26 MB

The Mammographic mass dataset is intended to predict the
severity of breast cancer based on BI-RADS assessment,

patient’s age, shape, margin and density of the cancer. For the
purpose of the evaluation of our algorithm, we consider the
attributes {Shape, Age} as stable attributes and the attributes
{BI-RADS, Margin, Density} as flexible attributes. We choose
the attribute Severity as the decision attribute, which is also a
flexible attribute. “Table III” depicts the parameters that we set
for the selected datasets such as stable attributes, required
decision action and the threshold values of minimum support
and confidence.

TABLE III. PARAMETERS USED FOR ACTION RULE DISCOVERY

Parameters Car Evaluation

Dataset

Mammographic

Mass Dataset

Stable attributes Buying, Persons,

Doors

Shape, Age

Required decision

action

(Class)unacc → acc (Severity) 1 → 0

Minimum Support and

Confidence

2000, 60% 500, 60%

TABLE IV. SAMPLE OUTPUT RESULTS FROM CAR DATASET

Action Rules

1) AR1 : (buying, high → med) ^ (lugBoot, big → small) ^ (maint, vhigh →
med) ^ (persons = 4) ^ (safety, med → high) => (class, unacc → acc)
[Support:5104, Old Confidence: 100%, New Confidence: 100%]

2) AR2 : (buying, med → low) ^ (lugBoot, big → small) ^ (maint, med →
low) ^ (persons = 4) ^ (safety, low → med) => (class, unacc → acc)
[Support:5104, Old Confidence: 100%, New Confidence: 100%]

3) AR3 : (buying, high → med) ^ (lugBoot, small → big) ^ (maint, med →
vhigh) ^ (persons = more) ^ (safety, low → high) => (class, unacc → acc)
[Support:5104, Old Confidence: 100%, New Confidence: 100%]

4) AR4 : (buying, low → high) ^ (maint, med → low) ^ (persons = 4) ^ (safety,
low → high) => (class, unacc → acc) [Support:15312, Old Confidence: 100%,
New Confidence: 100%]

Action Rules Cost

1) ARC1 : (buying, high → med) ^ (lugBoot, big → small) ^ (maint, vhigh →
med) ^ (persons = 4) ^ (safety, med → high) [Cost: 1100]

2) ARC2 : (buying, med → low) ^ (lugBoot, big → small) ^ (maint, med →
low) ^ (persons = 4) ^ (safety, low → med) [Cost: 1500]

3) ARC3 : (buying, high → med) ^ (lugBoot, small → big) ^ (maint, med →
vhigh) ^ (persons = more) ^ (safety, low → high) [Cost: 1400]

4) AR4 : (buying, low → high) ^ (maint, med → low) ^ (persons = 4) ^ (safety,
low → high) [Cost: 1100]

Low Cost Action Rules

1) LCAR1: (lugBoot, big → small) ^ (maint, vhigh → med) ^ (persons = 4)

^ (safety, med → high) [Cost: 800]

2) LCAR2: (lugBoot, big → small) ^ (maint, med → low) ^ (persons = 4) ^
(safety, low → med) [Cost: 1000]

3) LCAR3.1: (lugBoot, small → big) ^ (persons = more) ^ (safety, low → high)
[Cost: 1000]

4) LCAR3.2: (buying, high → med) ^ (maint, med → vhigh) ^ (persons = more)
^ (safety, low → high) [Cost: 800]

5) LCAR4: (persons = 4) ^ (safety, low → high) [Cost: 800]

We use the Research Cluster at the University of North
Carolina at Charlotte to test our approach on both the datasets.
It is a Hadoop cluster containing 6 nodes. For evaluating the
performance of our approach in a distributed data processing
environment, we execute our algorithm on the selected datasets
to extract low cost Action Rules using Spark framework and
we compare the results with the computational time on a single
machine. “Table IV” shows a sample of the extracted Action
Rules, Action Rules Cost and Lowest Cost Action Rules
extracted for Car dataset.

From Action Rules section in the “Table IV”, it is notable
that our distributed Action Rules extraction algorithm produces
more specific Action Rules that are capable of delivering
complete knowledge to the user. Consider the rules AR1, ARC1
and LCAR1 from “Table IV”.

AR1 is the Action Rule that describes when
‘SeatingCapacity’ is ‘4’, if ‘BuyingCost’ decreases from ‘high’
to ‘medium’, if ‘LuggageBootSize’ decreases from ‘big’ to
‘small’, if ‘MaintenanceCost’ decreases from ‘veryhigh’ to
‘medium’ and if ‘SafetyMeasure’ increases from ‘med’ to
‘high’, certain cars marked as ‘Unacceptable’ can become
‘Acceptable’ with support of 5104 and confidence of 100%.

In order to make the suggested changes in AR1, a Meta-
Action [16] has to be defined by an expert in the domain. In
this case, the car manufacturer determines the Meta-Action in
order to make the specified change occur: ‘BuyingCost’
decreases from ‘high’ to ‘medium’. For example, what can be
done do decrease the overall production cost of this make and
model car. Meta-Action is an action about the action. In other
words, these are high level actions performed by domain
experts, which trigger the changes suggested by the Action
Rule [16].

Action Rules in ARC section gives Action Rules and their
corresponding cost given by the experts. ARC1 defines the
same meaning as AR1. This Action Rule provides the Cost that
is 1100 units.

Action Rules in LCAR section gives low cost Action Rules
recommendation for all Action Rules in AR and ARC section.
For example, the Action Rule LCAR1 means that when
‘SeatingCapacity’ is ‘4’, ‘LuggageBootSize’ decreases from
‘big’ to ‘small’, if ‘MaintenanceCost’ decreases from
‘veryhigh’ to ‘medium’ and if ‘SafetyMeasure’ increases from
‘med’ to ‘high’, we can obtain the same results but with
reduced cost. These changes would trigger the high cost atomic
action term (buying, high → med). The algorithm does not stop
with providing single low cost Action Rule recommendation.
For example, for Action Rule ARC3 with cost of 1200 units,
there are two low cost Action Rules recommendations LCAR3.1
with cost of 1000 units and LCAR3.2 with cost of 800 units.
From these recommendations, the user or a company can
choose most desired Action Rule that fit their needs.

“Table V” shows running time of the algorithm in single
machine as well as in distributed data processing environment.
It can be inferred from the results that, with the current
approach the computational time for both the datasets has
drastically improved with Spark environment, where the entire

processing has completed within seconds, which otherwise
would take several minutes with single machine.

TABLE V. EVALUATION OF LOWEST COST ACTION RULES IN
SINGLE MACHINE VS SPARK ENVIRONMENT

Dataset # Records # Action
Rules

Single
Machine

Algorithm
Running

time (min)

Spark
Algorithm
Running
time (sec)

Car Dataset 1728 40 1.1 4

2,204,927 415 >15 6.5

Mammographic
Mass Dataset

961 185 0.29 (17
sec)

4.5

1,968,124 443 1.8 6.25

V. CONCLUSION

Considering the large volumes of patterns discovered by
data mining methods, an interestingness measure is essential to
filter out the patterns to the most useful ones. Action Rules
mining discovers actionable patterns, which are considered
interesting. Little research has been done to measure
interestingness of association rules or Action Rules. Action
Rules of low cost are considered patterns of high interest, and
as such are important.

The actions suggested by these special rules can be used for
decision making purpose and to achieve the desired goals of
the user or an organization. They can be applied in several
domains including: medical, financial, industrial, educational,
and social networks. However, with the advent of Big Data, the
Action Rules algorithm require changes in order to adapt it to
distributed environment processing and cloud computing.
Current cloud computing frameworks offer a few adaptations
for machine learning algorithms, however currently there do
not exist any adaptations for Action Rules method or Action
Rules lowest cost method.

In this work, we present an adaptation of Action Rules at
lowest cost method to distributed processing using Apache
Spark. The proposed adaptation improves the method, and acts
as a scalable solution for producing low cost of Action Rules
for large volumes of data at a reasonable processing time. The
proposed approach outperforms the existing method in terms of
computational efficiency with the Car Evaluation dataset and
Mammographic dataset. In the future, we plan to improve the
action set correlations matrix in order to reduce the cost, and
perform additional experiments with financial data and social
network data.

REFERENCES

[1] Ras, Z. and Wieczorkowska, A. (2000). “Action Rules: how to increase

profit of a company, In: Principles of Data Mining and Knowledge

Discovery”, (Eds. D.A. Zighed, J. Komorowski, J. Zytkow),

Proceedings of PKDD’00, Lyon, France, LNAI, No. 1910, Springer, pp.

587-592.

[2] Matei Zaharia et al. “Spark: Cluster Computing with Working Sets”,

HotCloud 2010, pp. 2-5.

[3] He, Z., Xu, X., Deng, S., and Ma, R. (2005). “Mining action rules from

scratch”, Expert Systems with Applications, pp. 1-15.

[4] Tzacheva, A. A. (2008). “Diversity of Summaries for Interesting Action

Rule Discovery”, In: Proceedings of Intelligent Information Systems

(IIS 2008), pp. 7-9.

[5] Tzacheva, A. A. and Ras, Z.W. (2005), “Action rules mining”.

International Journal of Intelligent Systems, 20(6):719-736, pp. 1-19.

[6] Ras, Z., Wyrzykowska, E., and Wasyluk, H. (2007). “ARAS: Action

Rules discovery based on Agglomerative Strategy”, In: Post-

Proceedings of 2007 ECML / PKDD Third International Workshop on

Mining Complex Data (MCD 2007), pp. 6-9.

[7] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert

Chansler. 2010. The Hadoop Distributed File System. In Proceedings of

the 2010 IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST) (MSST ’10). IEEE Computer Society,

Washington, DC, USA, pp. 1-7.

[8] Matei Zaharia et al. Resilient Distributed Datasets: A Fault-Tolerant

Abstraction for In-Memory Cluster Computing. NSDI 2012, pp. 2-8.

[9] Dean, J. and Ghemawat, S., "MapReduce: Simplified Dataprocessing on

large clusters," in Proceedings of the 6th conference on Symposium on

Operating Systems Design and Implementation, Berkeley, CA, USA,

2004, pp. 10-10.

[10] Lichman, M., (2013), “UCI Machine Learning Repository”

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,

School of Information and Computer Science.

[11] Bagavathi, A., and Tzacheva, A. A., "Rule Based Systems in a

Distributed Environment: Survey", in Proceedings of International

Conference on Cloud Computing and Applications (CCA17), 3rd World

Congress on Electrical Engineering and Computer Systems and Science

(EECSS’17), June 4-6, 2017 Rome, Italy, DOI: 10.11159/cca17.107

[12] Tzacheva, A.A, Bagavathi, A, Ganesan, P.D (2016). “MR-Random

Forest Algorithm for Distributed Action Rules Discovery”, in

International Journal of Data Mining and Knowledge Management

Process (IJDKP), Vol. 6, No.5, pp. 15-30

[13] Tzacheva, A.A, Sankar, C.C., Ramachandran, S., Shankar, R.A. (2016),

“Support Confidence and Utility of Action Rules Triggered by Meta-

Actions”, in proceedings of 2016 IEEE International Conference on

Knowledge Engineering and Applications (ICKEA 2016), Singapore.

[14] Tsay, L. and Ras, Z.W., "Discovering E-Action Rules from Incomplete

Information Systems," in Proceedings of IEEE International Conference

on Granular Computing, Atlanta, Georgia, 2006.

[15] Im, S., Ras, Z.W, Tsay, L.S (2011), “Action Reducts”, in Foundations of

Intelligent Systems, Proceedings of ISMIS 2011 Symposium, LNAI,

Vol. 6804, Springer, pp. 62-69

[16] Tzacheva, A.A, Ras, Z.W. “Association Action Rules and Action Paths

Triggered by Meta-Actions”, in Proceedings of 2010 IEEE International

Conference on Granular Computing (GrC 2010), P4161, Silicon Valley,

California, USA, 14-16 August 2010, pp. 772-776

[17] Tew, C., C. Giraud-Carrier, K. Tanner, and S. Burton. “Behavior-based

clustering and analysis of interestingness measures for association rule

mining." Data Mining and Knowledge Discovery 28, no. 4 (2014), pp.

1004-1045

