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Abstract - Over the past years, the internet has become faster, computer storage has become larger and the data from
internet users and sensors is piling up to larger amount and is also spread around the globe. This requires more time and
space for a single computer to cope with them. Ecosystems like Hadoop helps to store, process and retrieve back the
data efficiently in a distributed fashion. Data mining finds substantial improvements over such distributed frameworks
to process a large volume of data in a lesser time. Currently, there are many approaches to do data mining tasks such
as classification and clustering in a distributed setup using Hadoop MapReduce, Spark, and other Cloud platforms.
Actionable pattern mining is a rule based data mining approach for discovering knowledge from information systems
in a form of Action Rules. An emphasis of traditional classification rules from a supervised Machine Learning is to
predict class label of a data object. Whereas Action Rules produce actionable knowledge in the form of suggestions on
how an object can change from one class value to another more desirable class value. This paper gives a brief survey of
previous works on association and classification rule mining algorithms in a distributed environment, as well as action
rule mining algorithms, and discusses Action Rule Mining in a distributed environment.

Keywords: Hadoop, MapReduce, Spark, Action rules, Classification rules, Association rules, Distributed Action rule
mining

1. Introduction
The towering production of data in the recent years, due to increased usage of web, social media and

IoT, has led to the age of big data. Hence, there is a demand for ideal data mining, machine learning and
business intelligence tasks to retrieve valid knowledge from such a massive data. Also, because of rise in
the usage of cloud storage and cloud based services, data is distributed over multiple computers. Most of the
data mining algorithms are computationally intensive specifically for the big data and needs more resources
to engage huge data.

Apache has provided many open source frameworks like Hadoop, Spark, Hive, etc. to process and
manage such bulk data [1]. The merits of these frameworks are that anyone can form a cluster with their
own set of computers to perform parallel computations on a cluster. These frameworks distribute the data in
the cluster and also split the work given to them to multiple nodes or computers in a cluster, each of which
runs on their own part of the data. Finally, when all nodes finish executing their tasks, all results merge to
give final set of results. Many computational intensive fields like Machine learning, Data mining, Image
processing, Bioinformatics, Recommendation systems, Spam detection benefit from the parallel processing
frameworks because of their capability to do distributed and parallel computations in a fault tolerant manner.

Knowledge discovery is a process of preprocessing and transforming a given data such that previously
unidentified knowledge can result after mining the transformed data. Some of the data mining algorithms
are association to find frequently associated data in a dataset, classification a supervised machine learning
algorithm to classify the available data into one or more classes and clustering an unsupervised machine
learning algorithm to group similar data into a cluster. These algorithms produce tremendous amount of in-
formation from the big data regardless of whether they are of users interest and most of such knowledge goes
undetected. In this paper, the focus is mainly on rule based machine learning algorithms like classification
rules and their implementation in parallel processing frameworks.

Action Rules on the other hand, extracted based on users interest from a dataset describes a possible
transition of data from one state to another, or in other words, Action Rules reclassify data from one cate-
gory to another. Action Rules can help many applications like in online shopping sites, Action Rules help
suggesting how to improve customer satisfaction for a product or in medical field, Action Rules can help
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suggesting how to improve a patients health. In [2] [3] [4] [5] [6] authors propose a variety of algorithms to
extract Action Rules from a given dataset. Since data is growing at a rapid pace, the proposed action rule
mining approaches are stumbling to produce Action Rules in an expected time limit. This causes prolonged
execution of the tasks that are dependent on results of action rule mining algorithms and producing results.
This paper reviews some of the methods proposed previously to extract knowledge with classical rule based
algorithms such as classification rules [7] [8] [10] [13] and association rules [9] [11] [12] in cloud com-
puting frameworks, using MapReduce [14] and Spark [15], as well as commercial Cloud platforms such as
Microsoft Azure [16], Amazon Web Services (AWS) [17], and GoogleCloud [18]. This paper also reviews
some of the Action Rule extraction algorithms [2] [6] [5]. Finally, we discuss the possibility to extract Action
Rules using selected parallel processing frameworks.

2. Distributed Computing Frameworks
Two most common and famous parallel processing frameworks are Apache Hadoop [19] MapReduce

[14] and Apache Spark [15]. As mentioned in [19], Hadoop is a framework that allows distributed processing
of large datasets across clusters of computers using single programming model. MapReduce and Spark
are the programming models to process large datasets in a parallel fashion on top of Hadoop. One of the
important components in Hadoop is Hadoop Distributed File System (HDFS) [20], which splits the large
data and manage small data chunks in multiple nodes. MapReduce and Spark can work on top of HDFS to
access and work with those small portions of data. Since the tasks run on such small chunks of data and
all tasks run in parallel, total computation time reduces comparatively to the same task running on the large
dataset in a single machine. Features other than distributed and parallel computations of these frameworks
such as their architectures, data management are beyond the scope of this paper. In the following sections,
we discuss parallel processing design of these selected frameworks.

2.1. Hadoop MapReduce
J. Dean and S. Ghemawat, from Google, in [14] proposed a parallel computing programming model

called MapReduce, which has a potential to process large datasets in parallel with distributed algorithms in
a fault tolerance way in a cluster of nodes or computers. The authors claim that the goal of MapReduce
is to make users to think about how to do put their methods or algorithms into MapReduce programming
model instead of considering other complex functionalities such as data distribution, task parallelization,
load balancing and fault-tolerance. Hadoop run these complex tasks in background of a given MapReduce
program. Hadoop MapReduce always works on top of Hadoop Distributed File System (HDFS), a distributed
file system to store the data as multiple splits in different locations.

MapReduce works with two functions: Map and Reduce. Both functions take input and produces
output as <Key, Value> pairs. A Master node monitors the whole MapReduce execution process. Master
node finds appropriate number of available nodes currently and assign them as slave nodes. Hadoop [19]
preserves data locality by assuring that distance between data node and slave node is minimum. Initially,
the master node allocates slave nodes for running map tasks. Now the slave nodes getting their own tasks,
MapReduce starts its Map phase on them. Since the map function runs on a small split of a large data,
the results are usually intermediate outputs. Each map function writes their intermediate output <Key,
Value> pairs back into HDFS. The master node again finds an available slave node(s) to perform reduce
task. Reduce function collects all values for a single key from the map task, sorts them, perform computations
like aggregation on them and writes the output as <Key, Value> pair to the distributed file system. Other
MapReduce tasks can use this result or other applications can take this result to perform other computations.
Fig. 1 gives an overview of the execution of a MapReduce phase.

MapReduce runs in a master slave architecture such that master keeps track of all slaves both in HDFS
and in MapReduce tasks. Slaves in turn keeps sending heartbeat signal to the master to notify that it is still
working. During any system or node failure, slave node stops sending the signal and the master can allocate
the failed task to some other slave node. In the HDFS, each data chunks exists in three different locations.
Therefore, even if one node that is having the data is down, Hadoop can get the data from other locations.

2.2. Spark
Even though MapReduce form a good framework to deal with distributed parallel operations and it

has some fault tolerance scheme, it has some disadvantages of writing and reading operations of intermediate
outputs on the Hadoop Distributed File System. This causes frequent disk access for accessing and storing the
data. This makes many iterative machine-learning algorithms like classification, clustering and regression to
work inefficiently. Spark [15] introduce a distributed memory abstraction method called Resilient Distributed
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Fig. 1: Overview of MapReduce execution. The data partitions and results from Map and Reduce tasks reside in the
HDFS. The Map tasks and Reduce tasks in the distributed systems run in a parallel fashion.

Datasets (RDD) to avoid frequent disk access from the data nodes. The intention of RDD is to do in-memory
computations unlike Hadoop MapReduce [14] to store the results in disks for a huge dataset in a fault tolerant
approach. Spark reads the data from the given source, split them into chunks and store them in node memory
as an RDD. The driver node allocates tasks to the worker nodes where the data resides. A task can be
either transformation or action. During transformation stage, Spark perform computations on a data split
and the results are stored in-memory of other worker nodes. The result of all worker nodes together forms
another RDD. Action stage collects the resulting RDDs and send the collection to the driver node or save the
collection to a storage system like databases. Fig. 2 gives an overview of the execution of Spark.

Fig. 2: Overview of Spark execution using Resilient Distributed Datasets (RDD). Slave nodes accept tasks such as
transformations. After performing the tasks, slave nodes cache the result in RAM as an RDD. Other transformation
tasks can use this RDD or the Driver node retrieve the results by initiating an action task.

Since the data and results are present in a systems memory, Spark can access such data much faster
without any delay like in Hadoop MapReduce. Therefore, Spark is suitable for many iterative algorithms
like machine learning algorithms. Spark handles fault tolerance by having a lineage graph of RDDs. Fig. 3
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Fig. 3: Lineage graph of joining inputs from Input 1 with Input2. After reading from Input 1, Spark filters the read
values to get only required values. Values from both inputs are combined and stored as an output.

shows a simple lineage graph of combining values from two inputs. When a node fails or certain portion of
data is lost at a certain stage, Spark replays the failed or lost partition from the lineage graph and produce
results to the lower levels. Because of the existence of lineage graph, Spark avoids data replication over
multiple nodes like Hadoop MapReduce, which frees some space in the cluster that the RDDs can use.

Spark also provide many packages like Spark SQL, Spark Streaming, GraphX and MLlib [21]. Spark
SQL can query any tables from databases like Hive, Cassandra, etc. In the other hand, it can also create tables
in the databases from the raw data. Spark Streaming can manage a data stream from Kafka [22] or Twitter
Stream. Spark collects the streaming data for small amount of time and create RDDs from the collected data
that can be processed further using Spark SQL or MLlib. GraphX is the primary ground for graph processing
and graph analytics. Fig. 4 compares Hadoop MapReduce and Spark when running Logistic Regression and
K-Means clustering algorithms in different number of machines for a 100GB of data [15].

Fig. 4: Execution times of Logistic Regression and K-Means Clustering for 100GB of data.
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2.3. Pig, Hive, HBase
Apache provides several database oriented frameworks like Pig [23], Hive [24] and HBase [25].

Apache Pig consist of its own data flow language: PigLatin. It provides an environment for data processing.
Pig is similar to a scripting engine. Pig be used to connect SQL queries with other programming models such
as MapReduce. Pig can process both structured and unstructured data. Hive is a data warehousing model
useful for data summarization and analysis. It is used to load structured data into the Hadoop Distribute File
System (HDFS), and provides SQL like queries called Hive Query Language (HiveQL) to query the data.
Hive converts the queries into MapReduce jobs in the background, to fetch and process data from multiple
nodes and return results. Apache HBase is a column oriented, non-relational distributed database to store the
user data. HBase has no SQL language, and does not perform any data processing on its tables. It is useful
for storing matrices of WebPage links, or document term frequency tables.

2.4. Flink, Storm, Kafka
Apart from Hadoop [14] and Spark [15], Apache provides specialized frameworks for big data stream

processing, such as: Flink [26], Storm [27], Kafka [22] , SAMOA [28] and several others [1]. Previously
mentioned frameworks like MapReduce and Spark are suitable particularly for batch processing systems,
that is they work on already collected data but are not directly suitable for live streaming data. Apache
Storm [27], is a tool specifically designed for streaming data processing. Storm guarantees that all tuples
from the data stream will be processed. Apache Flink [26] is an open source platform for both stream and
batch processing, giving developers two-in-one benefit. Kafka [22] is a distributed data-streaming platform
that acts as a broker to route the data reliably from the data producers to data consumers. Kafka processes
the streaming data from the source, partitions them into topics, stores them in a log structure, from which
multiple consumers can subscribe to a topic and read them at a same time. Kafka API can be easily used
along with Spark, Storm or Flink.

3. Distributed Machine Learning
Most of machine learning algorithms are computationally expensive for tuning up its parameters and

produce a final model that fits best for a particular dataset [29]. These algorithms, when taking large scale of
data as an input, obtain large number of high dimensionality data instances, which increase complexities of
the algorithms. Such algorithms require data and task parallelization to run efficiently on a huge volume of
data. This section gives a review on some of the available frameworks for supporting distributed and parallel
computation on machine learning. The distributed frameworks discussed in the previous section contain their
own built in machine-learning library.

3.1. Spark MLlib
Apache Spark [15] has Spark MLlib [21] to create machine learning models in the distributed en-

vironment. MLlib is the distributed machine-learning library that provides simple and rich ecosystem for
running many machine-learning algorithms including decision trees and forests, linear SVM, Nave Bayes,
linear regression, logistic regression, k-means clustering, Principle Component Analysis, and stochastic gra-
dient descent. Spark, due to its in-memory computations feature, makes iterative algorithms to execute
faster. Since many machine learning algorithms make series of iterations over a data, Spark is most suit-
able for many machine learning algorithms. Fig. 4 Compares speed test of Hadoop and Spark for Logistic
Regression and K-means clustering.

3.2. FlinkML
Similarly, Apache Flink [26] has FlinkML, a machine-learning library, which is still an Apaches incu-

bating project provide data scientists a platform to create a model on a subset of local data and use the same
model in a cluster for the streaming data measured in size megabytes or gigabytes or beyond. Inspired by
Spark MLlib, FlinkML also provide facilities for many machine-learning algorithms.

3.3. Mahout
Apache provides a scalable framework Apache Mahout [30] dedicated for distributed machine learn-

ing on a batch of data. A notable feature in Mahout is the recommender engine, whose sole purpose is for
recommendation and it also have other classification and clustering algorithms. Initially Mahout supported
only Hadoop MapReduce [14] jobs. However, today it can bind with Apache Spark or Flink.
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3.4. SAMOA
SAMOA [28] is another Apache incubator project, which is similar to Mahout, however it is a dis-

tributed stream processing machine-learning platform. It provides a pluggable machine learning program-
ming abstractions for many data mining and machine learning tasks. It includes: classification, regression
and clustering. It provides an option of implementing an algorithm and plugging it into multiple distributed
stream processing engines such as: Spark, Flink, or Storm without changing a single line of code.

3.5. GraphLab
Apart from these frameworks, there are other frameworks dedicated for running distributed and par-

allel machine learning algorithms. One of such work is Distributed GraphLab [31], which performs parallel
computations in both shared and distribute memory settings in a directed graph structure. It can be used for
representing Neural Networks, for Page Ranking, Social Network mining, or any data in a graph format.
Since machine learning models comprise dependencies in data, some parameters need to be updated itera-
tively for further computations. GraphLab allows users to assign data and computation for each vertex or
machine and edge in the graph. Each vertex can interact with neighboring vertices. Since the communica-
tion is based on a graph structure, GraphLab can perform multiple MapReduce computations concurrently.
The distributed GraphLab also provide option for storing global variables that is common for all the ver-
tices. Their experimental results show that the system outperforms Hadoop by 20-60 times. In comparison
with Spark [32], GraphLab outperforms Spark, which is more optimal than Hadoop due to in-memory com-
putations, only in graph algorithms like PageRank and BFS. However, GraphLab provides almost equal
performance to non-graph algorithms like SVM and K-means. In the field of graph processing, Google
provides an open source framework: TensorFlow [33], to efficiently handle graphs for highly scalable deep
learning problems.

3.6. Parameter Server
Parameter server [34] is another fault-tolerant framework for efficient feature extraction from the

large scale of data distributed over multiple machines. Like MapReduce [14], Parameter server follows
master-slave architecture. But, Parameter server maintains a server group and slave group, where each
group can contain multiple machines. Each machine in the server group can communicate each other while
each slave can communicate only with the respective master node. Master nodes distribute the data and
tasks to the slave nodes. The results from the slave tasks are only local optimal. To get global optimality,
each master node stores global parameters of an algorithm and replicate them to other master nodes for
reliability and scaling, which the slave nodes can frequently access and update. This framework performs
well with algorithms like regression, topic modelling and deep learning particularly when the data contains
large number of parameters.

4. Commercial Cloud Services
In order to use all frameworks for machine learning and data mining algorithms in a distributed fash-

ion, it is necessary to have an environment setup as a cluster of computers. The performance of algorithms
improve if configuration of these computers is high. Setting up such a good configuration cluster costs more
money and the memory of each computer is easily occupied if there are lot of jobs and the data is huge.
Current technological trend has set a computation model called Cloud Computing to make general resources
like CPU and storage available for leasing for a cost [35]. Cloud Service Providers offer software services
(SaaS) or a platform to develop and host applications (PaaS) or an entire computer infrastructure like virtual
machines (IaaS), which an end-user can utilize for a cost. Fig. 5. shows several types of services that a
service provider can provide, which forms the Cloud Computing architecture. SaaS are software services
like gmail, facebook and YouTube, which are outside of the scope of this paper. Several large companies
like Amazon, Google, IBM and Microsoft provide public Cloud Services, which anyone can use.

4.1. Amazon Web Services
AWS provide many tools and services for developing and deploying user programs. For distributed

computing, AWS has an option of Amazon Elastic MapReduce (EMR) [17]. EMR provides a Hadoop
framework to process huge volume of data distributed across Amazon EC2 instances (virtual machines).
They can accommodate other frameworks like Apache Spark and Flink. AWS also provide facilities for
distributed data storage using Amazon Elastic File System to help data file management in an EMR cluster.
AWS provide Amazon Machine Learning to build predictive models and deploy them.
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Fig. 5: Cloud Architecture.

4.2. Microsoft Azure
Microsoft Azure provides multiple products for machine learning, batch and stream processing jobs,

cluster management, data storage, databases, IoT computing, etc. For cluster services, Microsoft Azure of-
fers HDInsight [16], a cloud Hadoop that provide analytic clusters for Apache Spark, Flink, Storm, Kafka
and Storm under Service-Level Agreement (SLA). It also provides high productivity platforms like Visual
Studio, Eclipse for developers to code. To help data scientists to combine code, derive equations, and visu-
alizations from their code, Azure provides popular notebooks like Jupyter and Zepplin. Azure also provides
many APIs like Face Recognition, Anamoly detection, etc.

4.3. Google Cloud Platform
Google Cloud [18] provides cluster based, big data analytics and machine learning services. It also

provides infrastructure called Google Compute Engine that allows users to launch Virtual Machines on de-
mand. Google App Engine is a platform-as-a-service that allows the user to focus on their code instead of
other operational details like infrastructure management. Like Microsoft Azure, Google Cloud ML (Ma-
chine Learning) platform provides APIs like Cloud NLP, Cloud Speech API, Cloud Vision API, etc. for
machine learning purposes. Google Cloud ML also provides pre-trained machine learning models and eases
to create our own models. Google Cloud ML provides neural-nets, which gives high training accuracy and
performance comparatively with other platforms.

4.4. IBM Bluemix
IBM Bluemix [36] is another Cloud Computing platform, which provides a number of big data analyt-

ics tools and services. For cluster management, Bluemix provides BigInsights for setting up Apache Hadoop
clusters within few minutes. IBM Watson is the most popular cloud service, which provides many useful
APIs like Language Translator, Tone Analyzer, Speech to Text, NLP classifier, etc., for developing cogni-
tive applications. Bluemix also has APIs for developing data analytics applications using Apache Hadoop
and Spark. IBM Watson Machine Learning is an incubating project to create and deploy machine learning
models. IBM Bluemix currently provides tools to develop programs using Python, Scala and R.

5. Distributed Rule Mining
Rule based Machine Learning intends to produce methods that identifies, learns or evolves rules to

store, manipulate knowledge. This differs from other machine learning algorithms, which identify a common
model that can be utilized in the future to make predictions. In data mining, the more useful classification
methods are the rule - based algorithms because of its simplest nature to understand and are easy to extract
from the data records. Many algorithms are available to generate rules and help classifying the data records.
Rules take the representation of:

IF conditions THEN result
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The condition part of the rule act as an antecedent and the result part act as consequent. Due to
racing volume of big data, many researches in the history have adopted distributed processing frameworks
such as Hadoop MapReduce [14] and Spark [15] and help classification algorithms generate classification
[7] [8] [10] [13] or association rules [9] [11] [12] in a short time for a large volume of data.

5.1. Distributed Classification Rules Mining
Classification is a supervised machine learning process, in which the input data D is in the form of

(Xi,Yi), i=1,2,,N, where X is a set of n attributes A1, A2, A3, . , An and each attribute Ak have their own
values and Y is a class attribute which contains class values for each record in D. Classification algorithms
read such input data and classify each object in the dataset to a certain class value. Classification rules is one
of the classification methods that provide knowledge in a form of rules. Classification rules can be extracted
using direct and indirect methods [10]. Direct methods induces classification rules directly from the given
dataset. Whereas, in indirect methods, the algorithms produce intermediate results like decision trees from
the data from which in turn we can extract classification rules by tracking a path from the root of the decision
tree to a leaf of the decision tree.

G. Wu et. al (2009) proposed a distributed computation of combination of decision tree algorithm
C4.5 [37] and ensemble learning method called Bagging [38] using MapReduce framework. C4.5 calculates
Entropy and Information Gain for each attribute and choose splitting attribute As with high Information Gain
as a root node r. After choosing the splitting attribute, the algorithm creates n braches giving n different
nodes, where n is a number of distinct values in As. C4.5 algorithm [37] finds Entropy and Information
Gain for the resulting branch or intermediate nodes and attribute splitting part continues for the branch nodes
unless the node contains only one data record in it or if a node contains single class label instances. From
the decision tree, we can form classification rules by tracking the paths from root node to all leaf nodes,
that is we get one classification rule for each path in the tree. Thus, C4.5 is an indirect method of providing
classification rules from decision trees. Let the classifier built from C4.5 algorithm for data D be ϕ(D).
Bagging [38] is used to improve the accuracy of machine learning algorithms particularly for classification
and regression. Bagging splits the data D into m sequence datasets D1, D2, .. , Dm and the algorithm fills
each dataset Di using bootstrap sampling with replacement from D. Now the algorithm builds classifier ϕ

on each Di. When a test sample x enters the system, classifiers ϕ(Di) takes x and the final class label of x is
given using voting procedure from the results of all ϕ(Di). Bagging also helps avoiding overfitting problems.
In [13], the algorithm split the data D into m partitions where m is number of mappers in Hadoop system.
Algorithm C4.5 is used to build a base classifier Ci on each Di partitions where 1 ≤ i ≤ m. In the Reduce
phase, bagging procedure collects all Ci classifiers and gives the test dataset to all the classifier to predict
class label of records in the test dataset.

W. Dai et. al. (2014) proposed a MapReduce implementation of traditional decision tree algorithm
C4.5 [7]. Considering the communication cost in the MapReduce model, authors in [7] have created three
data structures to store basic information such as:

• attribute table store attributes and their values and corresponding row id and class value of the attribute
values

• count table stores number of instances of each class label for each attribute value

• hash table to store link between the tree nodes

The attribute and count tables are filled while reading data from the dataset using single MapReduce
phase. Remaining phases goes iteratively to compute information gain ratio of each attribute in all nodes.
The attribute with maximum gain ratio is a splitting attribute and the algorithm updates hash table and count
table during the end of each iteration. In this way, the algorithm builds a decision tree using a pipeline of
MapReduce phases.

V. Kolias et. al (2014) proposed a direct method of extracting classification rules in MapReduce
framework [8]. This system employs two-step: first step reads the training examples and create a set of
conditions that covers most of the training examples and second step combine the conditions from step 1
to form a rule and evaluate the rule. The best rule that covers maximum number of training examples is
considered to the candidate rule. All training examples that is covered by the best rule is removed from the
training examples before searching for next best rule. This helps to find the classification rules that covers
maximum number of examples in limited iterations. Algorithm terminates once sufficient number of training
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examples are covered. In MapReduce model, the system uses a driver module that orchestrates 2 jobs, one
for each step, to extract classification rules. This driver module is necessary for providing basic information
of the dataset like attribute names, values and their types and it stores previous rules to check for the duplicate
rules. Table 1 give evaluations on multiple datasets showing that the system RuleMR acquires better or equal
accuracy comparatively to other classifiers like J48, OneR and Random Forest algorithms.

Table 1: Evaluation of RuleMR with other algorithms.

Dataset RuleMR OneR J48 ID3 Rand. Forest
Breast Cancer 94.7 72.7 75.8 N/A 97.2
Car Evaluation 100 70.7 96.2 100 99.8

Weather 100 71.4 100 100 100
Mushroom 100 98.5 100 N/A 100

Vote 99.5 95.6 96.3 N/A N/A

Even though only few methods have been proposed to extract classification rules using distributed
frameworks, no evaluation on these methods were given. Since data is distributed into many partitions and
each partition build their own classifier, evaluation of results comparing with the non-distributed system is
required apart from acquiring better coverage and more accurate rules [8] and faster results.

5.2. Distributed Association Rules Mining
Association rules are similar to the classification rules discussed in the previous section but association

rules notify relations among attributes in the datasets, which can be used in market basket problems. For
example, to find patterns in customer transactions from a supermarket. In most recent years, association
rules are also being used for classifying objects in a dataset. Since the data size is increasing rapidly in this
era of big data, finding all possible relations among the attributes consume a lot of time. This requires a need
of distributed and parallel approaches to find such patterns for iterative procedures such as Apriori algorithm
[39]. Apriori algorithm is a bottom-up procedure to build frequent itemsets from the given dataset. Apriori
algorithm reads the data and produces all 1-itemsets list. Then it goes through two steps: 1. Candidate
itemset generation and 2. Pruning step. Step 1 generates itemsets of length k using the itemsets of length
(k-1) from kth iteration using join operation on each itemset. Step 1 thus produces candidate itemsets Ck.
Step 2 removes all itemsets c ∈ Ck such that c does not form a subset of at least one itemset from (k-1)th

iteration. Apriori algorithm continues until it completes n iterations, where n is the number of attributes
in the dataset or it stops when it does not produce any candidate itemsets. There have been few works on
extracting association rules using Apriori algorithm in distributed environments like MapReduce and Spark,
which are discussed below:

Lin (2014) proposed a MapReduce [14] based approach to extract association rules [9]. This system
works by splitting the data records horizontally into m partitions. The m mappers access their data partition
and results in the format of <itemset, 1>. m combiners collect data from their own mapper results and
add the count value of a single attribute value to result in <itemset, count>. MapReduce then shuffles the
obtained results into r partitions, one to each reducer. Reducers sum up the count of an attribute value from
all mappers to produce final result of <itemset, count>. Note that the length of the resulting itemset is equal
to the iteration count. If the iteration count is 1, length of the itemset is also 1; if the iteration count is 2,
then the length of the itemset will be 2. The resulting count is validated across the given minimum support.
Only itemsets which matches the minimum support moves into next iteration (k+1). Iteration (k+1) use all
frequent itemsets from iteration k to perform candidate itemset generation. Pruning step uses the input data
given to the operating mapper node and deletes some itemsets. The pruned itemsets advance to the reducer
phase and the iteration goes on. This model operates in a single job for both candidate itemset generation
and pruning, which increases communication cost.

Qin et. al (2014) in [11] modified the above discussed Apriori model and proposed Yet Another
Frequent Itemset mining(YAFIM) in Spark framework [15]. This system operates in 2 phases. The first
phase reads a transaction dataset, extract all frequent itemsets of length 1 from it and create an RDD. It
also broadcasts the transaction database to all nodes. The next phase operates iteratively for (n-1) iterations
using the input itemsets and broadcasted dataset to produce next set of frequent itemsets. This system uses
the Sparks advantage of retaining the data in the memory to store the original dataset until the algorithm
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completing its process reducing communication and computation cost rapidly. Due to improved features in
Spark and minor changes in the algorithm, this system outruns the MapReduce implementation of Apriori in
[9].

Rathee et. al (2015) proposed Reduced-Apriori or R-Apriori [12] to speed up the algorithms proposed
in [9] and [11] using Spark [15]. In this paper, the authors focus on the second phase of classical Apriori
algorithm, which generates more candidate itemsets from singleton frequent itemsets, which is stored in hash
tree to prune faster in the future. This step increases the time complexity for massive datasets. Reduced-
Apriori removes the time-consuming candidate itemset generation and uses bloom filter instead of hash tree.
Bloom filter is used to test whether a set contains particular element. Bloom filter stores all itemsets from
previous iteration. Each transaction in the dataset is made intersection with all itemsets in the filter such
that the result of intersection contains only items, which exist in the filter. The algorithm then yields all
possible pairs of itemsets in the pruned transaction. Addition of results from various nodes gives the final
count of the new frequent itemset pair. Fig. 6 shows the speed comparison of methods proposed in [9] [11]
and [12] during all iterations. From these systems, it is notable that Spark, due to its capability of performing
in-memory computations suits better for iterative data mining algorithms like Apriori.

Fig. 6: Speed Performance Analysis in iterations of system MR-Apriori, YAFIM and R-Apriori.

5.3. Inductive Logic Programming
There are few other rule induction techniques like Inductive Logic Programming (ILP) in MapReduce

[40]. ILP generate hypothesis by combining the background knowledge with positive and negative examples
from the data and it tries to make relations among the provided data examples with the background domain
knowledge. In other words, ILP is an automated method for extracting logic rules from data examples and
background knowledge. Currently ILP does not play a crucial role in Action Rules mining algorithms [3]
[4] [5], which are the attribute based algorithms. ILP may be used in the future to augment Action Rules
extraction methods.

6. Action Rule Mining
Action Rules are desirable actionable patterns discovered from large amounts of data. They are prefer-

able when a user would like to take action based on the discovered knowledge. Action Rules, like classi-
fication rules, has antecedent, which are series of actions, and consequent, which is a decision action. The
antecedent and consequent parts can give a hint to the user that he needs to perform certain actions on
attributes of their data to get a desired result. More than a decade there has been a lot of research on di-
verse methods on generating action rules. So far, action rule mining is based on two approaches: rule-based
approach [5] [6] and object-based approach [2] [3] [4].

6.1. Background
Information systems can form decision tables [5]. Information system is a set of objects and attributes

where each attribute contains their own set of values. In case of decision tables, the attributes can be ei-
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ther condition attributes or a decision attribute and the condition attributes can be either stable or flexible
attributes. Thus, decision table in terms of an information system can take a representation of,

S = U, Ast, Afl, d where,
U is a set of objects in the information system

Ast is a set of stable conditions/attributes
Afl is a set of flexible attributes

d is a decision attribute where d /∈ Ast ∪ Afl.

Table 2: Information System.

X a b c d
x1 a1 b0 c2 d1
x2 a0 b0 c1 d2
x3 a2 b0 c2 d1
x4 a0 b0 c2 d2
x5 a1 b2 c2 d1

Flexible attributes can change their values into another value of the same attribute whereas stable
attributes remain constant once assigned. All action rule mining algorithms can extract actions rules only
if the information system contains at least one flexible attribute. Action means a state in which a flexible
attribute f change its value from f1 to f2. Thus, an action of attribute f takes a form of (f1 → f2), where f1
belongs to precondition set and f2 belongs to postcondition set. Series of such actions of flexible attributes
together with constant stable attributes constituting a resulting decision action form an action rule. Consider
Table 2 as a sample information system S throughout this section to give examples for each methodology.
Consider attribute b as a stable attribute and attribute d as a decision attribute. For example, an action rule
(r1) from S can take a form of:

r1: (a, a0→ a1) (b, b0)⇒ (d, d2 → d1)

Support Sup(r) and Confidence Conf(r) of an action rule can be calculated using the following formula
[4]:

Sup(r) = mincard(Y1 Z1),card(Y2 Z2)
Conf(r) = [card(Y1 ∩ Z1)/card(Y1)] * [card(Y2 ∩ Z2)/card(Y2)]

where Y ⊆ Ast ∪ Afl and Z = d. Y1 is a set all left-hand side values of the conditional part and Y2 is a
set all right-hand side values of the conditional part. Z1 is a left-hand side value of the decision action and Z2
is a right-hand side value of the decision action. Support and Confidence of an action rule determines how
valid is the action rule with the dataset for a particular decision action. For rule r1, Y1 = a0,b0, Y2 = a1,b0,
Z1 = d2 and Z2 = d1.

6.2. Rule-Based approach
Rule-based approach of extracting Action Rules necessitates two steps: (1) finding patterns from the

dataset in the form of classification rules and (2) generating Action Rules from the classification rules. There
are many rule-based approaches to extract Action Rules from both complete and incomplete information
systems. We discuss few of those works below: All rule-based approaches in action rule mining use Learning
from Examples using Rough Sets (LERS) [41] type of algorithm to extract classification rules. Unlike
classification models like C4.5, which extracts classification rules from the intermediate decision trees, LERS
is a direct method of extracting classification rules from complete decision tables without any intermediate
results. LERS follows a bottom-up strategy to build up rules. All individual attribute values including
decision attribute values and their corresponding objects are collected. Let A be a set of all attributes in a
decision table, Va be a set of values for a ∈ A and Xv be the objects supporting an attribute value v. Thus, for
the decision table in Table 2, A = a, b, c, d, Va = a0, a1, a2, Vb = b0, b2,., Vd = d1, d2 and Xa0 = x2, x4, Xa1 =
x1, x5,, Xd1 = x1, x3, x5, Xd2 = x2, x4. Objects supporting condition attributes Xc are marked and said to be

CCA XXX-11



certain rules if and only if Xc ⊆ Xd where Xd is a set of objects supporting the decision attribute d. Remaining
attributes are marked as possible rules. LERS algorithm again combine these possible rules to form a next
set of attribute values of length 2. The algorithm follows previous procedures to get next set of certain and
possible rules. When there are no possible rules, the LERS algorithm ends and lists certain rules as a list
classification rules for the decision table. For the decision table provided in Table 2, the classification rules
from LERS would be:

a0→ d2 , a1 → d1 , a2 → d1 b2→ d1 , c1 → d2

Authors Tsay, et.al. [6] define an algorithm called Discovering E-Action Rules from Incomplete
Information Systems (DEAR3), the third installment of system DEAR, which uses tree based approach to
extract Action Rules from an incomplete information system. Incomplete information system means that the
decision table contains some null values. DEAR 3 proposes a novel method Classification rules discovery for
an Incomplete Decision system (CID) to extract classification rules from an incomplete information system.
CID first fills all missing values in decision table using a roulette wheel method. Roulette wheel consists
of m sections where m is the number of distinct values for an attribute for which there are missing values.
The area of each section depends on the frequency of each value occurring in the decision table. For each
missing value, the roulette wheel is rotated m times and the CID algorithm choose a value that occurs more
than (m/2) times on the top of the wheel for a single missing value. CID follows a method similar LERS
[41] type of algorithm to extract classification rules from the complete decision table. In addition to finding
certain and possible rules, CID calculates support of each rule. Next iteration in the algorithm takes only
rules with support greater than or equal to the minimum support. DEAR3 uses two classification rules to
extract single action rule.

Ras, et. al (2007) gives an approach to produce Action Rules from a single classification rule with
Action Rule Discovery based on Agglomerative Strategy (ARAS) [5]. This system works on an assumption
that the provided information system is complete without any missing or null values. This system uses LERS
[41] algorithm to generate classification rules. Consider the classification rules for the decision table in
Table 2 generated by LERS and consider that the user prefers to change the decision from d1 to d2. From the
available classification rules, ARAS first generates action rule schema. Action rule schema defines a pattern
for an action rule from the classification rule. Since flexible attributes form a base for forming actions, the
algorithm avoids classification rules without the flexible attributes for constructing Action Rules. For the
certain rules from Table 2, ARAS generates only one action rule schema ARs:

(a,→ a0)⇒ (d, d1 d2)

For the action rule schema ARs, let Vst be the stable attributes, Vfl be the flexible attributes, decision-
From be the left side of the decision action (d1 for the above action rule schema) in ARs and let XARs be the
objects in the decision table supporting Vst ∪ decisionFrom. Now, the ARAS algorithm takes all missing
flexible and stable attribute values from the decision table and fill into the action rule schema to form a set
of Action Rules AR. Let XAR be the objects supporting AR. Action rule AR is not given to the user if XAR *
XARs. Some of the Action Rules from system ARAS and DEAR 3 for the decision table Table 2 are:

(a, a1→ a0)⇒ (d, d1→ d2) ; (a, a2 → a0)⇒ (d, d1 → d2) ; (a, a1→ a0) ∧ (c, c2)⇒ (d, d1→ d2)
Thus, ARAS system treats each classification rule with target decision value as a seed and pulls all

other classification rules with non-target decision values near that seed to form a cluster and produce all
possible Action Rules from the cluster. In this way, the authors claim that the proposed system works much
faster than system DEAR due to reduced number of comparisons between classification rules for extracting
Action Rules.

6.3. Object-based approach
Object-based approaches as proposed in [2], [3] and [4], extract Action Rules directly from the infor-

mation system without additional classification rules extraction like in rule-based approaches. We discuss
few of the object-based approaches for discovering Action Rules below: Authors Ras et. al [4] propose a
method of extracting new form of Action Rules from the given information system S using Apriori like al-
gorithm in the name of Association Action Rules. Like Apriori algorithm, this system generates single item
pair and its support as an initial itemset. While forming a single itemset, stable attribute values just form as
items while the flexible attributes values form as item actions. For the information system S given in Table 2,
Association Action Rules algorithm generates following itemset pairs:
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(A, a0 → a1), (A, a0→ a2), (B, b0), (B, b2), (D, d1→ d2)

Only the itemsets whose support matches the given minimum support are considered as frequent
itemsets (Pruning step) and are taken to the next iteration to combine with other frequent itemsets to combine
k-element frequent itemset into (k+1)-element itemset (Merging step). The iteration continues until the
algorithm finds m-element itemsets where m is the number of attributes in the information system S or if no
itemsets come out of Pruning step. Once the iterations complete, the algorithm takes each frequent itemset
containing the decision action and produce Action Rules.

Authors A. Hajja et. al [3] propose a new dimension of action rule as object-driven Action Rules.
This system works on object-driven information system. Information system S changes to Object-driven
information system So when some instances in the information system belong to an object mi. This way,
the instances can group into m clusters where m is the number of objects in the information system. In
addition, this system introduces the notion of temporal constraint into the information system. The authors
used medical data for this system. Each patient acts as an object. Each patients records are ordered by
their visit to the hospital (i.e) means that the records of patients yth visit occurs immediately after (y-1)th

visit. Object-driven action rule uses Association Action Rules [18] to extract Action Rules from this new
information system.

Table 3: Sample Information System for Object-Driven Action Rules.

Object ID A B C D
X0 1 a1 b1 c1 d1
X1 1 a2 b1 c1 d1
X2 1 a2 b2 c2 d2
X3 1 a1 b2 c1 d1
X4 1 a2 b1 c1 d2
X5 2 a1 b2 c1 d2
X6 2 a2 b1 c1 d1

Table 3 shows a simple information system for the object-driven Action Rules algorithm. Action
Rules extraction algorithm in this approach take instances of each object as input and produces Action Rules
for all m objects and finally aggregating similar patterns of Action Rules from m objects. Thus, with this
approach, the authors give an object-independency assumption for extracting Action Rules for individual
objects where each object can have their own features or characteristics, which they do not share with other
objects. Authors also claim that the system extract more accurate Action Rules for real world cases.

The object-driven approach in [3] can cause over-fitting problems by individualizing each objects
particularly when there are limited number of instances for an object. For example, with an information
system of n instances, the maximum support of each action rule can be (n/2)2, that is when half of the
instances satisfy precondition of the action rule and the other half instances satisfy postcondition of the action
rule. When these n instances are divided into m subsystems where each subsystem contains p instances which
satisfy the condition p < m < n. Thus, it is obvious that the maximum support (p/2)2 of the system after
division reduces when the value of m (number of subsystem) continues to become higher. To handle these
problems in object-driven Action Rules approach, A. Hajja et. al (2014) in [2] proposed a new algorithm that
uses a combination of object-driven action rule approach and classical action rule mining approach. In this
approach, the authors generalize or cluster some objects, which contains similar features, after categorizing
individual objects. For the medical dataset with 225 unique objects or patients, the authors cluster the
patients, who react similarly for given treatments, into 40 different subsystems. Table 4 shows the effect of
clustering in terms of number of Action Rules and their total support from [2].

6.4. LISp-Miner
Rauch and imnek [42] introduce a software LISP-Miner to extract G-Action Rules using a GUHA

procedure: Act4ft-Miner. GUHA is an exploratory data analysis tool. GUHA procedure takes analyzed data,
find patterns in the data and tests it with the input data. Act4ft-Miner procedure in this software extracts
Action Rules as an advanced version of association rules. Act4ft-Miner produces G-Action Rule R in the
form of:
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Table 4: Result comparison of Object-driven and Hierarchical Object-driven approach.

Decision Shift No. of Action Rules Total Support
Object-driven 40 clusters Object-driven 40-clusters

2→ 1 14 91133 28 931985
1.5→ 1 388 10054 776 66874
1→ 0.5 96 59927 200 497465
1→ 0 954 85769 1996 755361

φ St ∧ ΦCHg ≈* ψSt ∧ ΨCHg

where, φ St - stable antecedent Boolean attribute; ΦCHg - expression of change in flexible antecedent
attributes; ψSt - stable consequent Boolean attribute; ΨCHg - expression of change in flexible consequent
attributes; ≈* - Act4ft quantifier

Lisp-Miner also provide some visualizations in the form of confusion matrix and its corresponding
histogram for each extracted action rule. Fig. 7 shows a sample visualization of a confusion matrix and
corresponding histogram for an action rule.

Fig. 7: Confusion Matrix and histogram of an action rule extracted from a BMI dataset.

7. Distributed Action Rule Mining
With many data mining algorithms start to use parallel processing frameworks these days, Action

Rules also need a method to extract them efficiently for a big data. Both rule-based and object-based ac-
tion rule extractions can make use of distributed computing frameworks [14] [15] [26] to generate Action
Rules for large datasets quickly. Since the decision tables from which we get Action Rules consist of sta-
ble attributes and flexible attributes, random splitting of dataset may give imbalanced attribute values to the
worker nodes. The algorithms that extract Action Rules from such partition of data result in low quality
Action Rules. To extract good Action Rules from such distributed systems, it require an intelligent way of
sampling or distributing the data to worker nodes. Most popular sampling method is random sampling and
its varieties like stratified sampling and cluster sampling. Each of the sampling technique selects the data
randomly based on their own strategy. There has been active research on selecting subsets of the training
data to give them to multiple working nodes using submodular functions [43] [44] [45] to intelligently split
the data such that a model running on chunks of the split data is close to global optimal solution when the
same model runs on a whole data. Consider a set N = 1,2,3,.,n. Submodular function that is common in
physics and mathematics is a set function that satisfies f(A) + f(B) ≥ f(A∩B) + f(A∪B), ∀A,B ⊆ N, where f
is a set function of the form f: 2N −→ IRİn submodular data partitioning method, data is partitioned into m
partitions and a utility function f is assigned to each partition. The final goal is to have partitions of data that
maximizes the overall utility. Accuracy of a Distributed Deep Neural networks (DNN) running for a phone
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classification dataset split into 30 partitions for both random sampling and submodular partitioning [45] is
given in Fig. 8.

Fig. 8: Accuracy Comparison of Distributed Deep Neural networks after Random Sampling and Submodular Partition-
ing.

Also, to accumulate Action Rules for the whole input, it requires a separate strategy to combine all the
results from multiple nodes such that the final set of Action Rules (in terms of quality and quantity) is better
or equal to that of the results from the current action rule extraction approaches running in a single machine.
On the other hand, the entire distributed action rule extraction algorithm can take a new dimension of using
graph structure like GraphLab [31] or TensorFlow [33] or Parameter Server [34] such that the worker nodes
work on their own partition of data and they can communicate with their master for sharing and updating
global parameters. Currently there are some on-going research to efficiently use graph structures in Spark
[15] particularly for machine learning. This makes graph implementation in Spark much easier than on other
frameworks. Special approaches like the algorithms in [7] [8] [9] [10] [11] [12] also can help generating
Action Rules in a distributed configuration, such that the performance (time efficiency) of the new algorithm
is better than that of current algorithms. Apart from developing a new technique of action rule extraction
in a distributed environment, the new extraction technique needs a lot of analysis or validations with results
and performances of the current system for multiple real world scenarios. Most importantly, reliability and
load balance tests are crucial for distributed algorithm. Furthermore, the new approach needs many use cases
on when to use it, when not to use it and what kind of problems are suitable for it to extract Action Rules.
Because for some problems, it is better to run algorithms in a single machine instead of multiple computers
in a cluster.

8. Conclusion
Action Rules mining is useful for discovering actionable patterns in datasets from several domains

such as: medical, financial, industrial, and educational. Actionable patterns extracted from the data are
crucial for solving problem these domains. Currently, Action Rules applications in medical [46] and business
[47] fields are very important, because the data size grows innumerably every day. There has been active
research involvement during past decade to extract Action Rules on datasets in these fields. Multiple methods
both in rule-based and object-based approaches have been proposed to extract Action Rules efficiently. Each
method has their own style of extraction and fabricating knowledge from the information system. Nowadays,
in the epoch of Big Data, where resources like social media and IoT are becoming dominant and fast in
providing data, the growth of immense amount data is inevitable. Running even the most efficient Action
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Rules algorithms on a single machine for such a huge data is a tedious task and time-consuming task.
Cloud Computing is becoming crucial for the better performance of many machine learning algorithms

over a past few years to handle rapid generation of big data in distributed and parallel fashion. Action Rules
extraction using distributed computing frameworks [14] [15] [26] and publicly available Cloud platforms
[17] [18] [16] would be a beneficial upgrade to the current Action Rule mining algorithms. Providing a
proper algorithm design for Action Rule mining in distributed environment would allow many applications
to benefit from extracting Action Rules in a time efficient manner with large volumes of data.
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