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Abstract. An ontology database system is a basic relational database manage-
ment system that models an ontology plus its instances. To reason over thetransi-
tive closure of instances in the subsumption hierarchy, an ontology database can
either unfold views at query time or propagate assertions using triggers at load
time. In this paper, we present a method to embed ontology knowledge into a
relational database through triggers. We demonstrate that by forward computing
inferences, we improve query time. We find that: first, ontology databasesys-
tems scale well for small and medium sized ontologies; and second, ontology
database systems are able to answer ontology-based queries deductively; We ap-
ply this method to a Glass Identification Ontology, and discuss applications in
Neuroscience.

1 Introduction

Researchers are using Semantic Web ontologies extensivelyin intelligent information
systems to annotate their data, to drive decision-support systems, to integrate data,
and to perform natural language processing and informationextraction. Researchers in
biomedicine use ontologies heavily to annotate their data and to drive decision support
systems that translate to applications in clinical practice [24] .

An ontology defines terms and specifies relationships among them, forming a logi-
cal specification of the semantics of some domain. Most ontologies contain a hierarchy
of terms at minimum, but many have more complex relationships to consider. Ontolo-
gies provide a means of formally specifying complex descriptions and relationships
about information in a way that is expressive yet amenable toautomated processing
and reasoning. As such, they offer the promise of facilitated information sharing, data
fusion and exchange among many, distributed and possibly heterogeneous data sources.

However, the uninitiated often find that applying these technologies to existing data
can be challenging and expensive. What makes this work challenging in part is: to have
systems that handle basic reasoning over the relationshipsin an ontology in a simple
manner, that scales well to large data sets. In other words, we need the capabilities of an
efficient, large-scale knowledge-based system (such as Semantic Web Ontology), but
we want a solution as simple as managing a regular relationaldatabase system, such as
MySQL. We argue that: when used in the proper context, regular databases can behave
like efficient, deductive systems.

In this paper, we present an easy method for users to manage anontology plus
its instances with an off-the-shelf database management system like MySQL, through
triggers. We call these sorts of databasesontology databases.



An ontology database systemtakes a Semantic Web ontology as input, and gen-
erates a database schema based on it. When individuals in the ontology are asserted
in the input, the database tables are populated with corresponding records. Internally,
the database management system processes the data and the ontology in a way that
maintains the knowledge model, in the same way as a basic knowledge-base system.

After the database is bootstrapped in this way, users may pose SQL queries to the
system declaratively, i.e. based on terms from the ontology, and they get answers in re-
turn that incorporate the term hierarchy or other logical features of the ontology. In this
way, our proposed system is useful for handling ontology-based queries. That is, users
get answers to queries that take the ontological subsumption hierarchy into account.

We find that ontology databases using our trigger-based method scale well.
The proposed method can be extended to perform integration across distributed,

heterogeneous ontology databases using an inference-based framework [10].
The rest of the paper is organized as follows: in Section 2 we review related work

and provide background information; in Section 3 we discussthe main ideas behind
ontology databases and the proposed method; in Section 4 we present case studies; in
Section 5 we suggest directions for the future and conclude.

2 Related Work

Knowledge-based Systems.Knowledge-based systems (KBs) use a knowledge rep-
resentation framework, having an underlying logical formalism (a language), together
with inference engines to deductively reason over a given set of knowledge. Users can
tell statements to the KB and ask it queries [20], expecting reasonable answers in return.
An ontology, different from but related to the philosophical discipline of Ontology, is
one such kind of knowledge representation framework [15]. In the Semantic Web [4],
description logic (DL) [2] forms the underlying logic for ontologies encoded using the
standard Web Ontology Language1 (OWL). One of the major problems with Semantic
Web KBs is they do not scale to very large data sets [18].

Reasoning.Researchers in logic and databases have contributed to the rich theory
of deductive database systems [12], [13]. For example, Datalog [25] famously uses
views for reasoning in Horn Logic. We already mentioned EKS-V1 [27]. Reasoning
over negations and integrity constraints has also been studied in the past [19]. Of par-
ticular note, one of the side-remarks in one of Reiters papers [22] formed an early
motivation for building our system: Reiter saw a need to balance time and space in
deductive systems by separating extensional from intensional processing. However33
years laterspace has become expendable. Other works move beyond Datalog views to
incorporate active rules for reasoning. An active rule, like a trigger in a database, is a
powerful mechanism using an event-condition-action modelto perform certain actions
whenever a detected event occurs within a system that satisfies the given condition. Re-
searchers in object-oriented and deductive database systems use active technologies in
carefully controlled ways to also manage integrity constraints and other logical features
[7], [26]. Researchers are studying how to bring database theory into the Semantic Web
[21], but more work is needed in that regard.



Scalability. Since reasoning generally poses scalability concerns, system designers
have used the Lehigh University Benchmark (LUBM) [16] in thepast, to evaluate and
compare knoweldge-based (KB) systems. The Lehigh University authors have also pro-
posed the Description Logic Database (DLDB) [17]. We would charactarize DLDB as
anontology databasebecause it is similar to our proposed system. It mimics a KB sys-
tem by using features of a basic relational database system,and it uses a decomposition
storage model [1] and [6] to create the database schema.

Information Integration. Another important motivation for using ontologies is the
promise they hold for integrating information. Researchers in biomedical informatics
have taken to this idea with some fervor [14]. One system in particular, OntoGrate,
offers an inferrential information integration frameworkusing ontologies which inte-
grates data by translating queries across ontologies to getdata from target data sources
using an inference engine [8]. The same logical framework can be extended to move
data across a network of repositories.

3 Ontology Database System

In the following sections, we use a simple running example, the SisitersSiblings exam-
ple, to illustrate how we implement an ontology database system. We begin with the
basic idea, and then explain how we structure the database schema and implement each
kind of logical feature using triggers and integrity constraints.

3.1 The Basic Idea

We can perform rudimentary, rule-based reasoning using either views or triggers. For
example, suppose we assert the statement (a rule):All sisters are siblings. Then we as-
sert the fact:Mary and Jane are sisters. Logically, we may deduce using modus ponens
(MP) that Mary (M) and Jane (J) are siblings. The notation{x/M, y/J} denotes that the
variable x gets substituted with M, y with J, and so on, as partof the unification process.

Sisters(x, y) → Siblings(x, y)Sisters(M,J)

Siblings(M,J)
MP{x/M, y/J}

If sibling and sister facts are stored in two-column tables (prefixed witha to denote
an asserted fact), then we can encode the rule as the following SQL view:

CREATE VIEW siblings(x, y) as
SELECT x,y FROM a siblings
UNION
SELECT x,y FROM sisters

In the view-based method, every inferred set of data necessarily includes its as-
serted data (e.g., siblings containsa siblingsand sisters containsa sisters). Note: when
the view is executed, the subquery retrieving sisters will unfold to access all asserted
sisters data. Recursively, if sisters subsumes any other predicate, it too will be unfolded.
Database triggers can implement the same kind of thing:



CREATE TRIGGER subproperty sisters siblings
ON INSERT (x, y) INTO sisters
FIRST INSERT (x, y) INTO siblings

The deduction is reflected in the answer a query such asWho are the siblings of
Jane?Of course, the answer returned, in both cases, is:Mary. We easily formulate the
SQL query:

SELECT x FROM siblings WHERE y=Jane

What differentiates these two methods is that views are goal-driven: the inference is
performed at query time by unfolding views. Whereas, triggers forward propagate facts
along rules as they are asserted, i.e., at load time. We advocate a trigger-based approach
as our preferred method of implementation. If we consider the spacetime tradeoff: es-
sentially, triggers use more space to speed up query performance. The technique has
some of the advantages of materialized views but it differs in some important ways,
specifically: deletions. Assume we assert the following in order:A → B, insertA(a),
deleteA(a). Next, ask the queryB(?x). A trigger-based implementation returns{x/a}.
A view-based implementation returnsnull. In addition, triggers can differentiate nega-
tion from deletion. Finally, aside from rule-based reasoning, triggers support other logi-
cal features we find important, such as domain and range restrictions, and inconsistency
detection. We describe the methods for handling each case inthe following implemen-
tation details.

3.2 Implementation Details

Decomposition Storage Model.We use the decomposition storage model [1], [6] be-
cause it scales well and makes expressing queries easy. Arbitrary models result in ex-
pensive and complicated query rewriting, so we would not consider them. The two other
suitable models in the literature are the horizontal and vertical models. Designers rarely
use the horizontal model because it contains excessively many null values and is expen-
sive to restructure: The administrator halts the system to add new columns to service
new predicates. The vertical model is quite popular becauseit avoids those two draw-
backs. Also, the vertical model affords fast inserts because records are merely appended
to the end of the file. Sesame [5] and other RDF stores use the vertical storage model.

However, the vertical storage model is prone to slow query performance because
queries require many joins against a single table, which gets expensive for very tall
tables. Furthermore, type-membership queries are somewhat awkward. As a typical
workaround, designers first partition the vertical table tobetter support type-membership
queries, then they partition it further along other, selected predicates which optimize
certain joins based on an informed heuristic. However, thisleads back toward compli-
cated query rewriting because the partitioning choices have to be recorded and unfolded
in some way.

We view the decomposition storage model as a fully partitioned vertical storage
model, where the single table is completely partitioned along every type and every
predicate. In other words: each type and each predicate getsits own table. When taken to



this extreme, query rewriting becomes simple, because eachtable corresponds directly
to a query predicate. In this way, the decomposition storagemodel keeps the advantages
of the vertical model while improving query performance (because of the partitions)
without introducing complex query rewriting. Figure 1 illustrates the three different
models using the Sisters - Siblings example.

Fig. 1.The SistersSiblings examples using the 1(a) horizontal, 1(b) vertical, and1(c) decomposi-
tion storage model.

Subsumption.Ontology engineers often specify subclass relationships in Semantic
Web ontologies, which form a subsumption hierarchy. That constitutes the majority of
reasoning for biomedical ontologies [2] as well. As we mentioned earlier (Section 3.1),
we handle subclass relationships by using triggers.

The same can be handled by using Views in Datalog. However, Datalog views differ
from inclusion axioms in description logic [3]. In other words, the semantics of these
two logical formalisms differ:

Sisters → Siblings 6= Siblings ⊆ Sisters

The literature suggests that these differences are formally captured using modal
logic [3]. In our proposed method, we ensure that the contrapositive of the rule is en-
forced as an integrity constraint [23] (and not as a rule):if Siblings(M,J)is not true,
thenSisters(M,J)cannot possibly be true (otherwise, raise an inconsistencyerror). We,
therefore, implement the contrapositive as a foreign-key constraint as follows:



CREATE TABLE Siblings(
subject VARCHAR NOT NULL,
object VARCHAR NOT NULL,
CONSTRAINT fk-Sisters-Siblings
FOREIGN KEY subject, object
REFERENCES Sisters(subject, object) ...)

Figure 2(a) illustrates the two parts of an inclusion axiom graphically. The trig-
ger rule event is indicated in the figure by the a star-like symbol, denoting that the
detected assertion causes a trigger to fire. In this example,we enforce the following
rule: Allfemalesareperson(s), i.e., Female → Person. Therefore, asserting Fe-
male(Mary) causes the trigger to actively assert Person(Mary).

Finally, the contrapositive is checked using the foreign key. Note: consistency re-
quires that forward-propagations occurbeforeintegrity checking, which explains using
the keywordsbeforeor first in our trigger definitions.

Fig. 2. The star-like symbol denotes an event fires a trigger rule. The checkmark symbol denotes
an integrity check occurs. (a) Subsumption is implemented using a combination of triggers and
integrity constraints. (b) Domain and range restrictions are implemented using foreign-key (f-
key) constraints.

Domain and Range Restrictions.Another important feature of Semantic Web on-
tologies are domain and range restrictions. These restrictthe possible set of instances
that participate in property assertions. For example,Only person(s) may participate
in the sisters relationship. Restrictions are formalized using modal logic. They corre-
spond to integrity constraints. In our proposed method, we implement them as foreign
key constraints on the subject or object (i.e. domain and range) of the property.

CREATE TABLE Sisters(
subject VARCHAR NOT NULL,
object VARCHAR NOT NULL,
CONSTRAINT fk-Sisters-Subject-Person
FOREIGN KEY subject



REFERENCES Person(id) ...)

4 Experiment

We apply our proposed trigger-based ontology database system method to a Glass Iden-
tification Ontology. Next, we discuss its application for a Neural ElectroMagnetic On-
tology.

Glass Identification.We apply our proposed method to a Glass Identification On-
tology - shown on Figure 3. The Glass Identification Dataset [11] is donated by the Cen-
tral Research Establishment, Home Office Forensic Science Service, Reading, Berk-
shire, England. The study of classification of types of glasswas originally motivated
by criminological investigation. At the scene of the crime,the glass left can be used as
evidence, if it is correctly identified.

Fig. 3.Glass Identification Ontology

Applying the decomposition storage model [1], [6], we obtained a table for each
glass type, i.e. FloatProcessedBuildingWindow, BuildingWindow, Glass, Container, and
so on. We implement the subclass relationships in Glass Ontology, which form a sub-
sumption hierarchy, through triggers. For instance:



CREATE TABLE FloatProcessedBldWin(
subject VARCHAR NOT NULL,
object VARCHAR NOT NULL,
CONSTRAINT fk-FloatProcessedBldWin-BuildingWindow-Glass
FOREIGN KEY subject, object
REFERENCES Sisters(subject, object) ...)

We implement domain and range restrictions as foreign key constraints. These re-
strict the possible set of instances that participate in property assertions. For example,
Only Windows may participate in the Glass - BuildingWindow relationship. Restrictions
correspond to integrity constraints.

We apply Lehigh University Benchmarks (LUBM) [16] to evaluate the performance
of this system. It consists of a set of 14 queries for evaluating load time and query time
of knowledge bases. A data generator generates assertins, i.e. datainstances, which
can be saved as a set of Web Ontology Language (OWL) files and loaded into a knowl-
edge base for evaluation. The main idea is to vary the size of the data instances to
quantify the scalability of a Semantic Web Knowledge Base. Mesuring both load time
and query time with respect to the imput parameters providesan evaluation of the total
performance. We confirmed that by using triggers to materialize inferences, query per-
formance improves by several orders of magnitude. That comes at the cost of load time.
Load time is slower. The proposed trigger method increases the disk space required
by roughly three times. In other words, our proposed method improves query speed,
by costing more space. The proposed approach scales well to very large datasets, and
medium-sized ontologies.

Neural ElectroMagentic Ontology.Our ontology database system can be applied
to a Neural ElectroMagentic Ontology (NEMO) [9]. NEMO records experimental mea-
surments from brainwave studies, which classify, label, and annotate event related po-
tentials (ERP) using ontological terms. Brainwave activity is measured when certain
event happens - such as a word or a sentence is read or heard. Information about scalp
distribution, and neural activity during cognitive and behavioral tasks is included. A
partial representation is shown on Figure 4.

We show that our propsoed method is useful for answering queries that take sub-
sumption into account - answering queries deductively. In other words, we are able to
answer Ontology-Based Queries. For example, the followingquery requires taking the
submsumption hierarchy into account:

Return all data instances that belong to ERP patter classes,
which have a surface positivity over frontal regions of interst and
are earlier than the N400.

In this query,frontal regioncan be unfolded into constituent parts (ex. right frontal,
left frontal) as shown in Figure 4. At higher abstraction level, theN400is a pattern class
that is also associated with spatial, temporal, and functional properties. The patter class
labels can be inferred by applying a set of conjunctive rules. This can be implemented
by using Semantic Web Rule Language.



Fig. 4.Neural ElectroMagnetic Ontology (NEMO)

Preliminary results indicate that neurosientists are attracted by the ability to pose
queries at the conceptual level, without having to formulate SQL queires; which, would
require taking complex logical interactions and reasoningaspects into consideration.
Those high-level, logical interactions are modeled only once by specifying the ontology.
Other examples of conceptual level queries include:

Which patterns have a region of interest that is left-occipital
and manifests between 220 and 300ms?

What is the range of intensity mean for the region of interst
for N100?

5 Conclusions and Directions for the Future

We present an ontology database system, a tool for modeling ontologies plus large num-
bers of instances using off-the-shelf database managementsystems such as MySQL. An
ontology database system is useful for answering ontology-based, scientific queries that
require taking the subsumption hierarchy and other constraints into account (answering
queries deductively). Furthermore, our trigger implementation method scales well with
small and medium-sized ontologies, used with very large datasets.

The proposed method pre-computes inferences for the subsumption hierarchy, so
larger and deeper ontologies will incur more costly up-front penalties. However, the
query answering time is significantly improved at the end.



Mapping rules between ontologies also can be implemented astrigger-rules, giving
us an efficient and scalable way to exchange data among a distributed ontology database
systems.

With Ontology Database Systems, it is possible to integratetwo knowledge bases.
The key idea is to map ontology terms together, then to reasonover them as a whole,
which comprizes -a merged ontology. We can use namespaces to distinguish terms from
each knowledge base; next, we can map the ontologies together usingbridging axioms
[10]; and finally, we can reason over the entire merged ontology to achieve integration.
As a direction for the future, we can adopt the Dou and LePendu[10] approach for
ontology-based integration for relational databases.

Further future steps include studying ontology evolution and concept drift to propa-
gate changes within an ontology database. Changes in the ontology affect the structure,
rules and data for an ontology database, which makes efficiently managing the knowl-
edge model a challenging problem.
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