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ABSTRACT 

Action rules, which are the modified versions of classification rules, are one of the modern approaches 

for discovering knowledge in databases. Action rules allow us to discover actionable knowledge from 

large datasets. Classification rules are tailored to predict the object’s class. Whereas action rules 

extracted from an information system produce knowledge in the form of suggestions of how an object can 

change from one class to another more desirable class. Over the years, computer storage has become 

larger and also the internet has become faster. Hence the digital data is widely spread around the world 

and even it is growing in size such a way that it requires more time and space to collect and analyze them 

than a single computer can handle. To produce action rules from a distributed massive data requires a 

distributed action rules processing algorithm which can process the datasets in all systems in one or 

more clusters simultaneously and combine them efficiently to induce single set of action rules. There has 

been little research on action rules discovery in the distributed environment, which presents a challenge. 

In this paper, we propose a new algorithm called MR – Random Forest Algorithm to extract the action 

rules in a distributed processing environment. 
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1. INTRODUCTION 

The process of refining knowledge or finding interesting patterns in large datasets is called Data 

Mining. Some of the classical knowledge discovery algorithms that can be used to find these 

patterns are classification, association and clustering. These algorithms identify the enormous 

number of patterns from the data regardless of the fact that most of the patterns are not of user’s 

interest. Therefore, these patterns are overwhelming to the users to analyze them manually to 

infer solutions for problems in their corresponding domains. For example, in a cancer dataset, if 

an oncologist wants to find what changes among the attributes in the data can cure a type of 

cancer, the classical style of knowledge discovery does not help. 

However, there has been research like the algorithm proposed in [1], [2], [3], [4] and [5] in a 

past decade for an optimistic approach to produce actions (change in an object’s state) based on 

the discovered patterns, which is called an action rule. Action rule is a rule extracted from a 

dataset that describes the possible transition of objects from one state to another with respect to 

the distinguished attribute called decision attribute [1]. To generate action rules, the attributes in 

the dataset are split into two groups called – Flexible Attributes and Stable Attributes. Flexible 

attributes are those for which the state can change and the stable attributes are those for which 

the state is always fixed. To obtain action rules, the data must contain one or more flexible 

attributes. 

 



Assume the dataset is in the form of an information system S = {A ∪ B ∪ D}, where A is a 

stable attribute and {B, D} are flexible attributes out of which D is a distinguished attribute 

called decision attribute. Also assume {a1, a2, …., an}  ⊆ A, {b1, b2, …., bn} ⊆ B and {d1, d2} ⊆ 

D. The following is an example action rule if the user desires the decision attribute value to 

change from d1 to d2: 

 

r1 = (A, a2 → a1) ^ (B, b1)  (D, d1 → d2) 

 

The above action rule r1 means that, if the attribute A changes its value from a1 to a2 and the 

attribute B remains unchanged value=b1, then the attribute D is expected to change from d1 to 

d2. (A, a2 → a1) and (B, b1) are generally called atomic action sets. 

If the dataset in small, a single computer system generates action rules faster. However, if the 

dataset is massive, it becomes very expensive for a single system to produce action rules. 

Therefore, we propose an algorithm which runs at the same time on several computer systems 

(nodes). In addition to producing the results faster, the generated action rules are more reliable, 

as they are cross referenced among the multiple nodes. In this work, in order to generate action 

rules in a distributed environment, we are using the strategy proposed by Google [12] called 

MapReduce. For running the MapReduce, we are using Apache’s open source Hadoop 

framework [11] for processing immense datasets in multiple nodes in one or more clusters. 

In this work, we propose MapReduce (MR) – Random Forest algorithm for Action Rules 

discovery. We adapt the algorithm known as Action Rules Discovery Based on Grabbing 

Strategy (ARoGS) and Learning from Example based on Rough Sets (LERS) [7] to the 

distributed MapReduce environment. LERS is utilized as a base algorithm to generate action 

rules in Mappers of the Hadoop cluster. Next, the generated output is fed to the ensemble 

learning method known as Random Forest [13] in Reducers of the Hadoop cluster to produce a 

singleton set of action rules. Finally, we employ a second method for generating action rules, 

called Association-Action Rules (AAR) as described in paper [10], and compare the resulting 

action rules from Grabbing Strategy and from Association-Action rules Strategy in a distributed 

environment. 

2. RELATED WORK 

The notion of action rules was initially proposed in [1] which brings in the idea of splitting the 

attributes into stable attributes, flexible attributes and a decision attribute. Action rules have 

been investigated further in [2], [3], [4], [5], [6], [7], [8], [9] and [10]. However, in the earlier 

research, the action rules were produced using pairs of classification rules. Ras and Dardzinska 

[5] made the first attempt to give a lattice-theory type of framework for producing the action 

rules with single classification rule without any detailed algorithm, but directly from the 

database. Later, Ras and Wyrzykowska [3] gave a LERS [15] type of algorithm that considers 

only marked certain rules to construct the action rules. Ras and Wyrzykowska [7] proposed a 

new algorithm named ARoGS which combines each action rule generated from single 

classification rule with the remaining stable attributes to offer more action rules. This work 

discovers more action rules that were missed out in the previous algorithms.  

Ras and Tsay [6] defined DEAR systems which proposes a definition to calculate support and 

confidence for the generated action rules. Tzacheva and Ras [9] provided more reliable formula 

for calculating support and confidence of action rules. The support and confidence of action 

rules were further simplified and improved in the research of Tzacheva [17], including the 

introduction of a new measure called Utility. Ras and Dardzinska [10] suggested an Apriori-like 

algorithm for action rules discovery, which generates association-type action rules using 



frequent action items. This is one of the methods to generate action rules without using 

classification rules.  

In this work, we combine the ARoGS [7] algorithm with the new support and confidence 

measures by Tzacheva [17], and we propose a Random-Forest [13] based algorithm for 

discovery of action rules in a distributed environment utilizing MapReduce, called MapReduce 

(MR) – Random Forest algorithm for Action Rules discovery. Further, we adapt the 

Association–Action rules [10] algorithm  to our distributed environment. Finally, we compare 

the results of ARoGS and Association-Action rules operating in the distributed environment. 

2. METHODOLOGY 

We implement the proposed MR - Random-Forest algorithm for distributed action rules 

discovery using Apache Hadoop framework [11] and Google MapReduce [12]. An overview of 

the proposed algorithm is shown on Figure 1. We take as an input a set of files: the data, the 

attribute names, user specified parameters such as: minimum support, and confidence tresholds, 

stable attribute names, flexible attribute names, decision attribute choice, decision attribute 

value to change_from, and decision attribute value to change_to, which is the desired value of 

decision attribute (desired object state). We import these input files into the HDFS (Hadoop 

Distributed File System). Our MapReduce algorithm consists of three jobs: Job 1 runs LERS 

and ARoGS methods to generate Action Rules (AR); Job 2 runs Association–Action rules 

method to produce an Association type of Action Rules (AAR); and the Job 3 collects the 

output of Job1 and Job2 and compares the rules. Job 3 compares both action rules and 

association action rules, finds the rules which are identical from Job1 and Job2,  and produces a 

single list of rules as an output.  

 

Now we describe the LERS, ARoGS, and Association-Action rules methods in detail. Consider 

an information system S: 

S = (X, A, VA) where, 

X is a set of objects: X = {x1, x2, x3, x4, x5} 

A is a set of attributes: A = {a, b, c, d} and 

VA represents a set of values for each attribute in A. For example Vb = {b0, b2}. 

 

We use the sample information system S is shown in Table 1. to demonstrate output from these 

algorithms. Consider attribute b to be a  Stable Attribute , attributes {a, c} to be Flexible 

Attributes, attribute  d  to be the Decision Attribute, and that the user desires the decision value 

to change from d1 to d2. Also user is interested in action rules with minimum support of 2 and 

minimum confidence of 80%. 

Table 1.  Sample Information System S 

X a b c d 

x1 a1 b0 c2 d1 

x2 a0 b0 c1 d2 

x3 a2 b0 c2 d1 

x4 a0 b0 c2 d2 

x5 a1 b2 c2 d1 



 

 

Figure 1.  MR-Random Forest Algorithm for Distributed Action Rules Discovery Overview 

 

3.1. LERS 

Our proposed implementation of the LERS (Learning from Examples based on Rough 

Sets) method in a distributed scenario using MapReduce is illustrated in Figure 2. Using 



the information system S from Table 1., LERS strategy can find all certain and possible 

rules describing decision attribute d in terms of attributes a, b, and c. 

 

LERS can be used as a data strategy to generate decision rules. From selected pairs of these 

decision rules, the action rules can be composed as described by Ras and Wyrzykowska [3], 

[15]. We consider only marked certain rules to construct the action rules. Since LERS follows 

bottom-up strategy, it constructs rules with a conditional part of length x, then it continues to 

construct rules with a conditional part of length x+1. According to papers [3] and [15], the 

LERS system rules that get induced from lower and upper approximations are called certain and 

possible rules, respectively. 

Using the information system S from Table 1., the LERS algorithm produces the certain and 

possible rules at each iteration shown in Table 2. Next, these rules are given as an input to the 

AR (Action Rules) algorithm, which builds action rules by taking all certain rules from Table 2. 

The proposed AR algorithm in a distributed environment is illustrated in Figure 3. 

 

ALGORITHM 1:  
LERS (attributesSupport, decisionSupport) 

(where attributesSupport and decisionSupport are maps with distinct attribute values as    
keys and their corresponding value is the objects in the information system supporting 
them) 

 
fixedSupport ← attributesSupport 
while attributesSupport is not empty do 

for each key, value pair in the attributeSupport do 
if value is a subset of one of the values of decisionSupport then 

Add key and decisionValue to certainRules 
(where certainRules is a map with attribute value as a ‘key’ and decision 
attribute value as a ‘value’) 

else 
Add key and value to possibleRules 
(where possibleRules is a map with attribute value as a ‘key’ and decision 
attribute value as a ‘value’) 

end 
delete key from the attributesSupport  

end 
for each key1, value1 pair in the possibleRules do 

for each key2, value2 pair in the fixedSupport do 
if key1 contains key2 then Continue 
else  

key3 ← (key2, key1) 
value3 ← Set of objects in information system supporting key3  
Add key3 and value3 to attributeSupport 

end 
end 

end 
end 

 

Figure 2. LERS (Learning from Examples based on Rough Sets) Algorithm in a distributed 

environment using MapReduce 

 



decisionSupport: (d1)* = {x1, x3, x5} and (d2)* = {x2, x4} 

 

 

Table 2.  Certain and Possible Rules produced by LERS algorithm on data S from Table 1. 

Itera

tion 

Attribute value support Certain 

rules 

Possible 

rules 

1 (a0)*
 = {x2, x4} – marked 

(a1)*
 = {x1, x5} – marked 

(a2)*
 = {x3,} – marked 

(b0)*
 = {x1, x2, x3, x4} 

(b2)*
 = {x5} - marked 

(c1)*
 = {x2} - marked 

(c2)*
 = {x1, x3, x4, x5} 

a0 → d2 

a1 → d1 

a2 → d1 

b2 → d1 

c1 → d2 

b0 → d1 

b0 → d2 

c2 → d1 

c2 → d2 

 

2 (b0, c2)* = { x1, x3 x5}  b0 ^ c2 → d1 

b0 ^ c2 → d2 

 

 

3.2. ARoGS 

ARoGS is Action Rules Discovery Based on Grabbing Strategy, which uses LERS. It is given 

by Ras and Wyrzykowska in paper [7] as an alternative to system DEAR from paper [6]. 

ARoGS uses LERS to extract action rules, without the need of verifying the validity of the 

certain relations. It just has to check if these relations are marked by LERS. By using LERS in 

the pre-processing module for defining classification rules, the overall complexity of ARoGS 

algorithm decreases.  

In our proposed method, we take the final set of certain rules extracted by LERS and create new 

action rule by combining a certain rule with other certain rules. Using the flexible attributes in 

the certain rules, atomic action sets like (a, a1 → a2) can be formed. We extract all action rules, 

which imply d1 → d2 by using AR algorithm described in Figure 3. 

 

Consider the following action rules, which are obtained by following the algorithm AR using 

the information system in Table 1:  

 

ar1 (d1 → d2) = (a, 1 → 0)  (d, 1 → 2) 

ar2 (d1 → d2) = (a, 2 → 0)  (d, 1 → 2) 

 

The algorithm ARoGS runs on each action rule generated by algorithm AR, and it produces the 

following additional action rule (ar3): 

 

ar3 (d1 → d2) = (b, 2) ^ (a, 1 → 0)  (d, 1 → 2) 

 

ARoGS produces this additional rule, because it is treating each action rule describing the target 

decision value as a seed and grabs other action rules describing non-target decision values in 

order to form a cluster. From the newly formed clusters, it builds decision rules, where a 

grabbed seed is only compared with that seed. Our proposed implementation of ARoGS in a 

distributed environment is shown on Figure 4. 



 

3.3. Association Action Rules 

The Association–Action Rules described by Ras and Dardzinska in paper [10] is an algorithm 

intended to simplify the action rules construction by employing the ‘lowest cost’ strategy. The 

Association–Action Rules (AAR) algorithm uses a different approach, from the ones described 

above, as it generates association-type action rules using frequent action sets in an Apriori-like 

fashion. The extracted action rules are intended to have minimal attribute involvement. The 

frequent action set generation is divided in two steps: merging step and pruning step. In the 

merging step: we merge the previous two frequent action sets into a new action set. For our 

example, using the data from the Information System in Table 1, the primary action sets 

generated by AAR are shown in Table 3. The frequent action sets generated by AAR are shown 

in Table 4. In the pruning step: we discard the newly formed action set if it does not contain the  

decision action (e.g. the user desired value of decision attribute). In our example, the action set 

is discarded if (d, 1 → 2) is not present in it. From each frequent action set, the association 

action rules are formed. Therefore, the AAR algorithm generates frequent action sets and forms 

the association action rules from these action sets. Our proposed implementation of AAR 

algorithm in a distributed environment is shown in Figure 5. 

For our example, using the data from the Information system in Table 1, the AAR algorithm 
generates following Association Action Rules: 

aar1 (d1 → d2) = (a, 2 → 0)  (d, 1 → 2) 
aar2 (d1 → d2) = (a, 1 → 0)  (d, 1 → 2) 
aar3 (d1 → d2) = (b, 0) ^ (a, 1 → 0)  (d, 1 → 2) 
aar4 (d1 → d2) = (c, 0) ^ (a, 1 → 0)  (d, 1 → 2) 
…….. 

ALGORITHM 2:  
AR (certainRules, decisionFrom, decisionTo) 

(where certainRules is a map provided by the algorithm LERS) 
 
for each key1, value1 pair in the certainRules do 

for each key2, value2 pair in the certainRules do 
if value1 equals decisionFrom and value1 equals decisionTo then 

if key2 attributes are a subset of key1 attributes and key2 stable 
attributes are a subset of key1 stable attributes then 

actions ← empty list  
for each attribute value a1 in key1 do    

for each attribute value a2 in key2 do 
if a1 and a2 belongs to same attribute then 

a←attributeName(a1) 
actions. Add(“(a, a1 → a2)”) 

end 
end 

end 
Output actions as action rule 
ARoGS(actions, decisionFrom, decisionTo) 

end 
end 

 end 
 

Figure 3. AR (ActionRules) Algorithm in a distributed environment using MapReduce 



…….. 
aarn-1 (d1 → d2) = (b, 0) ^ (c, 0) ^ (a, 1 → 0)   
(d, 1 → 2) 
aarn (d1 → d2) = (b, 0) ^ (a, 1 → 0) ^ (c, 2 → 1)   

(d, 1 → 2) 

 

 

Table 3.  Primary Action Sets for Information System S from Table 1. 

Attribute Primary action sets 

a 
(a, a0), (a, a1), (a, a2),  

(a, a0 → a1), (a, a0 → a2) 

(a, a1 → a0), (a, a1 → a2),   

(a, a2 → a0), (a, a2 → a1) 

b 
(b, b0) 

(b, b2) 

c 
(c, c1 → c2) 

(c, c2 → c1) 

d 
(d, d1 → d2) 

(d, d2 → d1) 

 

 

 

ALGORITHM 3:  
ARoGS (actions, decisionFrom, decisionTo) 

 (where ‘actions’ is a list of actions from Algorithm AR) 
 

stableValues ← list of stable attribute values in actions 
actionsSupport ←set of objects in the information system supporting all attribute 

values in actions 
missingValues ←set of missing flexible attribute values of the attributes in actions 
and a set of stable attributes values of stable attributes not present in actions 
for each value in missingValues do 

newValues ← combine value with stableValues 
newSupport ← set of objects in the information system supporting 

newValues in actions 
if newSupport is a subset of actionsSupport then 

Add value to actions 
Output actions as action rule 

  end 
 end 

 

Figure 4. ARoGS (Action Rules Discovery based on Grabbing Strategy) in a distributed 

environment using MapReduce 



Table 4.  Frequent Action Sets for Information System S from Table 1. 

Iteration # Frequent action sets 

1 
(a, a0) ^ (d, d1 → d2) 

(a, a1) ^ (d, d1 → d2) 

(a, a2) ^ (d, d1 → d2) 

(b, b0) ^ (d, d1 → d2) 

(b, b2) ^ (d, d1 → d2) 

(a, a0 → a1) ^ (d, d1 → d2) 

(a, a0 → a2) ^ (d, d1 → d2) 

……. 

……. 

Iteration # Frequent action sets 

2 
(a, a0) ^ (b, b0) ^ (d, d1 → d2) 

(a, a1) ^ (b, b0) ^ (d, d1 → d2) 

(b, b0) ^ (c, c1)  ^ (d, d1 → d2) 

(a, a0 → a1) ^ (b, b0) ^ (d, d1 → d2) 

……. 

……. 

Iteration # Frequent action sets 

3 
(a, a0) ^ (b, b0) ^ (c, c1) ^ (d, d1 → d2) 

(a, a1) ^ (b, b0) ^ (c, c1) ^ (d, d1 → d2) 

(a, a2) ^ (b, b0) ^ (c, c1) ^ (d, d1 → d2) 

(a, a0) ^ (b, b0) ^ (c, c1 → c2) ^ (d, d1 → d2) 

……. 

……. 

 

 

3.4. Support and Confidence of Action Rules 

Consider an action rule R of the form  

(Y1 → Y2)    (Z1 → Z2) where, 

Y is concatenation of all action sets that support the decision action Z 

Y1 = attribute values on left side of all actions in the left side of the action rule R 

Y2 = attribute values on right side of all actions in the left side of the action rule R 

Z1 = decision attribute value on the left side 

Z2 = decision attribute value on the right side 

 

1) Support and Confidence: Association Action Rules 

For an Association Action Rule aar, the following support and confidence applies, given in paper 
[9]: 

Support (aar) = min [card (Y1 ^ Z1), card (Y2 ^ Z2)] 
Confidence (aar) = [card (Y1 ^ Z1) / card (Y1)] * [card (Y2 ^ Z2) / card (Y2)] 

where card(Y1) ≠ 0 and card(Y2) ≠ 0 



 

2) Support and Confidence: ARoGS 

In ARoGS support and confidence of an action rule ar are calculated using the following 

formulas given in paper [7]: 

Support (ar) = card (Y2 ^ Z2) 

Old Confidence (ar) = [card (Y1 ^ Z1) / card (Y1)] * [card (Y2 ^ Z2) / card (Y2)] 

 

In our proposed method, this confidence is replaced by the following confidence formula given 

by Tzacheva et al. [17] to reduce complexity: 

 

New Confidence (ar) = [card (Y2 ^ Z2) / card (Y2)]  

where card(Y1) ≠ 0 and card(Y2) ≠ 0   

 

     In the above formulas, card (X) means Cardinality which is the number of objects in the 

information system containing the value X. The algorithms eliminate action rules if the 

corresponding support and confidence is less than the given minimum support and confidence. 

For example, for the rule ar3 (d1 → d2) and aar3 (d1 → d2), the Support = 0 which is less than 

the user specified support threshold = 2 in our example for the Information System S in Table 1. 

Therefore, these rules are discarded by the algorithms. 

 

 

3.5. MR-Random Forest Algorithm for Action Rules 

In our proposed implementation using the Hadoop MapReduce framework, the above described 

algorithms run in parallel in distinct threads as two separate jobs, as shown on Figure 1. LERS 

and AR in Job1, and AAR in Job2. Each job has its own Map and Reduce parts. The LERS, AR, 

and AAR algorithms are implemented in the Map part. Hadoop splits the data and gives splits of 

data to several Map parts (Mappers). The resulting action rules from all the Mappers are 

combined in such a way that the action rule acts as a key and the support and confidence from 

all the Mappers acts as iterator list of values. The combined action rules are given to the Reduce 

part, where we propose using a Random Forest [13] type of algorithm in order to combine the 

output from all the Mappers. The Random Forest algorithm works in analogy to ‘voting’, where 

if more than 50% of the parties agree, the vote is accepted. In our proposed implementation, the 

ALGORITHM 5: Reduce (Key, values) 

(where Key is an action rule from Algorithm AR or Algorithm AAR and values is a 
list of support and confidences of a Key from n Maps) 
if Count(values) >= n / 2 then 

supp ← Average of all supports 
 conf ← Average of all confidences 
 if supp >= minimum support and  
conf >= minimum confidence then 
  Output Key with supp and conf    
 end 
end 

Figure 6. Random Forest algorithm in Reduce part of MapReduce combines Action Rules 

from multiple Mappers 



Random Forest algorithm checks the output from all the Mappers, and if it finds an action rule 

which is generated from more than 50% of the Mappers it retains that action rule. If so, it 

averages all supports and confidences from these Mappers for the given action rule. Then, it 

checks the averaged support and confidence against the minimum support and confidence 

thresholds specified by the user. If the support and confidence thresholds are met, the action rule 

is retained, and included in the final list of action rules, produced as an output from this system, 

and presented to the user. Our proposed MR-Random Forest Algorithm, implemented in the 

Reduce part of MapReduce, is shown on Figure 6. This figure gives an overview of how our 

Reduce part works. 

3. EXPERIMENT AND RESULTS 

We used two datasets for testing our proposed MR - Random-Forest algorithm for distributed 

action rules discovery: Car Evaluation dataset and Mammographic-mass dataset, obtained from 

the Machine Learning Repository by Information and Computer Sciences of the University of 

California, Irvine [16].  

 

We ran the ARoGS and AAR (Association Action Rules) algorithms on the University of North 

Carolina at Charlotte Hadoop Research cluster, which has 73 nodes. Hadoop splits the data with 

respect to its block size. Even though the default block size in Hadoop is 64 MB, it can be 

reduced to support smaller datasets. The minimum block size we can set is 1.04 MB. Since the 

minimum block size in Hadoop is 1.04 MB, it would not be splitting our original data. As we 

are adapting the Action Rules discovery algorithm to work witch much bigger datasets, than it 

has worked with before, then we replicate the original datasets multiple times to test the 

proposed algorithm in a distributed environment. This also brings the final dataset to size 

greater than 1.04 MB, so Hadoop splits it automatically. 

 

We chose the Car Evaluation dataset, and the Mammographic-mass dataset for this study, in 

order to illustrate the application of Action Rules in two different domains: transportation 

domain, and medical domain. 

Table 5.  Properties of Car Evaluation dataset and Mammographic-Mass Dataset 

Property Car Evaluation Dataset Mammographic Mass 

Dataset 

Number of instances 1728 961 

Replication Factor 116 518 

Number of instances after 

replication 

200448 497798 

Attributes 7 attributes 

• Buying 

• Maintenance 

• Doors 

• Persons 

• Luggage boot 

• Safety 

• Class 

6 attributes 

•BI-RADS assessment 

• Patient’s age 

• Shape 

• Margin 

• Density 

• Severity 

Decision attribute values Class 

(unacc, acc, good, vgood) 

Severity 

(0 - benign, 1 - malignant) 

Original data size 52.3 Kilo Bytes 16 Kilo Bytes 

Final data size 5.92 Mega Bytes 7.83 Mega Bytes 



 

 

The Car Evaluation dataset [16] is donated by Prof. Dr. Marko Bohanec, from Department of 

Knowledge Technolgoies, Jozef Stefan Institute, in Liublijana, Slovenia. It is intended to 

evaluate cars according to the car acceptability, according to its buying price, maintenance cost, 

technical characteristics such as comfort, number of doors, number of persons to carry, the size 

of its luggage boot, and the car safety. The Car Evaluation dataset has 1728 tuples, and 7 

attributes, as shown in Table 5. For the purpose of this study, the Car Evaluation dataset was 

replicated 116 times, in order to increase its size, and demonstrate the scalability of our 

proposed method. Action Rules extracted for this dataset can suggest actions to be undertaken 

(changes in flexible attributes) if the user would like to increase the car’s safety, or if the user 

would like to change the car state from ‘unacceptable’ (unacc) to ‘acceptable’ (acc). An 

example Action Rule extracted from this dataset is: 

 

arCar1 (class, unacc → acc) = (buying, buyinglow→buyinglow) ^ (persons, persons2 → 

persons4) ^ (safety, → safetyhigh)  (class, unacc → acc) [Support: 237 & 

Confidence: 93.0%] 

 

The rule arCar1 means that: if the buying price of the car remains low (buyinglow), and the 

number of persons it can carry increases from 2 (persons2) to 4 (persons4), and the safety of the 

car increases from any value to high (safetyhigh), then the decision attribute (class) value is 

expected to change from unacceptable (unacc) to acceptable (acc). A total of 237 tuples 

(objects) support this rule, and we are 93% confident in the validity of this rule. Example 

Actions, called Meta-Actions, which can trigger the above changes are: ‘improve air bags’ (to 

increase safety); ‘improve breaks’ (to increase safety); ‘make larger salon’ (to increase person 

capacity of the vehicles). These are called Meta-Actions as described by Tzacheva and Ras [9], 

since they trigger the suggested changes in flexible attributes specified by the Action Rules. The 

Meta-Actions can either be provided by expert in the domain and added to the original data to 

augment it, or they can be automatically extracted from text descriptions associated with the 

data as shown by Kuang and Ras [18]. For this study, the attributes {Buying, Maintenance, 

Doors} are designated as Stable Attributes, and the attributes {Persons, LuggageBoot, Saftety} 

are designated as Flexible Attributes, and the attribute Class is designated as the decision 

attribute, which is also a flexible attribute. These parameters are shown in Table 6. 

The Mammographic-Mass dataset [16] is donated by Prof. Dr. Rdiger Schulz-Wendtland from 

the Institute of Radiology at the University Erlangen-Nuremberg, Germany. This dataset is used 

to predict the severity (benign or malignant) of a mammographic mass lesion from BI-RADS 

attributes and the patient’s age. It contains a BI-RADS assessment, the patient’s age and three 

BI-RADS attributes together with the ground truth (the severity field) for 516 benign and 445 

malignant masses that have been identified on full field digital mammograms collected at the 

University Erlangen-Nuremberg. The Mammographic-Mass dataset contains 961 instances, and 

has 6 attributes, as shown in Table 5. For the purpose of this study, the Car Evaluation dataset 

was replicated 518 times, in order to increase its size, and demonstrate the scalability of our 

proposed method. Action rules extracted from the Mammographic-Mass dataset can suggest 

actions to be undertaken (changes in flexible attributes), in order to re-classify a mammographic 

mass lesion (tumor) from class: malignant to class: benign.  An example Action Rule extracted 

from this dataset is: 

arMam1 (severity, 1 → 0) = (Margin, 3→4) ^ (BI-RADS, 5 → 4) ^ (Density, → 3)  
(severity, 1 → 0) [Support: 284 & Confidence: 82.4%] 
 

The rule arMam1 means that: if the Margin of the lesion (tumor) changes from 3 to 4, and the BI-

RADS assessment changes from 5 to 4, and the Density of the lesion (tumor) changes from any 



value to 3, then the severity (decision attribute) is expected to change from value 1 (malignant) 

to value 0 (benign). A total of 284 tuples (objects) support this rule, and we are 82.4% confident 

in the validity of this rule. The suggested desired changes can be triggered by Meta-Actions [9]. 

Example Meta-Actions, which can trigger the above changes are: ‘doctor prescribes specific 

medication’ (to change BI-RADS assessment); or ‘doctor performs a specific medial procedure’ 

(to change the margin of the lesion). For this study, we designate {BIRADS, Margin, Density, 

Shape} as Flexible Attributes. We designate {Shape, Age} as a Stable Attributes. We designate 

Severity as our decision (class) attribute, which is also a flexible attribute. These parameters are 

shown in Table 6. 

Table 6.  Parameters used for Action Rules discovery on the Car Evaluation dataset and 

Mammographic-Mass dataset 

Parameters Car Evaluation 

Dataset 

Mammographic-Mass 

Dataset 

Stable attributes Buying, Maintenance, 

Doors 

Shape, Age 

Expected decision 

action 

(Class)  unacc → acc (Severity) 1 → 0 

Minimum support and 

confidence 

150, 80% 50, 70% 

 

Since we replicated the datasets multiple times, as shown in Table 5., the size of the data was 

substantially increased from the original. Next, we ran our experiment, and Hadoop made 6 

splits of the data for the Car Evaluation dataset, and it made 8 splits of the data for the 

Mammographic-mass dataset. The ARoGS algorithm took 1.84 minutes to process the Car 

Evaluation data on a single node, and it took 1.12 minutes to process the Car Evaluation dataset 

on 6 nodes. The Association Action Rules algorithm took 11.09 minutes to process the Car 

Evaluation dataset on a single node, and it took 5.4 minutes to process the Car Evaluation 

dataset on 6 nodes. The ARoGS algorithm took 0.53 minutes to process the Mammographic 

Mass dataset on a single node, and it took 0.29 minutes to process the Mammographic Mass 

dataset on 8 nodes. The AAR algorithm took 9.4 minutes to process the Mammographic Mass 

dataset on a single node, and it took 5.4 minutes to process the Mammographic Mass dataset on 

8 nodes. A comparison of the processing time for these algorithms is shown on Table 7. 

Table 7.  Comparison of processing time for ARoGS and AAR algorithms using MapReduce 

(MR) – Random Forest method on Hadoop 

Dataset Number of 

splits (nodes) 

ARoGS 

(minutes) 

AAR  

(minutes) 

Car Evaluation Data 1 1.84 11.09 

6 1.12 5.4 

Mammographic-Mass Data 1 0.53 9.4 

8 0.29 6.2 



 

The processing times shown in Table 7. indicate that: the larger the data size is, the faster our 

algorithms run (both ARoGS and AAR algorithms), when using multiple nodes (in a distributed 

environment with MapReduce framework), compared to a single node (a single machine). From 

the results in Table 7., we can also see that ARoGS algorithm generates the Action Rules much 

faster than the AAR algorithm does, while using the MR - Random Forest method in the Reduce 

phase for both. The AAR (Association Action Rules) takes a much longer time to generate 

Action Rules because it follows Apriori-like method described in section 3.3 to produce all 

possible combination of action sets and from these action sets, it generates all possible Action 

Rules. Table  8. depicts sample comparison of rules generated by both the algorithms on the Car 

dataset. 

 

Next, we compare the ARoGS and the AAR algorithm. Our results indicate that the ARoGS 

algorithm produces more general Action Rules, while the AAR algorithm produces more specific 

Action Rules. By general Action Rule we mean that the rule contains an atomic action set like 

(safety, -> safetyhigh) i.e. the safety is changed from any value to value safetyhigh. On the other 

hand, the AAR algorithm produces only specific Action Rules i.e. the action sets have both 

values chage_from and change_to specified, such as: (safety, safetlylow -> safetyhigh). Even 

though the AAR algorithm follows Apriori-like method and takes much longer time to process, it 

generates more rules comparing to the ARoGS method. For our study, the ARoGS produced 20 

Action Rules the Car Evaluation Dataset, while AAR produced 124 Action Rules, out of which 

80 rules can be generalized to the rules produced by ARoGS algorithm. We show an example of 

ARoGS general Action Rule, and its corresponding AAR specific Action Rules on Table 8.  

This comparison of Action Rules produced by ARoGS and AAR is performed in Job3 of our 

proposed method as shown on Figure 1. Job3 produces the final list of Action Rules presented 

to the user. 

Table 8.  Comparison of general and specific Action Rules produced by ARoGS and AAR 

respectively 

ARoGS 

general action rule 
AAR 

corresponding specific ation rule 

(safety, → safetyhigh) 

 

(buying, buyinglow→buyinglow) ^ 

(maint, maintvhigh  → maintvhigh) ^ 

(persons, persons2 → persons4) ^ 

(safety, → safetyhigh)  (Class, unacc 

→ acc ) [Support: 232 & Confidence: 

100.0%] 

(buying, buyinglow → buyinglow) ^ (maint, 

maintvhigh   → maintvhigh) ^ (persons, persons2 

→ persons4) ^ (safety, safetylow → safetyhigh) 

 (Class, unacc → acc ) [Support: 232 & 

Confidence: 100%]] 

(buying, buyinglow → buyinglow) ^ (maint, 

maintvhigh    → maintvhigh) ^ (persons, persons2 

→ persons4) ^ (safety, safetymed  → safetyhigh) 

 (Class, unacc → acc ) [Support: 232 & 

Confidence: 100%]] 

(buying, buyinglow → buyinglow) ^ (maint, 

maintvhigh    → maintvhigh) ^ (persons, persons2 

→ persons4) ^ (safety, safetyhigh → safetyhigh) 

 (Class, unacc → acc ) [Support: 232 & 

Confidence: 100%]] 

 



 

3. CONCLUSION 

In this work, we propose a novel method MR – Random Forest Algorithm for Distributed 

Action Rules Discovery, which adapts two Action Rules discovery algorithms, ARoGS and 

AAR, to a distributed environment through Random-Forest approach, using MapReduce 

framework on Hadoop. The proposed new method presents a highly scalable solution for 

Action Rules discovery as it adjust to large datasets, through splitting the data, and utilizing 

multiple nodes for processing. Our results show significant improvement in processing time for 

Action Rules extraction, with increased data size, when using multiple nodes, compared to the 

standard single node (single machine) processing. The large datasets are very difficult to 

process on a single machine using the currently existing Action Rules discovery methods. 

 

Action rules can be used in medical, financial, education, transportation, and industrial domain. 

Action rules suggest actions (changes in flexible attributes) the user can undertake to 

accomplish their goal. In our study, example goals were: in transportation domain: ‘change the 

car state from unacceptable to acceptable’; in medical domain: ‘re-classify a breast tumor 

form malignant to benign severity’. In other domains example goals can be: in financial 

domain: ‘increase the customer loyalty’; ‘how to decrease the risk of a loan’; education 

domain: ‘how to improve student evaluations’. Considering the fact that nowadays all these 

organizations collect and store large amounts of data, and the fact that the amount of data 

grows at high rate on daily basis, this study makes an important contribution by adapting the 

Action Rules discovery algorithms to a distributed environment, using MapReduce and 

Random Forest approach, therefore making the algorithm highly scalable to handle large 

amounts of data. Very limited work has been done on adapting Action Rules discovery to a 

distributed environment processing, therefore this study contributes to solving an important 

challenge.  

 

As future work, we plan experiments of the proposed MR-Random Forest algorithm for 

distributed Action Rules discovery with financial, and education datasets, as well as social 

network data. Future work also includes experiments with Spark distributed environment, as an 

alternative to MapReduce, because of its capabilities to hold large amounts of data in memory 

between jobs, which may improve the processing time. In the future we also plan to optimize 

the AAR (Association Action Rules) algorithm to extract general Action Rules similar to 

ARoGS, in order to reduce the complexity of AAR algorithm. 
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