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Abstract— Action Rules or Actionable patterns is a type of 

rule-based approach in data mining that recommends to a user 

specific actions, in order to achieve a desired result or goal. The 

amount of data in the world is growing at an exponential rate, 

doubling almost every two years. Distributed computing 

platforms like Hadoop and Spark, have eased the computation of 

this high velocity data. Leveraging these cutting-edge 

technologies in the field of Data Mining to process huge volumes 

of data can improve the performance and allow user to gain 

insights from large datasets with quick turnaround time. In this 

paper, we present an approach for discovering low cost 

actionable patterns, and provide actionable recommendations. 

We adapt this algorithm to distributed environment using 

Apache Spark framework. We evaluate the performance of the 

algorithm with two datasets in transportation and medical 

domain. 

Keywords— Data Mining, Action Rules, Apache Spark, Cost of 

Action Rules 

I. INTRODUCTION 

Data Mining is the process of analyzing large datasets to 
find interesting behavioral patterns or hidden opportunities 
from the underlying data in order to transform and improve. 
The advent of the Internet and digitization of data has led to 
overwhelming increase of data in many fields including 
commercial, medical, industrial, and financial. Data mining 
techniques aid organizations and users to analyze this ever-
expanding universe of digital data and get the most out of the 
data without getting lost in detail. Wide ranges of sophisticated 
data mining algorithms are available to classify the data, cluster 
the data, and identify associations or to find sequential patterns 
within the data. Though these algorithms produce useful 
information from the data, they do not focus on providing 
actionable knowledge that help users to precisely identify 
lucrative actions and make better decisions to maximize 
opportunities. Action rules addresses this problem by providing 
actionable solutions that describes possible transition of objects 
from one state to another, to improve the condition of an object 
with respect to a distinguished attribute called a decision 
attribute [1]. The attributes used to describe the transition of 
class or decision attribute can group into two groups namely – 
Stable Attributes and Flexible Attributes. Values of stable 
attributes cannot form actionable patterns and acts more like 
constants, whereas the values of flexible attributes are open to 
changes and contribute for actionable solutions to for the 
transition of decision attribute.  

Action Rule patterns are interesting, if the extracted rules 
are diverse. The patterns are diverse if its elements differ 
significantly from each other. The more diverse the extracted 
patterns are, the more interesting they are. Little research has 
been done to measure interestingness of association rules [17] 
or action rules. Action Rules of low cost are considered 
patterns of high interest. Action Rules costs the user or 
company in some form of money or resources like energy, 
power and human resources to make the recommended 
changes to achieve the desired action or goal. However, most 
of the Action Rules extraction algorithms does not guarantee 
the cost economic recommendations to the user or company. 
To address this problem, Tzacheva et.al. [5] provided heuristics 
for finding cost and feasibility of the discovered Action Rules. 
They suggest a heuristic strategy for creating new Action 
Rules, where objects supporting the new Action Rule also 
support the initial Action Rule but the cost of reclassifying 
them is lower or even much lower for the new rule. In this way, 
the rules constructed are of more interest to the users and in the 
context of a business action plan. However, the data deluge in 
recent times poses challenges with the current algorithm’s 
implementation to store, process, analyze the huge volume of 
data, and produce results within acceptable time limits. Hence, 
there is a need to rely on the capabilities of distributed 
computing and parallel processing techniques to process such 
datasets in near real time and monetize the Action Rules 
generated. 

Many open source frameworks like Apache Hadoop, 
Apache Spark, Hive, Storm etc. are available today to perform 
distributed processing on such huge volumes of data on 
clusters of machines in a distributed fashion. Hadoop 
MapReduce [9] is a framework that is more suitable for batch 
processing, but carries the overhead of multiple disk read 
writes to the distributed file system. This makes MapReduce 
inappropriate for many data mining and machine learning 
algorithms. Spark [2] on the other hand, is an in-memory 
distributed data analysis and cluster computing platform 
designed to process large datasets using a single programming 
model. It can achieve up to a 100 times faster processing speed 
than Hadoop map-reduce when running in-memory and up to 
10 times faster when running on disk. 

The design goal of Apache Spark is to reduce disk access 
and provide more support to the iterative algorithms. It also 
supports batch jobs, machine learning jobs, and interactive 
querying and includes real-time data stream processing. It uses 
DAG (Directed Acyclic Graph) engine to optimize its 
workflows and to provide fault tolerance through the concept 



of lineage. In this paper, we use the power of Apache Spark to 
extract low cost Action Rules. We also compare the new 
method with the algorithm working in non-distributed fashion 
in terms of performance and the quality of low cost Action 
Rules recommendations given by the algorithms. 

II. RELATED WORK 

Ras and Wyrzykowska [1] initially introduced the notion 

of Action Rules and brings in the idea of generating special 

type of rules, which provides suggestions to re-classify objects 

with respect to decision attribute, from a database. Further, in 

the paper by Tzacheva and Ras [5], the notion of a cost and 

feasibility of an Action Rule was proposed. They suggest a 

heuristic strategy for creating new Action Rules, where 

objects supporting the new Action Rule also support the initial 

Action Rule but the cost of reclassifying them is lower or even 

much lower for the new rule. In this way, the rules constructed 

are of more interest to the users. 

A number of algorithms are available in the literature for 

Action Rules extraction. Ras and Tsay [14] proposed a 

strategy to extract Action Rules with the help of two 

classification rules. Ras and Wyrzykowska [6] proposed a new 

simplified strategy for Action Rule extraction. This strategy 

suggests that, extracting Action Rules no longer requires pairs 

of classification rules, but rather “grab” the objects. Im, et.al 

[15] proposed a new approach for extracting simple Action 

Rules directly from the given data without producing any 

classification rules. Mining Action Rules from scratch [3], 

which presents an exhaustive method, would supply us with 

all important rules. Clearly, the space of such rules is quite 

huge, so a generalization technique, such as creating 

summaries, would provide great means for reducing the space 

and furnish the user with the essence of the actionable 

knowledge. 
Tzacheva [4] introduced a generalization technique, which 

creates summaries of Action Rules, by utilizing an exhaustive 
method. The author provided great means for reducing the 
output space and furnished the user with the essence of the 
actionable knowledge. The paper introduced the notion of 
diversity of Action Rule summaries, and suggested removing 
the high cost rules, when creating summaries, in order to 
additionally decrease the space of Action Rules. 

Action Rules of low cost are interesting patterns, because 

they are both actionable patterns, and they help the user to 

achieve their goals at lowest known cost. The cost of applying 

the suggested actions, can take the form of money or resources 

such as monetary cost, energy consumption, human resources, 

or even moral costs, in order to make the recommended 

changes to achieve the desired goal, or benefit. In this work, 

we adapt a lowest cost Action Rule mining method by 

Tzacheva et.al. [5] to a distributed framework for processing. 

We propose this distributed implementation to address the 

ever growing size of data, and the advent of BigData, since the 

currently existing algorithm does not support such large 

amounts of data. 

 

In this work, we present an approach, to compute Action 

Rules of lowest cost for large datasets using Spark distributed 

framework to adapt the algorithm, and provide scalability with 

very large datasets. Performance and computational efficiency 

of the algorithm are studied. We perform experiments with the 

adapted Action Rules at lowest cost algorithm with Car 

Evaluation Dataset, and Mammographic mass Datasets in a 

distributed setup using Apache Spark.  

III. METHODOLOGY 

We implement the proposed algorithm in [11] for 

distributed discovery of Action Rules at lowest cost using 

Apache Spark framework [2] and Hadoop Distributed File 

System (HDFS) [7] thereby, improving the computational 

performance, fault tolerance and high availability of the 

system. In the upcoming sections, we give some background 

knowledge about Action Rules, a detailed overview of 

distributed computing frameworks, algorithm to extract 

Action Rules using such distributed computing frameworks 

and algorithms for recommending lowest cost Action Rules. 

A. Action Rules 

In this section, we define Action Rules and give an 
example of extracting them. 

An information system S in “Table I” is defined in 
“Equation (1)”: 

                                        S = (X, A, VA)          (1) 

where, 

X is a set of objects: X = {x1, x2, x3, x4, x5, x6, x7, x8} 

A is a set of attributes: A = {a, b, c, d} and 
VA represents a set of values for each attribute in A. 

For example, VB = {b1, b2} 

 
TABLE I. INFORMATION SYSTEM S 

X a B c D 

x1 a1 b1 c1 d1 

x2 a3 b1 c1 d1 

x3 a2 b2 c1 d2 

x4 a2 b2 c2 d2 

x5 a2 b1 c1 d1 

x6 a2 b2 c1 d2 

x7 a2 b1 c2 d2 

x8 a1 b2 c2 d1 

 

We extract Action Rules from a special variety of an 
information system called Decision Table. Information system 
S becomes Decision table SD, when we divide the attribute 
space in S into three different types attributes: Stable Attributes 
(AS), Flexible Attributes (AF) and Decision Attribute(s) (AD). 
Stable attributes are the one, which cannot change their values 
and does not form actionable patterns in the Action Rules. 
However, values in Flexible attributes can change and 



eventually become actionable patterns. Decision attribute is 
also a flexible attribute, on which the user wants to change 
values from d1 to d2. Decision attribute in the decision table 

should satisfy the property of AD  {AS  AF}. Thus, attribute 
space in decision table can take a representation of “Equation 
(2)”:   

   A = {AS  AF  AD}           (2) 

Action Rules from S gives a recommendation of changing 
which attributes value can result in the desired decision action. 
An example Action Rule for the Information System S, 
considering attribute c as a Stable attribute and attribute d as a 
Decision attribute is given below in “Equation (3)”: 

        (a, a2 → a1) ˄ (b, b2 → b1) ˄ (c, c1)  (d, d1 → d2)       (3) 
  

The above Action Rule means that if the attribute a change 
its value from a2 to a1, the attribute b change its value from b2 
to b1 and the attribute c remains at the value c1, the resulting 
action (d1 → d2) is possible. Action Rules can find applications 
in many fields like in the Medical domain, Action Rules can 
help improving patient’s health and in the Business domain, 
Action Rules can help improving the revenue of a company. 

For each extracted Action Rules, we also find their 
corresponding Support and Confidence. Support specifies how 
many records in the dataset support the extracted Action Rule. 
Confidence specifies how the Action Rule is confident with the 
whole dataset. We use “Equation (4)” and “Equation(5)”, given 
in [13], for calculating Support and Confidence respectively of 
any Action Rule R. 

Support(R) = card(Y2 ∩ Z2)          (4) 
  Confidence(R) = [card(Y2 ∩ Z2) / card(Y2)]          (5) 

where, 
Y2 – right side of all atomic action terms in the precedent 

part of the Action Rule R 

Z2 – right side value of decision action term, which is 
present in the antecedent part of the Action Rule R 

A wide range of distributed frameworks are available that 
follows the approach of “Moving compute to data” instead of 
“Moving data to compute”, which is highly suitable while 
dealing with large datasets. Next sections provide a detail 
overview of the frameworks and the reason why Spark 
performs the best over other frameworks for current scenario. 

B. Hadoop MapReduce 

J. Dean and S. Ghemawat, from Google, in [9] proposed a 
distributed computing programming model called MapReduce, 
which has a potential to perform parallel processing of large 
datasets on a cluster of nodes or computers in a fault tolerant 
manner. It aims at providing the right level of abstraction by 
separating what to do from how to do and lets the user 
concentrate on how to put their methods or algorithms into 
MapReduce programming model, while leaving the complex 
functionalities like data distribution, task parallelization, load 
balancing and fault-tolerance to be handled by the framework. 

Hadoop at its core contains two main components: HDFS 
(Hadoop Distributed File System) and MapReduce. HDFS is a 
high-bandwidth, highly available, fault-tolerant distributed file 
system that stores data as chunks on local disks of nodes in the 
cluster. It preserves data locality by assuring that distance 
between data node and slave node is minimum. 

MapReduce paradigm has two phases: Map and Reduce. In 
both phases the function takes input and produces output as 
<Key, Value> pairs. A Master node is responsible for handling 
the whole MapReduce execution process. It assigns map and 
reduce tasks to the worker nodes. Initially, the master node 
runs its map phase on worker nodes marked as mappers. As the 
map function runs on a small chunk of a large dataset, the 
results generated from this phase are usually intermediate 
results. At the end of map phase, each map function writes its 
intermediate output of <Key, Value> pairs back into HDFS. 
The worker nodes now marked as reducers, collects the 
intermediate results, sorts them, and performs computations 
like aggregation on the collection. One or more reduce 
functions collects all <Key,Values_list>.  The results from 
reduce phase are outputted as <Key, Value> pairs and are 
written on to HDFS. These output results can form as input to 
any other MapReduce task or other applications to perform 
other computations. Hadoop achieves fault tolerance and data 
loss by storing each data chunk across different nodes of a 
cluster by a replication factor of three. “Fig. 1” provides an 
overview of MapReduce execution phase is shown. 

 

 

Fig. 1. Overview of Hadoop MapReduce execution. 

C. Spark 

Though MapReduce proves to be a good framework to deal 
with distributed parallel computing operations, it carries 
disadvantages such as multiple disk read writes for accessing 
and storing the data for each MapReduce phase. Due to such 
overhead, iterative machine-learning algorithms like 
classification and clustering perform poorly on Hadoop. Spark 
[2] introduces an in-memory distributed data analysis and 
cloud computing platform that avoids frequent disk access to 
the data nodes. It achieves this by using Resilient Distributed 
Datasets (RDD) [8], an abstraction over a giant set of data on 
which spark allows performing Transformations and Actions. 

Spark reads the data from the input files, split them into 
different partitions and store them in node memory as an RDD. 
Thus, RDDs represent a collection of items distributed across 
many compute nodes that can be manipulated in parallel. The 
driver node is responsible for allocating the tasks among 



multiple worker nodes where the data resides. Tasks allotted to 
worker nodes can be either Transformations or Actions. 

 

 
Fig. 2. Overview of Spark execution 

 

Spark is a lazy execution engine. It separates its operation 

of transformations and actions. The transformations are lazily 

evaluated or run only when needed. However, action 

operations execute immediately. Spark transformation 

operations on an RDD does not show a result until Spark 

notices an action operation on it. When the Spark execution 

encounters an action operation, it finds the most efficient way 

to calculate results thus optimizing the workflow and 

improving computation efficiency. 
When a job is submitted on Spark, it builds an execution 

plan where it keeps track of all the things that are chained 
together from different RDDs and how they connect to each 
other and based on that information it constructs a directed 
acyclic graph (DAG). In this process, Spark breaks down the 
job into stages that are created based on chunks of processing 
that can be done in parallel manner without shuffling things 
around. Each stage is split into parallelizable tasks which may 
be distributed across multiple worker nodes. The result of all 
worker nodes together forms another RDD. Action task 
collects the resulting RDDs and send the collection to the 
driver node or save the collection to a storage system like 
databases. An overview of Spark execution is shown in “Fig. 
2”. 

 

 

Fig. 3. Sample Lineage Graph in Spark 

 

Spark supports the processing of iterative data science and 
machine learning algorithms, due to the in-memory computing 
model, which it employs on RDDs. It handles fault tolerance 
by maintaining a lineage graph of RDDs. Lineage graph is a 
directed acyclic graph (DAG), which represents the path that 
the Spark execution (Transformations and Actions) takes on 
each node. When a failure occurs at any stage, Spark uses last 
available working point RDD from the DAG, and restarts all 
computations from that RDD instead of replicating the data 
partition across multiple nodes. “Fig. 3” depicts a sample 
lineage graph of combining RDDs from two inputs. The 
support for processing iterative algorithms and strategy of fault 
tolerance, data management makes us to choose Spark for 
running our algorithm. 

 Now we describe the various steps involved in extracting 
the lowest cost Action Rules, which includes Action Rules 
extraction from scratch, discuss the existing algorithm to get 
low cost Action Rules by considering the correlations between 
individual atomic action sets and presents the proposed 
algorithm to find low cost Action Rules using the Spark 
framework. 

D. Distributed Actionable Pattern Discovery 

In our work, we use the algorithm defined by Bagavathi et. 
al. [11] to extract Action Rules. The proposed algorithm acts as 
an alternative to the ARAS algorithm implemented in Hadoop 
MapReduce [12]. Even though the ARAS method extracts 
Action Rules in reasonable amount of time, it produces some 
incomplete Action Rules for Information System S given in 
“Table I” like the “Equation (6)” and “Equation(7)”: 

(a, a2 → a1) ˄ (b, → b1)  (d, d2 → d1)          (6) 

    (a, → a1) ˄ (c,  c2)  (d, d2 → d1)          (7) 
  

 
Fig. 4. Action Rules extraction algorithm in a distributed environment 

  



To overcome the problem of incomplete Action Rules 
generated, the above algorithm takes all possible combination 
of missing values in Action Rules and fills out the missing 
values that has greater Support and Confidence. Since Spark 
handles all combinations in-memory with RDDs, detecting 
suitable combinations are much faster than to perform the same 
in Hadoop MapReduce. “Fig. 4” shows the distributed 
algorithm in detail. 

E. Action Set Correlations and Lowest Cost Action Rules 

 Tzacheva and Ras [16] proposed an approach for 
discovering Action Rules of lowest cost by taking into account 
the correlations between individual atomic action terms or sets. 
An atomic action term is an expression that defines a valid 
transition of state for a single distinct attribute. For example, 
(a, a1→a2) is an atomic action term, which defines a transition 
of state for the attribute a from a1 to a2, where a1, a2 ∈ Va. 
Here, the attribute a is a flexible attribute, since it changes its 
state from a1 to a2. An action term ‘t’ consists of all atomic 
action sets contained in it. Action Rules are composition of n − 
pair terms, means it contains ‘n’ atomic action terms. For 
example, a 2 − pair action set can be represented as “Equation 
(8)”.  

   t = (a, a1→a2) ˄ (b, b1)           (8) 

 It consists of two atomic action terms, namely (a, a1→a2) 
and (b, b1). 

 Our method extracts all atomic action sets from the list of 
Action Rules discovered, and builds a Correlation Matrix as 
shown in “Fig. 5”, which shows the most frequent pairs of 
atomic action sets within the list of Action Rules, which occurs 
atleast the user’s frequency ϑ times in the entire Action Rules 
set. 

 

 
Fig. 5. 1-Pair Correlation Matrix 

 

An atomic action term pair is frequent if it satisfies the 
minimum frequency threshold ϑ of the user. Initially, the 
algorithm scans the correlation matrix to find all 1-pair action 
term combinations that are frequent and marks them. In the 
next step, the algorithm constructs 2-pair correlation matrix by 
combining the marked sets from the 1-pair correlation matrix. 
The process continues until no more action set pairs are 
marked in a correlation matrix.  

 The approach assumes that if an action set pair is marked 
frequent, then there exists a correlation between the changes 
which each individual atomic action set triggers. For example, 
in an Action Rule r1 in “Equation (9)”.  

  r1 = [a2 ˄ c3] ˄ [(b, b1→b3) ˄ (d, d1→d2)] ⇒ (e, e1→e2)    (9) 

 Here, if the 2-pair action set [(b, b1→b3) ˄ (d, d1→d2)] is 
frequent, then the changes that occur when (b, b1 → b3) happen 
are considered to correlate with the changes that occur when 
(d, d1 → d2) happen. “Fig. 6” gives a sample 2-pair correlation 
matrix. 

 

 
Fig. 6. 2-Pair Correlation Matrix 

 
 A cost ρ is given to all atomic action terms, which is a 
number in the range (0, ω], by the experts working in the 
problem domain.  

    ρ(b, v1 → v2)         (10) 

For example, “Equation (10)” denotes the average cost of 
changing the attribute b from v1 to v2. To lower the cost of an 
Action Rule, the strategy proposes, if there is a frequent action 
set pair in the Action Rule, and then the atomic action set of the 
lowest cost within the pair can only be considered for 
recommending Action Rule to the user to achieve the desired 
change. This is because paying the cost to make the changes of 
one atomic action set to occur, would most probably trigger the 
changes in the correlated atomic action sets to occur as well. 

F. Action Set Correlations in Spark 

 

 
Fig. 7. Finding Correlations in a distributed environment using Spark 



 In this section, we propose a distributed implementation of 
the Action Set Correlations method by using the Apache Spark 
framework. The proposed algorithm is shown on “Fig.7”. 

In this work, we use Apache Spark to find correlation 
matrices and low-cost Action Rule recommendations for 
Action Rules extracted from the given datasets using the 
proposed algorithm from [11]. Since Spark, by its design to 
work efficiently for iterative algorithms, suits well for finding 
correlation matrices iteratively from the given set of Action 
Rules. Fig. 7 shows the algorithm for calculating the frequent 
action set pairs that meets minimum frequency threshold. The 
algorithm given in “Fig. 7” starts building 1-item action terms 
from the input Action Rules and counts frequency of each 
single action terms. The algorithm emits the action term only if 
the frequency of the action term is greater than the user’s 
threshold ϑ. Algorithm runs iteratively, finding 2-items, 3-items 
and so on until the algorithm does not emits atleast one 
frequent action term pair.  

All frequent action set pairs are stored in a separate file. A 
separate Spark program detect the low cost action term for all 
frequent action terms from this file and outputs patterns like in 
“Equation (11)”:  

   [t1  t2  t3  ….. tn]  tm         (11) 

“Equation (11)” represents that when a pattern of t1  t2  t3  
….. tn occurs in the input Action Rules, we should replace this 
pattern with tm, which obviously reduces the cost of the Action 
Rule. 

The proposed algorithm also handles a sampling method, 
similar to stratified sampling, of the data instead of giving 
control to Spark to do randomly partition the data. The input 
data file is manually split into ‘d’ groups, where d is the 
number of distinct decision attribute values. We then measure 
how much proportion of data each decision value takes. 
According to this proportion, we take random samples of data 
from each group creating ‘n’ partitions, where n is the number 
of partitions. In this way, each data partition contains same 
proportion of decision values, which is equal to the original 
dataset. Spark reads each partition and create RDDs. The 
algorithm also executes on each RDDs using Spark’s 
MapPartition function. The MapPartition function performs 
computations on each partition of the data, and each partition 
outputs a set of Action Rules with corresponding support and 
confidence for each rule. The resulting Action Rules from the 
MapPartition function are sorted by the attribute name and 
outputted as <Key, Value> pairs. Action rules are considered as 
the Key part and support and confidence pair of the Action 
Rule to be the corresponding Value part. The groupByKey 
method is then applied on the RDDs to group all supports and 
confidences of a unique Action Rule and aggregate them to 
compute final support ‘fs’ and confidence ‘fc’ of an Action 
Rule. The Action Rules which meet minimum threshold levels 
of support and confidence i.e., fs > = minimumSupport and fc > 
= minimumConfidence are written as output into a text file. 

IV. EXPERIMENT AND RESULTS 

 To evaluate our approach in a distributed environment we 
used Car Evaluation dataset and Mammographic Mass dataset 
[10] from the University of California, Irvine’s Machine 
Learning Repository maintained by the Department of 
Information and Computer Science. We compare the results 
with the efficiency to generate lowest cost Action Rules using 
the existing algorithm. As our approach aims in adapting the 
algorithm that computes the lowest cost of Action Rules to 
work with bigger datasets, and as the original datasets are 
relatively small, we replicate the original datasets multiple 
times to test the performance of our proposed approach in a 
distributed environment. “Table II” provides all details about 
both the datasets such as number of instances, replication 
factor, attributes, and decision attribute values. 

 The Car Evaluation dataset is about evaluating cars on their 
acceptability condition based on buying price, maintenance 
cost, and other characteristics of the cars such as number of 
doors, number of persons it can carry, luggage boot size and 
safety measures provided. For the purpose of this study, the 
attributes {# Persons, Doors} are considered as stable 
attributes, and the attributes {Buying, LuggageBoot, Safety, 
Maintenance} are considered as flexible attributes. We choose 
the attribute Class as the decision attribute, which is also a 
flexible attribute. 

TABLE II. PROPERTIES OF CAR EVALUATION AND 
MAMMOGRAPHIC DATASETS 

Property Car Evaluation Data Mammographic  Mass 

Data 

# of instances 1728 961 

Attributes 7 attributes 

•Buying 

•Maintenance 

•Doors 

•Persons 

•Luggage Boot 

•Safety 

•Class 

6 attributes 

•BI-RADS 

•Patient’s age 

•Shape 

•Margin 

•Density 

•Severity 

 

Decision attribute 

values 

Class 

(unacc, acc, good, 

vgood) 

Severity 

(0 – benign,  

1- malignant) 

# of instances / 

decision value 

unacc – 1210 

acc – 384 

good – 69 

vgood - 65 

0 – 516 

1 – 445 

 

Replication Factor 1024 2048 

# of instances after 

replication 

1,769,472 1,968,128 

Original data size 52 KB 16 KB 

Data size after 

replication 

52 MB 26 MB 

 

The Mammographic mass dataset is intended to predict the 
severity of breast cancer based on BI-RADS assessment, 



patient’s age, shape, margin and density of the cancer. For the 
purpose of the evaluation of our algorithm, we consider the 
attributes {Shape, Age} as stable attributes and the attributes 
{BI-RADS, Margin, Density} as flexible attributes. We choose 
the attribute Severity as the decision attribute, which is also a 
flexible attribute. “Table III” depicts the parameters that we set 
for the selected datasets such as stable attributes, required 
decision action and the threshold values of minimum support 
and confidence. 

TABLE III. PARAMETERS USED FOR ACTION RULE DISCOVERY 

Parameters Car Evaluation 

Dataset 

Mammographic 

Mass Dataset 

Stable attributes Buying, Persons, 

Doors 

Shape, Age 

Required decision 

action 

(Class)unacc → acc (Severity) 1 → 0 

Minimum Support and 

Confidence 

2000, 60% 500, 60% 

TABLE IV. SAMPLE OUTPUT RESULTS FROM CAR DATASET 

Action Rules 

1) AR1 : (buying, high → med) ^ (lugBoot, big → small)    ^ (maint, vhigh → 
med) ^ (persons = 4) ^ (safety, med → high) => (class, unacc → acc) 
[Support:5104, Old Confidence: 100%, New Confidence: 100%] 

2) AR2 : (buying, med → low) ^ (lugBoot, big → small)    ^ (maint, med → 
low) ^ (persons = 4) ^ (safety, low → med) => (class, unacc → acc) 
[Support:5104, Old Confidence: 100%, New Confidence: 100%] 

3) AR3 : (buying, high → med) ^ (lugBoot, small → big)    ^ (maint, med → 
vhigh) ^ (persons = more) ^ (safety, low → high) => (class, unacc → acc) 
[Support:5104, Old Confidence: 100%, New Confidence: 100%] 

4) AR4 : (buying, low → high) ^ (maint, med → low) ^ (persons = 4) ^ (safety, 
low → high) => (class, unacc → acc) [Support:15312, Old Confidence: 100%, 
New Confidence: 100%] 

Action Rules Cost 

1) ARC1 : (buying, high → med) ^ (lugBoot, big → small)    ^ (maint, vhigh → 
med) ^ (persons = 4) ^ (safety, med → high) [Cost: 1100] 

2) ARC2 : (buying, med → low) ^ (lugBoot, big → small)    ^ (maint, med → 
low) ^ (persons = 4) ^ (safety, low → med) [Cost: 1500] 

3) ARC3 : (buying, high → med) ^ (lugBoot, small → big)    ^ (maint, med → 
vhigh) ^ (persons = more) ^ (safety, low → high) [Cost: 1400] 

4) AR4 : (buying, low → high) ^ (maint, med → low) ^ (persons = 4) ^ (safety, 
low → high) [Cost: 1100] 

Low Cost Action Rules 

1) LCAR1: (lugBoot, big → small)    ^ (maint, vhigh → med) ^ (persons = 4) 

^ (safety, med → high) [Cost: 800] 

2) LCAR2: (lugBoot, big → small)    ^ (maint, med → low) ^ (persons = 4) ^ 
(safety, low → med) [Cost: 1000] 

3) LCAR3.1: (lugBoot, small → big) ^ (persons = more) ^ (safety, low → high) 
[Cost: 1000] 

4) LCAR3.2: (buying, high → med) ^ (maint, med → vhigh) ^ (persons = more) 
^ (safety, low → high) [Cost: 800] 

5) LCAR4: (persons = 4) ^ (safety, low → high) [Cost: 800] 

 

We use the Research Cluster at the University of North 
Carolina at Charlotte to test our approach on both the datasets. 
It is a Hadoop cluster containing 6 nodes. For evaluating the 
performance of our approach in a distributed data processing 
environment, we execute our algorithm on the selected datasets 
to extract low cost Action Rules using Spark framework and 
we compare the results with the computational time on a single 
machine. “Table IV” shows a sample of the extracted Action 
Rules, Action Rules Cost and Lowest Cost Action Rules 
extracted for Car dataset. 

From Action Rules section in the “Table IV”, it is notable 
that our distributed Action Rules extraction algorithm produces 
more specific Action Rules that are capable of delivering 
complete knowledge to the user. Consider the rules AR1, ARC1 
and LCAR1 from “Table IV”. 

AR1 is the Action Rule that describes when 
‘SeatingCapacity’ is ‘4’, if ‘BuyingCost’ decreases from ‘high’ 
to ‘medium’, if ‘LuggageBootSize’ decreases from ‘big’ to 
‘small’, if ‘MaintenanceCost’ decreases from ‘veryhigh’ to 
‘medium’ and if ‘SafetyMeasure’ increases from ‘med’ to 
‘high’, certain cars marked as ‘Unacceptable’ can become 
‘Acceptable’ with support of 5104 and confidence of 100%.  

In order to make the suggested changes in AR1, a Meta-
Action [16] has to be defined by an expert in the domain. In 
this case, the car manufacturer determines the Meta-Action in 
order to make the specified change occur: ‘BuyingCost’ 
decreases from ‘high’ to ‘medium’. For example, what can be 
done do decrease the overall production cost of this make and 
model car. Meta-Action is an action about the action. In other 
words, these are high level actions performed by domain 
experts, which trigger the changes suggested by the Action 
Rule [16]. 

Action Rules in ARC section gives Action Rules and their 
corresponding cost given by the experts. ARC1 defines the 
same meaning as AR1. This Action Rule provides the Cost that 
is 1100 units. 

Action Rules in LCAR section gives low cost Action Rules 
recommendation for all Action Rules in AR and ARC section. 
For example, the Action Rule LCAR1 means that when 
‘SeatingCapacity’ is ‘4’, ‘LuggageBootSize’ decreases from 
‘big’ to ‘small’, if ‘MaintenanceCost’ decreases from 
‘veryhigh’ to ‘medium’ and if ‘SafetyMeasure’ increases from 
‘med’ to ‘high’, we can obtain the same results but with 
reduced cost. These changes would trigger the high cost atomic 
action term (buying, high → med). The algorithm does not stop 
with providing single low cost Action Rule recommendation. 
For example, for Action Rule ARC3 with cost of 1200 units, 
there are two low cost Action Rules recommendations LCAR3.1 
with cost of 1000 units and LCAR3.2 with cost of 800 units. 
From these recommendations, the user or a company can 
choose most desired Action Rule that fit their needs. 

“Table V” shows running time of the algorithm in single 
machine as well as in distributed data processing environment. 
It can be inferred from the results that, with the current 
approach the computational time for both the datasets has 
drastically improved with Spark environment, where the entire 



processing has completed within seconds, which otherwise 
would take several minutes with single machine. 

TABLE V. EVALUATION OF LOWEST COST ACTION RULES IN 
SINGLE MACHINE VS SPARK ENVIRONMENT 

Dataset # Records # Action 
Rules 

Single 
Machine 

Algorithm 
Running 

time (min) 

Spark 
Algorithm 
Running 
time (sec) 

Car Dataset 1728 40 1.1 4 

2,204,927 415 >15 6.5 

Mammographic 
Mass Dataset 

961 185 0.29 (17 
sec) 

4.5 

1,968,124 443 1.8 6.25 

 

V. CONCLUSION 

Considering the large volumes of patterns discovered by 
data mining methods, an interestingness measure is essential to 
filter out the patterns to the most useful ones. Action Rules 
mining discovers actionable patterns, which are considered 
interesting. Little research has been done to measure 
interestingness of association rules or Action Rules. Action 
Rules of low cost are considered patterns of high interest, and 
as such are important.  

The actions suggested by these special rules can be used for 
decision making purpose and to achieve the desired goals of 
the user or an organization. They can be applied in several 
domains including: medical, financial, industrial, educational, 
and social networks. However, with the advent of Big Data, the 
Action Rules algorithm require changes in order to adapt it to 
distributed environment processing and cloud computing. 
Current cloud computing frameworks offer a few adaptations 
for machine learning algorithms, however currently there do 
not exist any adaptations for Action Rules method or Action 
Rules lowest cost method.  

In this work, we present an adaptation of Action Rules at 
lowest cost method to distributed processing using Apache 
Spark. The proposed adaptation improves the method, and acts 
as a scalable solution for producing low cost of Action Rules 
for large volumes of data at a reasonable processing time. The 
proposed approach outperforms the existing method in terms of 
computational efficiency with the Car Evaluation dataset and 
Mammographic dataset. In the future, we plan to improve the 
action set correlations matrix in order to reduce the cost, and 
perform additional experiments with financial data and social 
network data. 
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