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Abstract. With the fast booming of online music repositories, the problem of
building music recommendation systems is of great importance. Thereilis a
creasing need for content-based automatic indexing to help users findiathe
vorite music objects. Numerous approaches to acoustic feature extraatio al-
ready been proposed. However, most are based on pitch (funt&frequency).
Few methods focus on timbre, especially with polyphonic sounds (multiple dis
tinctinstruments), which occur often in the real music world. In this waskper-
form a study on automatic classification of musical instruments with polyiphon
sounds. We use timbre descriptors. We report high classificationaycur

1 Introduction

To many people in many cultures music is an important parthefrtway of life.
Greek philosophers and ancient Indian philosophers defumanvas horizontally or-
dered tones, or melodies and vertically ordered harmo@iesimon sayings such as
"the harmony of the spheres” and "it is music to my ears” pairthe notion that music
is often ordered and pleasant to listen to.

With 20th century music, there is a vast increase in musierliag as the radio
gained popularity and phonographs were used to replay aitribdite music. The focus
of art music is characterized by exploration of new rhythstges, and sounds.

Today, we hear music media in advertisements, in films, aigsamat the philhar-
monic, etc. One of the most important functions of musicasifect on humans. Cer-
tain pieces of music have a relaxing effect, while othemmsiite us to act, and some
cause a change in or emphasize our mood. Music is not onlyad iguenber of sounds
arranged by a composer, it is also the emotion containednitiiese sounds (Grekow
and Ras, 2009).

The steep rise in music downloading over CD sales has creatadjor shift in
the music industry away from physical media formats and tde/&Veb-based (online)
products and services. Music is one of the most popular tgp@sline information
and there are now hundreds of music streaming and downlogidsgoperating on the
World-Wide Web. Some of the music collections available @pproaching the scale
of ten million tracks and this has posed a major challengsdarching, retrieving, and
organizing music content. Research efforts in music infdfom retrieval have involved



experts from music perception, cognition, musicology,ieegring, and computer sci-
ence engaged in truly interdisciplinary activity that hasuited in many proposed al-
gorithmic and methodological solutions to music searchgisontent-based methods
(Casey et al., 2008).

This work contributes to solving the important problem ofléimng music recom-
mendation systems. Automatic recognition or classificetibmusic sounds helps user
to find favorite music objects, or be recommended objectsséifiér liking, within large
online music repositories. We focus on musical instrumetgnition, which is a chal-
lenging problem in the domain.

Melody matching based on pitch detection technology hasmrauch attention
and many music information retrieval systems have beenlaeseé to fulfill this task.
Numerous approaches to acoustic feature extraction heeadyl been proposed.

The original audio signals are a large volume of unstructigequential values,
which are not suitable for traditional data mining algamithy while the higher level
data representative of acoustical features are sometiotesufficient for instrument
recognition. This has stimulated the research on instrielaasification and new fea-
tures development for content-based automatic musicrivdtion retrieval.

We focus on timbre related features, and perform a study timatic classification
of musical instruments with polyphonic sounds.

The rest of the paper is organized as follows: section 2wesielated work, section
3 discusses timbre, section 4 describes features, sectilustsates our methodology,
section 6 shows the experiment results, and finally secticonéludes.

2 Related Work

2.1 Classification of Monophonic Music Sound

(Martin and Kim, 1998) employed the K-NN (k-nearest neighkaigorithm to a hi-
erarchical classification system with 31 features extchfitem cochleagrams. With a
database of 1023 sounds they achieved 87% of successfsificiasons at the family
level and 61% at the instrument level when no hierarchy wad.udsing the hierarchi-
cal procedure increased the accuracy at the instrumentttev¥8% but it degraded the
performance at the family level (79%). Without includinge thierarchical procedure
performance figures were lower than the ones they obtaint#davBayesian classi-
fier. The fact that the best accuracy figures are around 80%hatdviartin and Kim
have settled into similar figures shows the limitations ef kRNN algorithm (provided
that the feature selection has been optimized with genetitheer kind of techniques).
Therefore, more powerful techniques should be explored.

Timbre classification systems have also been developed loasguditory process-
ing and Kohonen self-organizing neural networks; wherégq @apreprocessed by pe-
ripheral transformations to extract perception featutiees) fed to the network to build
a map. Such method did not quite well distinguish the insauits.



Bayes Decision Rules and Naive Bayes classifiers are simpleapilistic classi-
fiers, by which the probabilities for the classes and the itimmdl probabilities for a
given feature and a given class are estimated based onthgireihcies over the train-
ing data. They are based on probability models that incatpostrong independence
assumptions, which may, or may not have a bearing in reélégce are naive. The
resultant rule is formed by counting the frequency of vasidata instances, and can
be used then to classify each new instance. (Brown, 1999)edpihis technique to
18 Mel-Cepstral coefficients by a K-means clustering athariand a set of Gaussian
mixture models. Each model was used to estimate the prdatiedbihat a coefficient
belongs to a cluster. Then probabilities of all coefficiamese multiplied together and
were used to perform the likelihood ratio test. It then dféex$ 27 short sounds of oboe
and 31 short sounds of saxophone with an accuracy rate of 8b6&bbe and 92% for
saxophone.

(Tzacheva and Bell, 2010) used timbre related features bdttesian neural net-
work and J48 decision tree for classification of musicalrimsients. Authors proposed
new features for preservation of temporal information.c8iolassifiers do not distin-
guish the order of the frames, they are not aware that frariseclbser to frame t2 than
it is to frame t3 . Their proposed features allow for thatidigion to be made. Authors
achieved good classification accuracy with monophonic dsun

2.2 Classification of Polyophonic Music Sound

One approach to address multi-timbre estimation in polpphsound is to apply sound
separation techniques (Zhang and Ras, 2007) along withattigional classifiers. Each
time when one classification label from a set is assighedsdhad separation module is
applied to subtract the estimated timbre feature from tpeadiso that the signal of the
single instrument is separate from the polyphonic sounde$ig hen the classifier can
be applied again on the residue of the signal to assign anlate. The sound separa-
tion process for each frame continues until the remnanten$ifnal is too weak to give
any further timbre estimation. However, there is one pnotilethis method. After each
sound separation process, the timbre information of the@nmyg instruments could be
partially lost due to the overlap of multiple timbre signalhich make it difficult to
further analyze the remnant of sound signal.

Instead of giving one classification label at a time, mutid| classification assigns
multiple labels from a set, to the target estimation objSoie research on multi-label
classification has been done in the text categorization(doeehims, 1998), ( Schapire
and Singer, 2000), and in scene recognition (Boutell eRab4). Authors approached
the problem by training a classifier with samples with midtifabels. A multi-label
classification system for polyphonic sounds was proposgdibyg at al., 2009).

Typically a digital music recording, in form of a binary filepntains a header and a
body. The header stores file information such as length, enmibchannels, sampling
rate, etc. Unless it is manually labeled, a digital audi@mrdimg has no description of
timbre or other perceptual properties. Also, it is a hightyivial task to label those
perceptual properties for every piece of music based orais cbntent.



In music information retrieval area, a lot of research hanl@nducted in melody
matching based on pitch identification, which usually imesl detecting the fundamen-
tal frequency. Most content-based Music Information Retl (MIR) systems query
by whistling/humming systems for melody retrieval. So faw systems exist for tim-
bre information retrieval in the literature or market, whindicates it as a nontrivial
and currently unsolved task (Jiang et al., 2009). In addlittgpically, the timbre re-
lated methods use monophonic sounds (one distinct instrijn@uch timbre estima-
tion algorithms are rarely successfully applied to polyphsounds (multiple distinct
instruments), which occur more often in the real music wdridhis work, we perform
a study on automatic classification of musical instrumeritis polyphonic sounds. We
use timbre descriptors.

3 Timbre

The definition of timbre is: in acoustics and phonetics - tharacteristic quality of a
sound, independent of pitch and loudness, from which itscear manner of produc-
tion can be inferred. Timbre depends on the relative sthengftits component frequen-
cies; in music - the characteristic quality of sound produiog a particular instrument
or voice; tone color. ANSI defines timbre as the attributewafitory sensation, in terms
of which a listener can judge that two sounds are differdmaugh having the same
loudness and pitch. It distinguishes different musicatrimaents playing the same note
with the identical pitch and loudness. So it is the most ingarand relevant facet of
music information. People discern timbre from speech ansierin everyday life.

Musical instruments usually produce sound waves with feegies, which are an
integer (a whole number) multiples of each other. Theseukaqgies are called har-
monics, or harmonic partials. The lowest frequency is thmléumental frequency f0,
which has close relation with pitch. The second and highesrfencies are called over-
tones. Along with fundamental frequency, these harmonitigia distinguish the tim-
bre, which is also called tone color. The human aural distindbetween musical in-
struments is based on the differences in timbre.

The body of a digital audio recording contains an enormousuanof integers in
a time-order sequence. For example, at a sampling rate @471 @& digital recording
has 44,100 integers per second. This means, in a one-mangeligital recording, the
total number of the integers in the time-order sequencebsil,646,000, which makes
it a very large data item. The size of the data, in additiorh® fact that it is not in
a well-structured form with semantic meaning, makes thie tgf data unsuitable for
most traditional data mining algorithms.

Timbre is rather subjective quality and not of much use faomatic sound timbre
classification. To compensate, musical sounds must be eeefuilly parameterized to
allow automatic timbre recognition.



4 Feature Descriptions

Based on latest research in the area, MPEG published a stiagdaup of features
for digital audio content data. They are either in the fremyedomain or in the time
domain. For those features in the frequency domain, a STRar{Sime Fourier Trans-
form) with Hamming window has been applied to the sample.datm each frame a
set of instantaneous values is generated. We use the folicivhbre-related features
from MPEG-7:

Spectrum Centroid - describes the center-of-gravity ofjaftequency power spec-
trum. It economically indicates the pre-dominant frequerange. We uséog Power
Soectrum Centroid, andHarmonic Spectrum Centroid.

Spectrum Spread - is the Root of Mean Square value of the timviaf the Log
frequency power spectrum with respect to the gravity cantarframe. Like Spectrum
Centroid, it is an economic way to describe the shape of theepspectrum. We use
Log Power Spectrum Spread, andHarmonic Spectrum Spread.

Harmonic Peaks - is a sequence of local peaks of harmoniccbffeame. We use
the Top 5 harmonic peaks - Frequency, andTop 5 Harmonic Peaks - Amplitude.

In addition, we use thEundamental Frequency as a feature in this study.

5 Methodology

We start with a set of musical instrument recordings coimgitwo instruments mixed.
One instrument is predominant. A recording is divided imamfes of 40 milliseconds.
Each frame overlaps the previous frame by 1/3. Next, we eixtree above described
features on each frame (object). Then, we train and tessaifikr. We use a single-label
approach and assign the predominant instrument as thectolass.

Formally defined as: le¥ = { X, FFU L} be the training dataset, whekgis the set
of instancesL = {l,1ls,...,1,} is the set of all class labels, add= {fi, fo, ..., fm}
is them—dimensional feature vector used to build a classifiewhich estimates the
target object = {v1,v2,...,v., }. Then, the estimation result would B&t) = {d :
deL}.

We use two classifiers - a bayesian neural network and a J4Siatetree, and
compare the results. Neural networks process informatitmanarge number of highly
interconnected neurons working in parallel to solve a gjpgmioblem. Neural networks
learn by example. Decision trees represent a supervisedaqipto classification. It is
a simple structure where non-terminal nodes represerst é@sbne or more attributes
and terminal nodes reflect decision outcomes.

One class label with the highest confidence is assigned teshmation object
and the other candidate classes are simply ignored. Figuitestrates our polyphonic
sound classification method.
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Fig. 1. Music information retrieval with polyphonic sounds and timbre

6 Experiment

We have chosen 6 instruments: viola, cello, flute, english iigano, and clarinet to our
experiments. All recordings originate from MUMS CDs (Opmlind Wapnick 1987),
which are used worldwide in similar tasks.

To create the analysis set a 0.2 second sample from 1.0 setorid?2 seconds
excerpt from the non-dominant instrument is mixed with thedpminant instrument at
every minute boundary (eg. 0.0s to 0.2s, 1.0s to 1.2s, 2.2 etc.).

The mixed sound files used, with predominant instrumeredi§irst, are: Filel: Vi-
ola and Flute, File2: Flute and Englishhorn, File3: Violaldnglishhorn, File4: Cello
and Piano, File5: Cello and Clarinet, File6: Clarinet anah®i

Next, we split each recording into overlapping frames. Themextract the fatures
described in the previous section 5. That produces a datétbet 224 instances and 16
attributes.

We import the dataset into WEKA (Hall et al., 2009) data minsaftware for clas-
sification. We train two classifiers: Bayesian Neural Netwand J48 Decision Tree.
We test each one using 60% of samples for training and tesfithgremaining 40%,
as well as testing using bootstrap. Results show BayesiareNgetwork has accuracy
of 92.04% with 60/40 test and 94.28% via bootstrap testinf.decision tree has ac-
curacy of 96.12% with 60/40 test and 98.93% via bootstraginggsSummary results
comparing the two classifiers are shown in Figure 2. The léetaesults for Bayesian
Neural Network and J48 Decision Tree are shown in Figure Fagute 4 respectively.



BayesNeuralNetwork J48 DecisionTree
60/40 test 92.04 % 96.12 %
bootstrap test 94.28 % 98.93 %

Fig. 2. Correctly classified instances % - classifier comparison

TP Rate | FP Rate | Precision | Recall F- ROC Class
Measure | Area
60/40 0.912 0.015 0.964 0.912 0.937 0.996 2C cello bowed
test 0.99 0.031 0.89 0.99 0.937 0.999 3A# bflatclarinet
0.867 0.034 0.907 0.867 0.886 0.975 3C viola bowed
0.936 0.026 0.912 0.936 0.924 0.989 4A# flute vibrato
bootstrap | 0.937 0.012 0.973 0.937 0.955 0.998 2C cello bowed
0.996 0.027 0.899 0.996 0.945 1 3A# bflatclarinet
0.904 0.02 0.944 0.904 0.924 0.988 3C viola bowed
0.951 0.016 0.944 0.951 0.948 0.994 4A# flute vibrato

Fig. 3. Bayesian neural network detailed accuracy by class

TP Rate | FP Rate | Precision | Recall F- ROC Class
Measure | Area
60/40 0.98 0.009 0.98 0.98 0.98 0.984 2C cello bowed
test 0.98 0.008 0.97 0.98 0.975 0.983 3A# bflatclarinet
0.956 0.023 0.942 0.956 0.949 0.976 3C_viola_bowed
0.927 0.013 0.953 0.927 0.94 0.963 4A# flute vibrato
bootstrap | 0.992 0.004 0.992 0.992 0.992 0.998 2C cello bowed
0.992 0.001 0.996 0.992 0.994 0.999 3A# bflatclarinet
0.982 0.004 0.988 0.982 0.985 0.998 3C viola bowed
0.993 0.005 0.981 0.993 0.987 0.998 4A# flute vibrato

Fig. 4. 348 decision tree detailed accuracy by class




7 Conclusions and Directions for the Future

We produce a music information retrieval system, which @uatiically classifies mu-
sical instruments. We use timbre related features. Ourgzegh methodology success-
fully classifies polyphonic music sounds (multiple distimstruments). We report high
classification accuracy. This presents an improvement preious timbre methods,
which primarily focus on monophonic sounds.

This work contributes to solving the important problem ofléimng music recom-
mendation systems. Automatic recognition or classificatibmusic sounds helps user
to find favorite music objects within large online music reparies. It can also be ap-
plied to recommend musical media objects of user’s likinge&ions for the future
include automatic detection of emotions (Grekow and Ra89P0@ontained in music
files.
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