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Abstract. An ontology database system is a basic relational database manage-
ment system that models an ontology plus its instances. To reason ow@rtie

tive closure of instances in the subsumption hierarchy, an ontologyatstaian
either unfold views at query time or propagate assertions using triggéac
time. In this paper, we present a method to embed ontology knowledge into a
relational database through triggers. We demonstrate that by fonearputing
inferences, we improve query time. We find that: first, ontology databgse
tems scale well for small and medium sized ontologies; and second, gytolo
database systems are able to answer ontology-based queries ddylLidteap-

ply this method to a Glass Identification Ontology, and discuss applications in
Neuroscience.

1 Introduction

Researchers are using Semantic Web ontologies extengiviltelligent information
systems to annotate their data, to drive decision-suppsiess, to integrate data,
and to perform natural language processing and informattraction. Researchers in
biomedicine use ontologies heavily to annotate their datbta drive decision support
systems that translate to applications in clinical pracfg#] .

An ontology defines terms and specifies relationships amuem, tforming a logi-
cal specification of the semantics of some domain. Most ogte$ contain a hierarchy
of terms at minimum, but many have more complex relatiorsstopconsider. Ontolo-
gies provide a means of formally specifying complex desicniys and relationships
about information in a way that is expressive yet amenabl@utomated processing
and reasoning. As such, they offer the promise of facilitamrdormation sharing, data
fusion and exchange among many, distributed and possitdydgeneous data sources.

However, the uninitiated often find that applying these tedbgies to existing data
can be challenging and expensive. What makes this work cigatig in part is: to have
systems that handle basic reasoning over the relationshigs ontology in a simple
manner, that scales well to large data sets. In other worelsagd the capabilities of an
efficient, large-scale knowledge-based system (such as@&nWeb Ontology), but
we want a solution as simple as managing a regular relatdatabase system, such as
MySQL. We argue that: when used in the proper context, reglatabases can behave
like efficient, deductive systems.

In this paper, we present an easy method for users to managatalogy plus
its instances with an off-the-shelf database managemstersylike MySQL, through
triggers. We call these sorts of databagetology databases



An ontology database systetakes a Semantic Web ontology as input, and gen-
erates a database schema based on it. When individuals imtblegy are asserted
in the input, the database tables are populated with canelpg records. Internally,
the database management system processes the data andotbgyoim a way that
maintains the knowledge model, in the same way as a basicl&dgerbase system.

After the database is bootstrapped in this way, users may $Qa. queries to the
system declaratively, i.e. based on terms from the ontolmgy they get answers in re-
turn that incorporate the term hierarchy or other logicatdiees of the ontology. In this
way, our proposed system is useful for handling ontologsedaqueries. That is, users
get answers to queries that take the ontological subsumbigrarchy into account.

We find that ontology databases using our trigger-basedadettale well.

The proposed method can be extended to perform integratiass distributed,
heterogeneous ontology databases using an inferencd-traseework [10].

The rest of the paper is organized as follows: in Section 2eveew related work
and provide background information; in Section 3 we disdhgsmain ideas behind
ontology databases and the proposed method; in Section 4eser case studies; in
Section 5 we suggest directions for the future and conclude.

2 Related Work

Knowledge-based SystemKnowledge-based systems (KBs) use a knowledge rep-
resentation framework, having an underlying logical folism (a language), together
with inference engines to deductively reason over a givenfdenowledge. Users can
tell statements to the KB and ask it queries [20], expecE@gonable answers in return.
An ontology, different from but related to the philosophid&cipline of Ontology, is
one such kind of knowledge representation framework [Ibihe Semantic Web [4],
description logic (DL) [2] forms the underlying logic for tsdogies encoded using the
standard Web Ontology Languagel (OWL). One of the major problwith Semantic
Web KBs is they do not scale to very large data sets [18].

Reasoning.Researchers in logic and databases have contributed tacthéheory
of deductive database systems [12], [13]. For example, |@@ti@5] famously uses
views for reasoning in Horn Logic. We already mentioned BK5{27]. Reasoning
over negations and integrity constraints has also beerestinl the past [19]. Of par-
ticular note, one of the side-remarks in one of Reiters 2] formed an early
motivation for building our system: Reiter saw a need to be¢atime and space in
deductive systems by separating extensional from inteasisrocessing. However33
years laterspace has become expendable. Other works mpmedoBatalog views to
incorporate active rules for reasoning. An active ruleg liktrigger in a database, is a
powerful mechanism using an event-condition-action mealelerform certain actions
whenever a detected event occurs within a system that eatib# given condition. Re-
searchers in object-oriented and deductive databasensysige active technologies in
carefully controlled ways to also manage integrity constsaand other logical features
[7], [26]. Researchers are studying how to bring databasaryhinto the Semantic Web
[21], but more work is needed in that regard.



Scalability. Since reasoning generally poses scalability concernsersydesigners
have used the Lehigh University Benchmark (LUBM) [16] in fteest, to evaluate and
compare knoweldge-based (KB) systems. The Lehigh Uniyeaisthors have also pro-
posed the Description Logic Database (DLDB) [17]. We wolidractarize DLDB as
anontology databasbecause it is similar to our proposed system. It mimics a K& sy
tem by using features of a basic relational database syatafit uses a decomposition
storage model [1] and [6] to create the database schema.

Information Integration. Another important motivation for using ontologies is the
promise they hold for integrating information. Researshiarbiomedical informatics
have taken to this idea with some fervor [14]. One system itiqudar, OntoGrate,
offers an inferrential information integration framewarking ontologies which inte-
grates data by translating queries across ontologies tagetirom target data sources
using an inference engine [8]. The same logical frameworklmextended to move
data across a network of repositories.

3 Ontology Database System

In the following sections, we use a simple running examyple SisitersSiblings exam-
ple, to illustrate how we implement an ontology databas¢esysWe begin with the
basic idea, and then explain how we structure the databasenscand implement each
kind of logical feature using triggers and integrity coasits.

3.1 The Basic ldea

We can perform rudimentary, rule-based reasoning usimgmeitiews or triggers. For
example, suppose we assert the statement (a Allejisters are siblingsThen we as-
sert the factMary and Jane are sistertogically, we may deduce using modus ponens
(MP) that Mary (M) and Jane (J) are siblings. The notafigfM, y/J} denotes that the
variable x gets substituted with M, y with J, and so on, as@ftte unification process.

Sisters(x,y) — Siblings(z,y)Sisters(M, J)
Siblings(M, J)
If sibling and sister facts are stored in two-column tabpgefixed witha_ to denote
an asserted fact), then we can encode the rule as the foy @1 view:

CREATE VI EW si blings(x, y) as
SELECT x,y FROM asi blings

UNI ON

SELECT x,y FROM si sters

MP{x/M,y/J}

In the view-based method, every inferred set of data nedbsgzacludes its as-
serted data (e.qg., siblings contamsiblingsand sisters contairesisterg. Note: when
the view is executed, the subquery retrieving sisters wifbld to access all asserted
sisters data. Recursively, if sisters subsumes any otbdigate, it too will be unfolded.
Database triggers can implement the same kind of thing:



CREATE TRI GCER subproperty_si sters_siblings
ON I NSERT (x, y) INTO sisters
FIRST I NSERT (x, y) INTO siblings

The deduction is reflected in the answer a query suctWhs are the siblings of
Jane?0f course, the answer returned, in both casediay. We easily formulate the
SQL query:

SELECT x FROM si bl i ngs WHERE y=Jane

What differentiates these two methods is that views are doabn: the inference is
performed at query time by unfolding views. Whereas, trigderward propagate facts
along rules as they are asserted, i.e., at load time. We ativadrigger-based approach
as our preferred method of implementation. If we considersgpacetime tradeoff: es-
sentially, triggers use more space to speed up query peafayen The technique has
some of the advantages of materialized views but it diffarsdme important ways,
specifically: deletions. Assume we assert the followingreo: A — B, insertA(a),
deleteA(a). Next, ask the querB(?z). A trigger-based implementation returfis/a}.

A view-based implementation returns!ll. In addition, triggers can differentiate nega-
tion from deletion. Finally, aside from rule-based reaagntriggers support other logi-
cal features we find important, such as domain and rangéctésts, and inconsistency
detection. We describe the methods for handling each cake iiollowing implemen-
tation details.

3.2 Implementation Details

Decomposition Storage ModelWe use the decomposition storage model [1], [6] be-
cause it scales well and makes expressing queries easyratyhinodels result in ex-
pensive and complicated query rewriting, so we would nosiar them. The two other
suitable models in the literature are the horizontal antcamodels. Designers rarely
use the horizontal model because it contains excessivaly mall values and is expen-
sive to restructure: The administrator halts the systendtbreew columns to service
new predicates. The vertical model is quite popular bec#wsmids those two draw-
backs. Also, the vertical model affords fast inserts beeaesords are merely appended
to the end of the file. Sesame [5] and other RDF stores use thiealestorage model.

However, the vertical storage model is prone to slow querfopmance because
queries require many joins against a single table, which gepensive for very tall
tables. Furthermore, type-membership queries are someawlavard. As a typical
workaround, designers first partition the vertical tabledtier support type-membership
queries, then they partition it further along other, seldgbredicates which optimize
certain joins based on an informed heuristic. However, ldads back toward compli-
cated query rewriting because the partitioning choices babe recorded and unfolded
in some way.

We view the decomposition storage model as a fully part#tbrertical storage
model, where the single table is completely partitionechglevery type and every
predicate. In other words: each type and each predicatégetsn table. When taken to



this extreme, query rewriting becomes simple, becausetaatd corresponds directly
to a query predicate. In this way, the decomposition stonaggel keeps the advantages
of the vertical model while improving query performanceddase of the partitions)
without introducing complex query rewriting. Figure 1 Bluates the three different
models using the Sisters - Siblings example.

Predicate Subject Object
Object Type Sister-of Sibling-of Type janeDoe Female
Type maryDoe Female
maryDoe Female janeDoe janeDoe Sister-of maryDoe janeDoe
johnDoe Male nulf maryDoe Sibling-of maryDoe janeDoe
(a) Horizontal Model (b) Vertical Model
Female
D SisterOf SiblingOf
Subject Object Subject Object
janeDoe
maryDoe maryDoe janeDoe maryDoe janeDoe

(¢) Decomposition Storage Model

Fig. 1. The SistersSiblings examples using the 1(a) horizontal, 1(b) verticall@hdecomposi-
tion storage model.

Subsumption.Ontology engineers often specify subclass relationshifemantic
Web ontologies, which form a subsumption hierarchy. Thattitutes the majority of
reasoning for biomedical ontologies [2] as well. As we memid earlier (Section 3.1),
we handle subclass relationships by using triggers.

The same can be handled by using Views in Datalog. Howeveal®@pviews differ
from inclusion axioms in description logic [3]. In other vas; the semantics of these
two logical formalisms differ:

Sisters — Siblings # Siblings C Sisters

The literature suggests that these differences are foynsalptured using modal
logic [3]. In our proposed method, we ensure that the consitige of the rule is en-
forced as an integrity constraint [23] (and not as a rulegiblings(M,J)is not true,
thenSisters(M,Jtannot possibly be true (otherwise, raise an inconsistency). We,
therefore, implement the contrapositive as a foreign-kestraint as follows:



CREATE TABLE Si bl i ngs(

subj ect VARCHAR NOT NULL,

obj ect VARCHAR NOT NULL,

CONSTRAI NT fk-Si sters-Siblings

FOREI GN KEY subject, object

REFERENCES Si st er s(subj ect, object) ...)

Figure 2(a) illustrates the two parts of an inclusion axiorapfically. The trig-
ger rule event is indicated in the figure by the a star-like lsgtndenoting that the
detected assertion causes a trigger to fire. In this exam@esnforce the following
rule: All femalesareperson(s),i.e., Female — Person. Therefore, asserting Fe-
male(Mary) causes the trigger to actively assert PersonyMa

Finally, the contrapositive is checked using the foreigyn. Réote: consistency re-
quires that forward-propagations ocdgforeintegrity checking, which explains using
the keywordeforeor firstin our trigger definitions.

: f-key
Female (id) Person (id)
(Lily) (Paul) H v fkey v
(Zena) trigger (Lily) v Sisters (subj, obj) Person (id)
(Jane) (Zena) & (Lily, Zena) (Paul)
(Mary) —| - P (Jane) |« (Lil W
y)
(Mary) |« (Zena) |
(a) Subsumption (b) Restrictions

Fig. 2. The star-like symbol denotes an event fires a trigger rule. The cte&lsgmbol denotes
an integrity check occurs. (a) Subsumption is implemented using a cotiolired triggers and
integrity constraints. (b) Domain and range restrictions are implemented f@eign-key (f-
key) constraints.

Domain and Range RestrictionsAnother important feature of Semantic Web on-
tologies are domain and range restrictions. These refitiecpossible set of instances
that participate in property assertions. For examflely person(s) may participate
in the sisters relationshigRestrictions are formalized using modal logic. They corre
spond to integrity constraints. In our proposed method,mgément them as foreign
key constraints on the subject or object (i.e. domain andepaf the property.

CREATE TABLE Si st ers(

subj ect VARCHAR NOT NULL,

obj ect VARCHAR NOT NULL,

CONSTRAI NT fk-Si st ers-Subj ect - Person
FOREI GN KEY subject



REFERENCES Person(id) ...)

4 Experiment

We apply our proposed trigger-based ontology databasersysethod to a Glass Iden-
tification Ontology. Next, we discuss its application for au¥al ElectroMagnetic On-
tology.

Glass ldentification. We apply our proposed method to a Glass Identification On-
tology - shown on Figure 3. The Glass Identification Datak&}is donated by the Cen-
tral Research Establishment, Home Office Forensic Scieecéc®, Reading, Berk-
shire, England. The study of classification of types of glaas originally motivated
by criminological investigation. At the scene of the crirttee glass left can be used as
evidence, if it is correctly identified.

Legend:
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Fig. 3. Glass Identification Ontology

Applying the decomposition storage model [1], [6], we obéal a table for each
glasstype, i.e. FloatProcessedBuildingWindow, Builtlifigdow, Glass, Container, and
so on. We implement the subclass relationships in Glassl@yowhich form a sub-
sumption hierarchy, through triggers. For instance:



CREATE TABLE FI oat ProcessedBl dW n(

subj ect VARCHAR NOT NULL,

obj ect VARCHAR NOT NULL,

CONSTRAI NT f k- Fl oat Pr ocessedBl dW n- Bui | di ngW ndow d ass
FOREI GN KEY subject, object

REFERENCES Si st er s(subj ect, object) ...)

We implement domain and range restrictions as foreign kesgtcaints. These re-
strict the possible set of instances that participate ip@ny assertions. For example,
Only Windows may participate in the Glass - BuildingWindelationship Restrictions
correspond to integrity constraints.

We apply Lehigh University Benchmarks (LUBM) [16] to evaleshe performance
of this system. It consists of a set of 14 queries for evahgdtiad time and query time
of knowledge bases. A data generator generates asseming;tininstances, which
can be saved as a set of Web Ontology Language (OWL) files addddato a knowl-
edge base for evaluation. The main idea is to vary the sizéefata instances to
quantify the scalability of a Semantic Web Knowledge Basesiing both load time
and query time with respect to the imput parameters proades/aluation of the total
performance. We confirmed that by using triggers to mateeahferences, query per-
formance improves by several orders of magnitude. That s@tthe cost of load time.
Load time is slower. The proposed trigger method increaseslisk space required
by roughly three times. In other words, our proposed metigoréves query speed,
by costing more space. The proposed approach scales walhydarge datasets, and
medium-sized ontologies.

Neural ElectroMagentic Ontology. Our ontology database system can be applied
to a Neural ElectroMagentic Ontology (NEMO) [9]. NEMO redstexperimental mea-
surments from brainwave studies, which classify, labal, amnotate event related po-
tentials (ERP) using ontological terms. Brainwave activit measured when certain
event happens - such as a word or a sentence is read or hdarthdtion about scalp
distribution, and neural activity during cognitive and betoral tasks is included. A
partial representation is shown on Figure 4.

We show that our propsoed method is useful for answeringiegiéinat take sub-
sumption into account - answering queries deductively.theiowords, we are able to
answer Ontology-Based Queries. For example, the followingry requires taking the
submsumption hierarchy into account:

Return all data instances that belong to ERP patter classes,
which have a surface positivity over frontal regions of isteand
are earlier than the N400.

In this query frontal regioncan be unfolded into constituent parts (ex. right frontal,
left frontal) as shown in Figure 4. At higher abstractiorgletheN400is a pattern class
that is also associated with spatial, temporal, and funatiproperties. The patter class
labels can be inferred by applying a set of conjunctive ruléss can be implemented
by using Semantic Web Rule Language.
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Fig. 4. Neural ElectroMagnetic Ontology (NEMO)

Preliminary results indicate that neurosientists areaettd by the ability to pose
queries at the conceptual level, without having to formauBQL queires; which, would
require taking complex logical interactions and reasordspects into consideration.
Those high-level, logical interactions are modeled onlgedoy specifying the ontology.
Other examples of conceptual level queries include:

Which patterns have a region of interest that is left-odeipi
and manifests between 220 and 300ms?

What is the range of intensity mean for the region of interst
for N100?

5 Conclusions and Directions for the Future

We present an ontology database system, a tool for modeiitodogies plus large num-
bers of instances using off-the-shelf database manageaystems such as MySQL. An
ontology database system is useful for answering ontol@ped, scientific queries that
require taking the subsumption hierarchy and other cangsranto account (answering
queries deductively). Furthermore, our trigger impleradoh method scales well with
small and medium-sized ontologies, used with very largasids.

The proposed method pre-computes inferences for the sytbsumhierarchy, so
larger and deeper ontologies will incur more costly up-frpaenalties. However, the
query answering time is significantly improved at the end.



Mapping rules between ontologies also can be implement&ibger-rules, giving
us an efficient and scalable way to exchange data among ibdistt ontology database
systems.

With Ontology Database Systems, it is possible to integmateknowledge bases.
The key idea is to map ontology terms together, then to reagenthem as a whole,
which comprizes a merged ontologyWe can use hamespaces to distinguish terms from
each knowledge base; next, we can map the ontologies togetimgbridging axioms
[10]; and finally, we can reason over the entire merged ogtoto achieve integration.
As a direction for the future, we can adopt the Dou and LePd¢h@lLapproach for
ontology-based integration for relational databases.

Further future steps include studying ontology evolutiod eoncept drift to propa-
gate changes within an ontology database. Changes in thimgpiaffect the structure,
rules and data for an ontology database, which makes efficieranaging the knowl-
edge model a challenging problem.
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