
MR – RANDOM FOREST ALGORITHM FOR

DISTRIBUTED ACTION RULES DISCOVERY

Angelina A. Tzacheva, Arunkumar Bagavathi, Punniya D. Ganesan

Dept. of Computer Science, Univ. of North Carolina at Charlotte, Charlotte, NC, USA
aatzache@uncc.edu, abagavat@uncc.edu, pganesa1@uncc.edu

ABSTRACT

Action rules, which are the modified versions of classification rules, are one of the modern approaches

for discovering knowledge in databases. Action rules allow us to discover actionable knowledge from

large datasets. Classification rules are tailored to predict the object’s class. Whereas action rules

extracted from an information system produce knowledge in the form of suggestions of how an object can

change from one class to another more desirable class. Over the years, computer storage has become

larger and also the internet has become faster. Hence the digital data is widely spread around the world

and even it is growing in size such a way that it requires more time and space to collect and analyze them

than a single computer can handle. To produce action rules from a distributed massive data requires a

distributed action rules processing algorithm which can process the datasets in all systems in one or

more clusters simultaneously and combine them efficiently to induce single set of action rules. There has

been little research on action rules discovery in the distributed environment, which presents a challenge.

In this paper, we propose a new algorithm called MR – Random Forest Algorithm to extract the action

rules in a distributed processing environment.

KEYWORDS

Data Mining, Action Rules, MapReduce, Hadoop

1. INTRODUCTION

The process of refining knowledge or finding interesting patterns in large datasets is called Data

Mining. Some of the classical knowledge discovery algorithms that can be used to find these

patterns are classification, association and clustering. These algorithms identify the enormous

number of patterns from the data regardless of the fact that most of the patterns are not of user’s

interest. Therefore, these patterns are overwhelming to the users to analyze them manually to

infer solutions for problems in their corresponding domains. For example, in a cancer dataset, if

an oncologist wants to find what changes among the attributes in the data can cure a type of

cancer, the classical style of knowledge discovery does not help.

However, there has been research like the algorithm proposed in [1], [2], [3], [4] and [5] in a

past decade for an optimistic approach to produce actions (change in an object’s state) based on

the discovered patterns, which is called an action rule. Action rule is a rule extracted from a

dataset that describes the possible transition of objects from one state to another with respect to

the distinguished attribute called decision attribute [1]. To generate action rules, the attributes in

the dataset are split into two groups called – Flexible Attributes and Stable Attributes. Flexible

attributes are those for which the state can change and the stable attributes are those for which

the state is always fixed. To obtain action rules, the data must contain one or more flexible

attributes.

Assume the dataset is in the form of an information system S = {A ∪ B ∪ D}, where A is a

stable attribute and {B, D} are flexible attributes out of which D is a distinguished attribute

called decision attribute. Also assume {a1, a2, …., an} ⊆ A, {b1, b2, …., bn} ⊆ B and {d1, d2} ⊆

D. The following is an example action rule if the user desires the decision attribute value to

change from d1 to d2:

r1 = (A, a2 → a1) ^ (B, b1) (D, d1 → d2)

The above action rule r1 means that, if the attribute A changes its value from a1 to a2 and the

attribute B remains unchanged value=b1, then the attribute D is expected to change from d1 to

d2. (A, a2 → a1) and (B, b1) are generally called atomic action sets.

If the dataset in small, a single computer system generates action rules faster. However, if the

dataset is massive, it becomes very expensive for a single system to produce action rules.

Therefore, we propose an algorithm which runs at the same time on several computer systems

(nodes). In addition to producing the results faster, the generated action rules are more reliable,

as they are cross referenced among the multiple nodes. In this work, in order to generate action

rules in a distributed environment, we are using the strategy proposed by Google [12] called

MapReduce. For running the MapReduce, we are using Apache’s open source Hadoop

framework [11] for processing immense datasets in multiple nodes in one or more clusters.

In this work, we propose MapReduce (MR) – Random Forest algorithm for Action Rules

discovery. We adapt the algorithm known as Action Rules Discovery Based on Grabbing

Strategy (ARoGS) and Learning from Example based on Rough Sets (LERS) [7] to the

distributed MapReduce environment. LERS is utilized as a base algorithm to generate action

rules in Mappers of the Hadoop cluster. Next, the generated output is fed to the ensemble

learning method known as Random Forest [13] in Reducers of the Hadoop cluster to produce a

singleton set of action rules. Finally, we employ a second method for generating action rules,

called Association-Action Rules (AAR) as described in paper [10], and compare the resulting

action rules from Grabbing Strategy and from Association-Action rules Strategy in a distributed

environment.

2. RELATED WORK

The notion of action rules was initially proposed in [1] which brings in the idea of splitting the

attributes into stable attributes, flexible attributes and a decision attribute. Action rules have

been investigated further in [2], [3], [4], [5], [6], [7], [8], [9] and [10]. However, in the earlier

research, the action rules were produced using pairs of classification rules. Ras and Dardzinska

[5] made the first attempt to give a lattice-theory type of framework for producing the action

rules with single classification rule without any detailed algorithm, but directly from the

database. Later, Ras and Wyrzykowska [3] gave a LERS [15] type of algorithm that considers

only marked certain rules to construct the action rules. Ras and Wyrzykowska [7] proposed a

new algorithm named ARoGS which combines each action rule generated from single

classification rule with the remaining stable attributes to offer more action rules. This work

discovers more action rules that were missed out in the previous algorithms.

Ras and Tsay [6] defined DEAR systems which proposes a definition to calculate support and

confidence for the generated action rules. Tzacheva and Ras [9] provided more reliable formula

for calculating support and confidence of action rules. The support and confidence of action

rules were further simplified and improved in the research of Tzacheva [17], including the

introduction of a new measure called Utility. Ras and Dardzinska [10] suggested an Apriori-like

algorithm for action rules discovery, which generates association-type action rules using

frequent action items. This is one of the methods to generate action rules without using

classification rules.

In this work, we combine the ARoGS [7] algorithm with the new support and confidence

measures by Tzacheva [17], and we propose a Random-Forest [13] based algorithm for

discovery of action rules in a distributed environment utilizing MapReduce, called MapReduce

(MR) – Random Forest algorithm for Action Rules discovery. Further, we adapt the

Association–Action rules [10] algorithm to our distributed environment. Finally, we compare

the results of ARoGS and Association-Action rules operating in the distributed environment.

2. METHODOLOGY

We implement the proposed MR - Random-Forest algorithm for distributed action rules

discovery using Apache Hadoop framework [11] and Google MapReduce [12]. An overview of

the proposed algorithm is shown on Figure 1. We take as an input a set of files: the data, the

attribute names, user specified parameters such as: minimum support, and confidence tresholds,

stable attribute names, flexible attribute names, decision attribute choice, decision attribute

value to change_from, and decision attribute value to change_to, which is the desired value of

decision attribute (desired object state). We import these input files into the HDFS (Hadoop

Distributed File System). Our MapReduce algorithm consists of three jobs: Job 1 runs LERS

and ARoGS methods to generate Action Rules (AR); Job 2 runs Association–Action rules

method to produce an Association type of Action Rules (AAR); and the Job 3 collects the

output of Job1 and Job2 and compares the rules. Job 3 compares both action rules and

association action rules, finds the rules which are identical from Job1 and Job2, and produces a

single list of rules as an output.

Now we describe the LERS, ARoGS, and Association-Action rules methods in detail. Consider

an information system S:

S = (X, A, VA) where,

X is a set of objects: X = {x1, x2, x3, x4, x5}

A is a set of attributes: A = {a, b, c, d} and

VA represents a set of values for each attribute in A. For example Vb = {b0, b2}.

We use the sample information system S is shown in Table 1. to demonstrate output from these

algorithms. Consider attribute b to be a Stable Attribute , attributes {a, c} to be Flexible

Attributes, attribute d to be the Decision Attribute, and that the user desires the decision value

to change from d1 to d2. Also user is interested in action rules with minimum support of 2 and

minimum confidence of 80%.

Table 1. Sample Information System S

X a b c d

x1 a1 b0 c2 d1

x2 a0 b0 c1 d2

x3 a2 b0 c2 d1

x4 a0 b0 c2 d2

x5 a1 b2 c2 d1

Figure 1. MR-Random Forest Algorithm for Distributed Action Rules Discovery Overview

3.1. LERS

Our proposed implementation of the LERS (Learning from Examples based on Rough

Sets) method in a distributed scenario using MapReduce is illustrated in Figure 2. Using

the information system S from Table 1., LERS strategy can find all certain and possible

rules describing decision attribute d in terms of attributes a, b, and c.

LERS can be used as a data strategy to generate decision rules. From selected pairs of these

decision rules, the action rules can be composed as described by Ras and Wyrzykowska [3],

[15]. We consider only marked certain rules to construct the action rules. Since LERS follows

bottom-up strategy, it constructs rules with a conditional part of length x, then it continues to

construct rules with a conditional part of length x+1. According to papers [3] and [15], the

LERS system rules that get induced from lower and upper approximations are called certain and

possible rules, respectively.

Using the information system S from Table 1., the LERS algorithm produces the certain and

possible rules at each iteration shown in Table 2. Next, these rules are given as an input to the

AR (Action Rules) algorithm, which builds action rules by taking all certain rules from Table 2.

The proposed AR algorithm in a distributed environment is illustrated in Figure 3.

ALGORITHM 1:
LERS (attributesSupport, decisionSupport)

(where attributesSupport and decisionSupport are maps with distinct attribute values as
keys and their corresponding value is the objects in the information system supporting
them)

fixedSupport ← attributesSupport
while attributesSupport is not empty do

for each key, value pair in the attributeSupport do
if value is a subset of one of the values of decisionSupport then

Add key and decisionValue to certainRules
(where certainRules is a map with attribute value as a ‘key’ and decision
attribute value as a ‘value’)

else
Add key and value to possibleRules
(where possibleRules is a map with attribute value as a ‘key’ and decision
attribute value as a ‘value’)

end
delete key from the attributesSupport

end
for each key1, value1 pair in the possibleRules do

for each key2, value2 pair in the fixedSupport do
if key1 contains key2 then Continue
else

key3 ← (key2, key1)
value3 ← Set of objects in information system supporting key3
Add key3 and value3 to attributeSupport

end
end

end
end

Figure 2. LERS (Learning from Examples based on Rough Sets) Algorithm in a distributed

environment using MapReduce

decisionSupport: (d1)* = {x1, x3, x5} and (d2)* = {x2, x4}

Table 2. Certain and Possible Rules produced by LERS algorithm on data S from Table 1.

Itera

tion

Attribute value support Certain

rules

Possible

rules

1 (a0)*
 = {x2, x4} – marked

(a1)*
 = {x1, x5} – marked

(a2)*
 = {x3,} – marked

(b0)*
 = {x1, x2, x3, x4}

(b2)*
 = {x5} - marked

(c1)*
 = {x2} - marked

(c2)*
 = {x1, x3, x4, x5}

a0 → d2

a1 → d1

a2 → d1

b2 → d1

c1 → d2

b0 → d1

b0 → d2

c2 → d1

c2 → d2

2 (b0, c2)* = { x1, x3 x5} b0 ^ c2 → d1

b0 ^ c2 → d2

3.2. ARoGS

ARoGS is Action Rules Discovery Based on Grabbing Strategy, which uses LERS. It is given

by Ras and Wyrzykowska in paper [7] as an alternative to system DEAR from paper [6].

ARoGS uses LERS to extract action rules, without the need of verifying the validity of the

certain relations. It just has to check if these relations are marked by LERS. By using LERS in

the pre-processing module for defining classification rules, the overall complexity of ARoGS

algorithm decreases.

In our proposed method, we take the final set of certain rules extracted by LERS and create new

action rule by combining a certain rule with other certain rules. Using the flexible attributes in

the certain rules, atomic action sets like (a, a1 → a2) can be formed. We extract all action rules,

which imply d1 → d2 by using AR algorithm described in Figure 3.

Consider the following action rules, which are obtained by following the algorithm AR using

the information system in Table 1:

ar1 (d1 → d2) = (a, 1 → 0) (d, 1 → 2)

ar2 (d1 → d2) = (a, 2 → 0) (d, 1 → 2)

The algorithm ARoGS runs on each action rule generated by algorithm AR, and it produces the

following additional action rule (ar3):

ar3 (d1 → d2) = (b, 2) ^ (a, 1 → 0) (d, 1 → 2)

ARoGS produces this additional rule, because it is treating each action rule describing the target

decision value as a seed and grabs other action rules describing non-target decision values in

order to form a cluster. From the newly formed clusters, it builds decision rules, where a

grabbed seed is only compared with that seed. Our proposed implementation of ARoGS in a

distributed environment is shown on Figure 4.

3.3. Association Action Rules

The Association–Action Rules described by Ras and Dardzinska in paper [10] is an algorithm

intended to simplify the action rules construction by employing the ‘lowest cost’ strategy. The

Association–Action Rules (AAR) algorithm uses a different approach, from the ones described

above, as it generates association-type action rules using frequent action sets in an Apriori-like

fashion. The extracted action rules are intended to have minimal attribute involvement. The

frequent action set generation is divided in two steps: merging step and pruning step. In the

merging step: we merge the previous two frequent action sets into a new action set. For our

example, using the data from the Information System in Table 1, the primary action sets

generated by AAR are shown in Table 3. The frequent action sets generated by AAR are shown

in Table 4. In the pruning step: we discard the newly formed action set if it does not contain the

decision action (e.g. the user desired value of decision attribute). In our example, the action set

is discarded if (d, 1 → 2) is not present in it. From each frequent action set, the association

action rules are formed. Therefore, the AAR algorithm generates frequent action sets and forms

the association action rules from these action sets. Our proposed implementation of AAR

algorithm in a distributed environment is shown in Figure 5.

For our example, using the data from the Information system in Table 1, the AAR algorithm
generates following Association Action Rules:

aar1 (d1 → d2) = (a, 2 → 0) (d, 1 → 2)
aar2 (d1 → d2) = (a, 1 → 0) (d, 1 → 2)
aar3 (d1 → d2) = (b, 0) ^ (a, 1 → 0) (d, 1 → 2)
aar4 (d1 → d2) = (c, 0) ^ (a, 1 → 0) (d, 1 → 2)
……..

ALGORITHM 2:
AR (certainRules, decisionFrom, decisionTo)

(where certainRules is a map provided by the algorithm LERS)

for each key1, value1 pair in the certainRules do

for each key2, value2 pair in the certainRules do
if value1 equals decisionFrom and value1 equals decisionTo then

if key2 attributes are a subset of key1 attributes and key2 stable
attributes are a subset of key1 stable attributes then

actions ← empty list
for each attribute value a1 in key1 do

for each attribute value a2 in key2 do
if a1 and a2 belongs to same attribute then

a←attributeName(a1)
actions. Add(“(a, a1 → a2)”)

end
end

end
Output actions as action rule
ARoGS(actions, decisionFrom, decisionTo)

end
end

 end

Figure 3. AR (ActionRules) Algorithm in a distributed environment using MapReduce

……..
aarn-1 (d1 → d2) = (b, 0) ^ (c, 0) ^ (a, 1 → 0)
(d, 1 → 2)
aarn (d1 → d2) = (b, 0) ^ (a, 1 → 0) ^ (c, 2 → 1)

(d, 1 → 2)

Table 3. Primary Action Sets for Information System S from Table 1.

Attribute Primary action sets

a
(a, a0), (a, a1), (a, a2),

(a, a0 → a1), (a, a0 → a2)

(a, a1 → a0), (a, a1 → a2),

(a, a2 → a0), (a, a2 → a1)

b
(b, b0)

(b, b2)

c
(c, c1 → c2)

(c, c2 → c1)

d
(d, d1 → d2)

(d, d2 → d1)

ALGORITHM 3:
ARoGS (actions, decisionFrom, decisionTo)

 (where ‘actions’ is a list of actions from Algorithm AR)

stableValues ← list of stable attribute values in actions
actionsSupport ←set of objects in the information system supporting all attribute

values in actions
missingValues ←set of missing flexible attribute values of the attributes in actions
and a set of stable attributes values of stable attributes not present in actions
for each value in missingValues do

newValues ← combine value with stableValues
newSupport ← set of objects in the information system supporting

newValues in actions
if newSupport is a subset of actionsSupport then

Add value to actions
Output actions as action rule

 end
 end

Figure 4. ARoGS (Action Rules Discovery based on Grabbing Strategy) in a distributed

environment using MapReduce

Table 4. Frequent Action Sets for Information System S from Table 1.

Iteration # Frequent action sets

1
(a, a0) ^ (d, d1 → d2)

(a, a1) ^ (d, d1 → d2)

(a, a2) ^ (d, d1 → d2)

(b, b0) ^ (d, d1 → d2)

(b, b2) ^ (d, d1 → d2)

(a, a0 → a1) ^ (d, d1 → d2)

(a, a0 → a2) ^ (d, d1 → d2)

…….

…….

Iteration # Frequent action sets

2
(a, a0) ^ (b, b0) ^ (d, d1 → d2)

(a, a1) ^ (b, b0) ^ (d, d1 → d2)

(b, b0) ^ (c, c1) ^ (d, d1 → d2)

(a, a0 → a1) ^ (b, b0) ^ (d, d1 → d2)

…….

…….

Iteration # Frequent action sets

3
(a, a0) ^ (b, b0) ^ (c, c1) ^ (d, d1 → d2)

(a, a1) ^ (b, b0) ^ (c, c1) ^ (d, d1 → d2)

(a, a2) ^ (b, b0) ^ (c, c1) ^ (d, d1 → d2)

(a, a0) ^ (b, b0) ^ (c, c1 → c2) ^ (d, d1 → d2)

…….

…….

3.4. Support and Confidence of Action Rules

Consider an action rule R of the form

(Y1 → Y2) (Z1 → Z2) where,

Y is concatenation of all action sets that support the decision action Z

Y1 = attribute values on left side of all actions in the left side of the action rule R

Y2 = attribute values on right side of all actions in the left side of the action rule R

Z1 = decision attribute value on the left side

Z2 = decision attribute value on the right side

1) Support and Confidence: Association Action Rules

For an Association Action Rule aar, the following support and confidence applies, given in paper
[9]:

Support (aar) = min [card (Y1 ^ Z1), card (Y2 ^ Z2)]
Confidence (aar) = [card (Y1 ^ Z1) / card (Y1)] * [card (Y2 ^ Z2) / card (Y2)]

where card(Y1) ≠ 0 and card(Y2) ≠ 0

2) Support and Confidence: ARoGS

In ARoGS support and confidence of an action rule ar are calculated using the following

formulas given in paper [7]:

Support (ar) = card (Y2 ^ Z2)

Old Confidence (ar) = [card (Y1 ^ Z1) / card (Y1)] * [card (Y2 ^ Z2) / card (Y2)]

In our proposed method, this confidence is replaced by the following confidence formula given

by Tzacheva et al. [17] to reduce complexity:

New Confidence (ar) = [card (Y2 ^ Z2) / card (Y2)]

where card(Y1) ≠ 0 and card(Y2) ≠ 0

 In the above formulas, card (X) means Cardinality which is the number of objects in the

information system containing the value X. The algorithms eliminate action rules if the

corresponding support and confidence is less than the given minimum support and confidence.

For example, for the rule ar3 (d1 → d2) and aar3 (d1 → d2), the Support = 0 which is less than

the user specified support threshold = 2 in our example for the Information System S in Table 1.

Therefore, these rules are discarded by the algorithms.

3.5. MR-Random Forest Algorithm for Action Rules

In our proposed implementation using the Hadoop MapReduce framework, the above described

algorithms run in parallel in distinct threads as two separate jobs, as shown on Figure 1. LERS

and AR in Job1, and AAR in Job2. Each job has its own Map and Reduce parts. The LERS, AR,

and AAR algorithms are implemented in the Map part. Hadoop splits the data and gives splits of

data to several Map parts (Mappers). The resulting action rules from all the Mappers are

combined in such a way that the action rule acts as a key and the support and confidence from

all the Mappers acts as iterator list of values. The combined action rules are given to the Reduce

part, where we propose using a Random Forest [13] type of algorithm in order to combine the

output from all the Mappers. The Random Forest algorithm works in analogy to ‘voting’, where

if more than 50% of the parties agree, the vote is accepted. In our proposed implementation, the

ALGORITHM 5: Reduce (Key, values)

(where Key is an action rule from Algorithm AR or Algorithm AAR and values is a
list of support and confidences of a Key from n Maps)
if Count(values) >= n / 2 then

supp ← Average of all supports
 conf ← Average of all confidences
 if supp >= minimum support and
conf >= minimum confidence then
 Output Key with supp and conf
 end
end

Figure 6. Random Forest algorithm in Reduce part of MapReduce combines Action Rules

from multiple Mappers

Random Forest algorithm checks the output from all the Mappers, and if it finds an action rule

which is generated from more than 50% of the Mappers it retains that action rule. If so, it

averages all supports and confidences from these Mappers for the given action rule. Then, it

checks the averaged support and confidence against the minimum support and confidence

thresholds specified by the user. If the support and confidence thresholds are met, the action rule

is retained, and included in the final list of action rules, produced as an output from this system,

and presented to the user. Our proposed MR-Random Forest Algorithm, implemented in the

Reduce part of MapReduce, is shown on Figure 6. This figure gives an overview of how our

Reduce part works.

3. EXPERIMENT AND RESULTS

We used two datasets for testing our proposed MR - Random-Forest algorithm for distributed

action rules discovery: Car Evaluation dataset and Mammographic-mass dataset, obtained from

the Machine Learning Repository by Information and Computer Sciences of the University of

California, Irvine [16].

We ran the ARoGS and AAR (Association Action Rules) algorithms on the University of North

Carolina at Charlotte Hadoop Research cluster, which has 73 nodes. Hadoop splits the data with

respect to its block size. Even though the default block size in Hadoop is 64 MB, it can be

reduced to support smaller datasets. The minimum block size we can set is 1.04 MB. Since the

minimum block size in Hadoop is 1.04 MB, it would not be splitting our original data. As we

are adapting the Action Rules discovery algorithm to work witch much bigger datasets, than it

has worked with before, then we replicate the original datasets multiple times to test the

proposed algorithm in a distributed environment. This also brings the final dataset to size

greater than 1.04 MB, so Hadoop splits it automatically.

We chose the Car Evaluation dataset, and the Mammographic-mass dataset for this study, in

order to illustrate the application of Action Rules in two different domains: transportation

domain, and medical domain.

Table 5. Properties of Car Evaluation dataset and Mammographic-Mass Dataset

Property Car Evaluation Dataset Mammographic Mass

Dataset

Number of instances 1728 961

Replication Factor 116 518

Number of instances after

replication

200448 497798

Attributes 7 attributes

• Buying

• Maintenance

• Doors

• Persons

• Luggage boot

• Safety

• Class

6 attributes

•BI-RADS assessment

• Patient’s age

• Shape

• Margin

• Density

• Severity

Decision attribute values Class

(unacc, acc, good, vgood)

Severity

(0 - benign, 1 - malignant)

Original data size 52.3 Kilo Bytes 16 Kilo Bytes

Final data size 5.92 Mega Bytes 7.83 Mega Bytes

The Car Evaluation dataset [16] is donated by Prof. Dr. Marko Bohanec, from Department of

Knowledge Technolgoies, Jozef Stefan Institute, in Liublijana, Slovenia. It is intended to

evaluate cars according to the car acceptability, according to its buying price, maintenance cost,

technical characteristics such as comfort, number of doors, number of persons to carry, the size

of its luggage boot, and the car safety. The Car Evaluation dataset has 1728 tuples, and 7

attributes, as shown in Table 5. For the purpose of this study, the Car Evaluation dataset was

replicated 116 times, in order to increase its size, and demonstrate the scalability of our

proposed method. Action Rules extracted for this dataset can suggest actions to be undertaken

(changes in flexible attributes) if the user would like to increase the car’s safety, or if the user

would like to change the car state from ‘unacceptable’ (unacc) to ‘acceptable’ (acc). An

example Action Rule extracted from this dataset is:

arCar1 (class, unacc → acc) = (buying, buyinglow→buyinglow) ^ (persons, persons2 →

persons4) ^ (safety, → safetyhigh) (class, unacc → acc) [Support: 237 &

Confidence: 93.0%]

The rule arCar1 means that: if the buying price of the car remains low (buyinglow), and the

number of persons it can carry increases from 2 (persons2) to 4 (persons4), and the safety of the

car increases from any value to high (safetyhigh), then the decision attribute (class) value is

expected to change from unacceptable (unacc) to acceptable (acc). A total of 237 tuples

(objects) support this rule, and we are 93% confident in the validity of this rule. Example

Actions, called Meta-Actions, which can trigger the above changes are: ‘improve air bags’ (to

increase safety); ‘improve breaks’ (to increase safety); ‘make larger salon’ (to increase person

capacity of the vehicles). These are called Meta-Actions as described by Tzacheva and Ras [9],

since they trigger the suggested changes in flexible attributes specified by the Action Rules. The

Meta-Actions can either be provided by expert in the domain and added to the original data to

augment it, or they can be automatically extracted from text descriptions associated with the

data as shown by Kuang and Ras [18]. For this study, the attributes {Buying, Maintenance,

Doors} are designated as Stable Attributes, and the attributes {Persons, LuggageBoot, Saftety}

are designated as Flexible Attributes, and the attribute Class is designated as the decision

attribute, which is also a flexible attribute. These parameters are shown in Table 6.

The Mammographic-Mass dataset [16] is donated by Prof. Dr. Rdiger Schulz-Wendtland from

the Institute of Radiology at the University Erlangen-Nuremberg, Germany. This dataset is used

to predict the severity (benign or malignant) of a mammographic mass lesion from BI-RADS

attributes and the patient’s age. It contains a BI-RADS assessment, the patient’s age and three

BI-RADS attributes together with the ground truth (the severity field) for 516 benign and 445

malignant masses that have been identified on full field digital mammograms collected at the

University Erlangen-Nuremberg. The Mammographic-Mass dataset contains 961 instances, and

has 6 attributes, as shown in Table 5. For the purpose of this study, the Car Evaluation dataset

was replicated 518 times, in order to increase its size, and demonstrate the scalability of our

proposed method. Action rules extracted from the Mammographic-Mass dataset can suggest

actions to be undertaken (changes in flexible attributes), in order to re-classify a mammographic

mass lesion (tumor) from class: malignant to class: benign. An example Action Rule extracted

from this dataset is:

arMam1 (severity, 1 → 0) = (Margin, 3→4) ^ (BI-RADS, 5 → 4) ^ (Density, → 3)
(severity, 1 → 0) [Support: 284 & Confidence: 82.4%]

The rule arMam1 means that: if the Margin of the lesion (tumor) changes from 3 to 4, and the BI-

RADS assessment changes from 5 to 4, and the Density of the lesion (tumor) changes from any

value to 3, then the severity (decision attribute) is expected to change from value 1 (malignant)

to value 0 (benign). A total of 284 tuples (objects) support this rule, and we are 82.4% confident

in the validity of this rule. The suggested desired changes can be triggered by Meta-Actions [9].

Example Meta-Actions, which can trigger the above changes are: ‘doctor prescribes specific

medication’ (to change BI-RADS assessment); or ‘doctor performs a specific medial procedure’

(to change the margin of the lesion). For this study, we designate {BIRADS, Margin, Density,

Shape} as Flexible Attributes. We designate {Shape, Age} as a Stable Attributes. We designate

Severity as our decision (class) attribute, which is also a flexible attribute. These parameters are

shown in Table 6.

Table 6. Parameters used for Action Rules discovery on the Car Evaluation dataset and

Mammographic-Mass dataset

Parameters Car Evaluation

Dataset

Mammographic-Mass

Dataset

Stable attributes Buying, Maintenance,

Doors

Shape, Age

Expected decision

action

(Class) unacc → acc (Severity) 1 → 0

Minimum support and

confidence

150, 80% 50, 70%

Since we replicated the datasets multiple times, as shown in Table 5., the size of the data was

substantially increased from the original. Next, we ran our experiment, and Hadoop made 6

splits of the data for the Car Evaluation dataset, and it made 8 splits of the data for the

Mammographic-mass dataset. The ARoGS algorithm took 1.84 minutes to process the Car

Evaluation data on a single node, and it took 1.12 minutes to process the Car Evaluation dataset

on 6 nodes. The Association Action Rules algorithm took 11.09 minutes to process the Car

Evaluation dataset on a single node, and it took 5.4 minutes to process the Car Evaluation

dataset on 6 nodes. The ARoGS algorithm took 0.53 minutes to process the Mammographic

Mass dataset on a single node, and it took 0.29 minutes to process the Mammographic Mass

dataset on 8 nodes. The AAR algorithm took 9.4 minutes to process the Mammographic Mass

dataset on a single node, and it took 5.4 minutes to process the Mammographic Mass dataset on

8 nodes. A comparison of the processing time for these algorithms is shown on Table 7.

Table 7. Comparison of processing time for ARoGS and AAR algorithms using MapReduce

(MR) – Random Forest method on Hadoop

Dataset Number of

splits (nodes)

ARoGS

(minutes)

AAR

(minutes)

Car Evaluation Data 1 1.84 11.09

6 1.12 5.4

Mammographic-Mass Data 1 0.53 9.4

8 0.29 6.2

The processing times shown in Table 7. indicate that: the larger the data size is, the faster our

algorithms run (both ARoGS and AAR algorithms), when using multiple nodes (in a distributed

environment with MapReduce framework), compared to a single node (a single machine). From

the results in Table 7., we can also see that ARoGS algorithm generates the Action Rules much

faster than the AAR algorithm does, while using the MR - Random Forest method in the Reduce

phase for both. The AAR (Association Action Rules) takes a much longer time to generate

Action Rules because it follows Apriori-like method described in section 3.3 to produce all

possible combination of action sets and from these action sets, it generates all possible Action

Rules. Table 8. depicts sample comparison of rules generated by both the algorithms on the Car

dataset.

Next, we compare the ARoGS and the AAR algorithm. Our results indicate that the ARoGS

algorithm produces more general Action Rules, while the AAR algorithm produces more specific

Action Rules. By general Action Rule we mean that the rule contains an atomic action set like

(safety, -> safetyhigh) i.e. the safety is changed from any value to value safetyhigh. On the other

hand, the AAR algorithm produces only specific Action Rules i.e. the action sets have both

values chage_from and change_to specified, such as: (safety, safetlylow -> safetyhigh). Even

though the AAR algorithm follows Apriori-like method and takes much longer time to process, it

generates more rules comparing to the ARoGS method. For our study, the ARoGS produced 20

Action Rules the Car Evaluation Dataset, while AAR produced 124 Action Rules, out of which

80 rules can be generalized to the rules produced by ARoGS algorithm. We show an example of

ARoGS general Action Rule, and its corresponding AAR specific Action Rules on Table 8.

This comparison of Action Rules produced by ARoGS and AAR is performed in Job3 of our

proposed method as shown on Figure 1. Job3 produces the final list of Action Rules presented

to the user.

Table 8. Comparison of general and specific Action Rules produced by ARoGS and AAR

respectively

ARoGS

general action rule
AAR

corresponding specific ation rule

(safety, → safetyhigh)

(buying, buyinglow→buyinglow) ^

(maint, maintvhigh → maintvhigh) ^

(persons, persons2 → persons4) ^

(safety, → safetyhigh) (Class, unacc

→ acc) [Support: 232 & Confidence:

100.0%]

(buying, buyinglow → buyinglow) ^ (maint,

maintvhigh → maintvhigh) ^ (persons, persons2

→ persons4) ^ (safety, safetylow → safetyhigh)

 (Class, unacc → acc) [Support: 232 &

Confidence: 100%]]

(buying, buyinglow → buyinglow) ^ (maint,

maintvhigh → maintvhigh) ^ (persons, persons2

→ persons4) ^ (safety, safetymed → safetyhigh)

 (Class, unacc → acc) [Support: 232 &

Confidence: 100%]]

(buying, buyinglow → buyinglow) ^ (maint,

maintvhigh → maintvhigh) ^ (persons, persons2

→ persons4) ^ (safety, safetyhigh → safetyhigh)

 (Class, unacc → acc) [Support: 232 &

Confidence: 100%]]

3. CONCLUSION

In this work, we propose a novel method MR – Random Forest Algorithm for Distributed

Action Rules Discovery, which adapts two Action Rules discovery algorithms, ARoGS and

AAR, to a distributed environment through Random-Forest approach, using MapReduce

framework on Hadoop. The proposed new method presents a highly scalable solution for

Action Rules discovery as it adjust to large datasets, through splitting the data, and utilizing

multiple nodes for processing. Our results show significant improvement in processing time for

Action Rules extraction, with increased data size, when using multiple nodes, compared to the

standard single node (single machine) processing. The large datasets are very difficult to

process on a single machine using the currently existing Action Rules discovery methods.

Action rules can be used in medical, financial, education, transportation, and industrial domain.

Action rules suggest actions (changes in flexible attributes) the user can undertake to

accomplish their goal. In our study, example goals were: in transportation domain: ‘change the

car state from unacceptable to acceptable’; in medical domain: ‘re-classify a breast tumor

form malignant to benign severity’. In other domains example goals can be: in financial

domain: ‘increase the customer loyalty’; ‘how to decrease the risk of a loan’; education

domain: ‘how to improve student evaluations’. Considering the fact that nowadays all these

organizations collect and store large amounts of data, and the fact that the amount of data

grows at high rate on daily basis, this study makes an important contribution by adapting the

Action Rules discovery algorithms to a distributed environment, using MapReduce and

Random Forest approach, therefore making the algorithm highly scalable to handle large

amounts of data. Very limited work has been done on adapting Action Rules discovery to a

distributed environment processing, therefore this study contributes to solving an important

challenge.

As future work, we plan experiments of the proposed MR-Random Forest algorithm for

distributed Action Rules discovery with financial, and education datasets, as well as social

network data. Future work also includes experiments with Spark distributed environment, as an

alternative to MapReduce, because of its capabilities to hold large amounts of data in memory

between jobs, which may improve the processing time. In the future we also plan to optimize

the AAR (Association Action Rules) algorithm to extract general Action Rules similar to

ARoGS, in order to reduce the complexity of AAR algorithm.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Dr. Mirsad Hadzikadic, director of the Complex Systems

Institute at University of North Carolina at Charlotte, for his support.

REFERENCES

[1] Z.W. Ras, A. Wieczorkowska (2000), Action-Rules: How to increase profit of a company, in

Principles of Data Mining and Knowledge Discovery, Proceedings of PKDD 2000,Lyon, France,

LNAI, No. 1910, Springer, pp. 587-592.

[2] Z. He, X. Xu, S. Deng, R. Ma (2005), Mining action rules from scratch, Expert Systems with

Applications, Vol. 29, No. 3, pp. 691-699.

[3] Z.W. Ras, E. Wyrzykowska, H. Wasyluk (2007), ARAS: Action rules discovery based on

Agglomerative Strategy, in Mining Complex Data, Post-Proceedings of 2007 ECML/PKDD

Third International Workshop (MCD 2007), LNAI, Vol. 4944, Springer, 2008, pp. 196-208.

[4] S. Im, Z.W. Ras. (2008), Action rule extraction from a decision table: ARED. Foundations of

Intelligent Systems, Proceedings of ISMIS’08, A. An et al. (Eds.), Springer, LNCS, Vol. 4994,

2008, pp. 160-168.

[5] Z.W. Ras, A. Dardzinska (2006), Action rules discovery, a new simplified strategy, Foundations

of Intelligent Systems, LNAI, No. 4203, Springer, pp. 445-453.

[6] Z.W. Ras, L.S. Tsay (2003), Discovering extended action-rules, System DEAR, in Intelligent

Information Systems 2003, Advances in Soft Computing, Proceedings of the IIS’2003

Symposium, Zakopane, Poland, Springer, pp. 293-300.

[7] Z. W. Ras, E. Wyrzykowska (2007), ARoGS: Action Rules discovery based on Grabbing

Strategy and LERS, in Proceedings of 2007 ECML/PKDD Third International Workshop on

Mining Complex Data (MCD 2007), Univ. of Warsaw, Poland, 2007, pp. 95-105.

[8] A.A. Tzacheva, Z.W. Ras (2007), Constraint based action rule discovery with single

classification rules, in Proceedings of the Joint Rough Sets Symposium (JRS07), LNAI, Vol.

4482, Springer, pp. 322-329.

[9] A.A. Tzacheva, Z.W. Ras (2010), Association Action Rules and Action Paths Triggered by

Meta-Actions, in Proceedings of 2010 IEEE Conference on Granular Computing, Silicon Valley,

CA, IEEE Computer Society, pp. 772-776.

[10] Z.W. Raś, A. Dardzińska, L.-S. Tsay, H. Wasyluk (2008), Association Action Rules,

IEEE/ICDM Workshop on Mining Complex Data (MCD 2008), Pisa, Italy, ICDM Workshops

Proceedings, IEEE Computer Society, 2008, pp. 283-290.

[11] A. Bialecki, M.Cafarella, D.Cutting and O. Omalley (2005), Hadoop: A Framework for running

applications on large clusters built of commodity hardware. [http://lucene.apache.org/hadoop] .

Vol .11, 2005.

[12] J.Dean and S. Ghemawat (2004), MapReduce: Simplified Dataprocessing on large clusters in

proceedings of the 6th conference on Symposium on Operating Systems Design and

Implementation – Volume 6, ser. OSDI’04, Berkeley, CA, USA, USENIX Association, 2004,

pp.10-10.

[13] L. Breman (2001), Random Forests, in Machine Learning, Vol. 45, Kluwer Academic, 2001, pp.

5-32

[14] X. Lin, (2014), MR-Apriori: Association Rules algorithm based on MapReduce, in 5th IEEE

International Conference on Software Engineering and Service Science (ICSESS) 2014, Beijing,

China, pp. 141-144.

[15] J. W. Grzymała-Busse, S. R. Marepally, Y. Yao (2013), An Empirical Comparison of Rule Sets

Induced by LERS and Probabilistic Rough Classification , in Rough Sets and Intelligent

Systems, Vol. 1, Springer, pp. 261-276.

[16] M. Lichman (2013), UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine,

CA: University of California, School of Information and Computer Science.

[17] A.A. Tzacheva, C.C. Sankar, S. Ramachandran, R.A. Shankar (2016), Support Confidence and

Utility of Action Rules Triggered by Meta-Actions, in proceedings of 2016 IEEE International

Conference on Knowledge Engineering and Applications (ICKEA 2016), Singapore.

[18] J. Kuang, Z.W. Ras (2015), In Search for Best Meta-Actions to Boost Business Revenue, in

Proceedings of the Conference on Flexible Query Answering Systems 2015, in Krakow, Poland,

Advances in Intelligent Systems and Computing, Vol. 400, Springer, 2015, pp. 431-443.

Authors

Angelina A. Tzacheva is a Teaching Associate

Professor at the Department of

Computer Science at the University of

North Carolina at Charlotte. Her

research interests include: data mining

and knowledge discovery in databases,

multimedia and distributed databases,

and big data analytics.

Arunkumar Bagavathi is a Ph.D of Computer

Science student at the University of

North Carolina at Charlotte. He

received his M.S. in Computer Science

in 2016. His research interests include

data mining and knowledge discovery,

big data analytics, cloud computing,

mobile applications, and social

network mining.

Punniya D. Genesan is a M.S. of Data Science

and Business Analytics student at the

University of North Carolina at

Charlotte. He has worked on Data

Warehousing, and Business

Intelligence projects, Big Data

Analytics, Data modelling and

Machine Learning.

