
Tree-based construction of low-cost action rules

Angelina A. Tzacheva1 and Li-Shiang Tsay2

1 University of South Carolina Upstate, Informatics Dept.
Spartanburg, SC 29303; ATzacheva@uscupstate.edu

2 Hampton University, Computer Science Dept., Hampton, VA 23668;
ltsay@uncc.edu

Summary. A rule as actionable, if a user can do an action to his/her advantage
based on that rule. Actionability can be expressed in terms of attributes that are
present in a database. Action rules are constructed from certain pairs of classification
rules previously extracted from the same decision table. Each such classification rule
defines a preferable decision class. Attributes in a decision table are divided into two
groups: stable and flexible. Flexible attributes provide a tool for making hints to a
user to what changes within some values of flexible attributes are needed to re-
classify a group of objects, supporting the action rule, from one decision class to
another, more desirable, one. Changes of values of some flexible attributes can be
more expensive than changes of other values. The notion of a cost can be introduced
and assigned by an expert to each such a change.

Action rules involve flexible attributes and stable attributes listed in both classi-
fication rules from which they are constructed. The values of stable attributes listed
in them are used to create action forest.

We propose a new approach, which combines the action forest algorithm of
extracting action rules, and a heuristic strategy to lowest cost reclassification of
objects. It presents an enhancement to both methods.

1 Introduction

Since knowledge discovery systems extract large amounts of knowledge, an
essential problem in the field is measuring the interestingness of discovered
patterns. Such measures of interestingness are divided into objective mea-
sures, which are domain independent, and the subjective measures - those
that depend on the class of users who examine the pattern and their belief
about the domain. The subjective measures include unexpectedness, novelty
and actionability [16].

Silberschatz and Tuzlin [15] define actionability in terms of unexpect

Ras and Wieczorkowska [11] assume that actionability can be expressed
in terms of attributes that are present in the database. They introduce a new



2 Angelina A. Tzacheva and Li-Shiang Tsay

class of rules, called action rules that are constructed from certain pairs of
association rules extracted from that database. A conceptually similar defini-
tion of an action rule was proposed independently by Geffner and Wainer [4].
Action rules have been investigated further in Ras and Gupta [13], Ras and
Tsay [12, 16], and Tzacheva and Ras [17].

In order to construct action rules, it is required that attributes in a
database are divided into two groups: stable and flexible. Flexible attributes
are used in a decision rule as a tool for making hints to a user what changes
within some of their values are needed to reclassify a group of objects from
one decision class into another one. Previous strategies for generating action
rules are the system DEAR [12], which generates action rules from certain
pairs of association rules, and the system DEAR2 [16], which is based on
a tree structure - Action Forest, that partitions the set of rules, having the
same decision value, into equivalence classes each labeled by values of stable
attributes (two rules belong to the same equivalence class, if values of their
stable attributes are not conflicting each other). Now, instead of comparing
all pairs of rules, only pairs of rules belonging to some of these equivalence
classes are compared to construct action rules. This strategy significantly re-
duces the number of steps needed to generate action rules in comparison to
DEAR system.

The action rules discovery strategy described above, would allow for flex-
ible attributes to provide a tool for making hints to a user to what changes
within some values of flexible attributes are needed to re-classify a group of
objects, supporting the action rule, from one decision class to another, more
desirable, one. However, changes of values of some flexible attributes can be
more expensive, or more difficult to implement, than changes of other values
which may be trivial. Therefore, the notion of a cost can be introduced and
assigned by an expert to each such a change.

Tzacheva and Ras [17] introduce the notion of a cost and feasibility of an
action rule. The average cost needed to change the attribute value from one
class to another, more desirable one is a value between (0,+∞), where if the
change is not feasible in practice the cost will be close to +∞, whereas if the
change is quite trivial to accomplish the value will be close to 0. Tzacheva
and Ras [17] also propose a heuristic strategy for constructing feasible action
rules which have high confidence and the lowest cost - search graph for lowest
cost reclassification of objects. The search graph is a directed graph G which
is dynamically built by applying action rules to its nodes. A node n in G show
an alternative way to achieve the same reclassification with a cost that is lower
than the cost assigned to all nodes which are preceding n in G. The leaves
of the graph would show the most actionable, and therefore most interesting
knowledge which has the lowest cost, and meets the feasibility and confidence
requirements (thresholds) of the user.



Tree-based construction of low-cost action rules 3

In this paper we propose a new approach, which combines the action forest
algorithm of extracting action rules, and a heuristic strategy to lowest cost
reclassification of objects to present an enhancement to both methods.

2 Action-Forest algorithm and Experiment

In this section we present a new algorithm called Action-Forest algorithm for
discovering E-action rules. All previously discovered classification rules are
partitioned into decision classes. Namely, we place all rules defining the same
decision value into the same decision class. For each decision value, a tree
is built with non-leaf nodes being labeled by stable attributes and outgoing
edges by values of these attributes. If a node is a non-leaf node, then the
set of rules associated with that node is partitioned along the branches and
each child node gets its corresponding subset of rules. Each leaf represents a
set of rules which do not contradict on stable attributes and also define the
same decision value. The path from the root to that leaf gives the description
of objects supported by these rules. To construct extended action rules we
compare pairs of rules each belonging to a different leaf node. Additionally,
we assume here that both paths leading to the corresponding leaf nodes do
not have contradictory descriptions.

Initially, we partition the set of rules discovered from an information sys-
tem S = (U,ASt ∪ AFl ∪ {d}), where ASt is the set of stable attributes, AFl

is the set of flexible attributes and, Vd = {d1, d2, ..., dk} is the set of decision
values, into subsets of rules defining the same decision value. In other words,
the set of rules R discovered from S is partitioned into {Ri}i:1≤i≤k, where
Ri = {r ∈ R : d(r) = di} for any i = 1, 2, ..., k. Clearly, the objects supporting
any rule from Ri form subsets of d−1({di}).

Let us take Table 1 as an example of a decision system S. We assume that
{a, c} are stable attributes and {b, d} are flexible. The set R of certain rules
extracted from S is given below:

(a, 0) → (d, L), (c, 0) → (d, L), (b, 2) → (d, L),
(a, 2) ∗ (b, 1) → (d,H), (b, 1) ∗ (c, 2) → (d,H),
(c, 1) → (d, L), (b, 3) → (d, L).

We partition this set into two subsets R1 = {[(a, 0) → (d, L)], [(c, 0) →
(d, L)], [(b, 2) → (d, L)], [(c, 1) → (d, L)], [(b, 3) → (d, L)]}, and R2 = {[(a, 2) ∗
(b, 1) → (d,H)], [(b, 1) ∗ (c, 2) → (d,H)]}.

Assume now that our goal is to re-classify some objects from the class
d−1({di}) into the class d−1({dj}). In our example, we assume that di = (d, L)
and dj = (d,H).



4 Angelina A. Tzacheva and Li-Shiang Tsay

First, we represent the set R as a table (see Table 1). The first column of
this table shows objects in S supporting the rules from R (each row represents
a rule). The first 5 rows represent the set R1 and the last two rows represent
the set R2. In general case, assumed earlier, the number of different decision
classes is equal to k.

Table 1. Set of rules R with supporting objects extracted from decision system S

a b c d

{x1, x2, x3, x4} 0 L

{x2, x4} 2 L

{x1, x3} 0 L

{x2, x4} 1 L

{x5, x6} 3 L

{x7, x8} 2 1 H

{x7, x8} 1 2 H

The next step of the algorithm is to build di-tree and dj-tree. First, from
the initial table similar to Table 1, we select all rules (rows) defining the
decision value di and present them as a table similar to Table 2. Next, it
is seeking at each stage for a stable attribute that has the least amount of
values; the set of rules is split using that attribute and then the subsets that
result from the split are recursively processed. When all stable attributes are
processed, we build di tree. Similarly, from the same table (Table 1), we also
select all rules (rows) which define decision value dj and present them as a
table similar to Table 3. The same strategy is used to build dj tree for the
decision value dj .

Table 2. Set of rules R1 with decision value L

a b c d

{x1, x2, x3, x4} 0 L

{x2, x4} 2 L

{x1, x3} 0 L

{x2, x4} 1 L

{x5, x6} 3 L

By di-tree we mean a tree T (di) = (Ni, Ei), such that:

• each interior node is labeled by a stable attribute from ASt,
• each edge is labeled either by a question mark or by an attribute value of

the attribute that labels the initial node of the edge,



Tree-based construction of low-cost action rules 5

Table 3. Set of rules Rj with decision value H

a b c d

{x7, x8} 2 1 H

{x7, x8} 1 2 H

• along a path, all nodes (except a leaf) are labeled with different stable
attributes,

• all edges leaving a node are labeled with different attribute values (includ-
ing the question mark) of the stable attribute that labels that node,

• each leaf represents a set of rules which do not contradict on stable at-
tributes and also define decision value di. The path from the root to that
leaf gives the description of objects supported by these rules.

Now, taking (d, L) from our example as the value di, we show how to con-
struct (d, L)-tree for the set of rules represented by Table 2. The construction
of (d, L)-tree starts with a table corresponding to the root of that tree (Table
2 in Fig. 1). It represents the set of rules R1 defining L with supporting ob-
jects from S. The domain of attribute a is {0} and the domain of attribute c

is {0, 1}. Clearly, card[Va]is less than card[Vc], so we use stable attribute a to
split that table into 2 sub-tables defined by values {0, ?} of attribute a. The
question mark means an unknown value.

Fig. 1. (d, L)-tree

Following the path labeled by value [a =?] and [a = 0], we get table T1 and
table T2, respectively. When we follow the path labeled by value [a =?][c =?],



6 Angelina A. Tzacheva and Li-Shiang Tsay

we get table T3. Following the path labeled by value [a =?][c = 0], we get
table T4. When we follow the path labeled by value [a =?][c = 1], we get table
T5. Finally, by following the path having the label [a = 0][c =?], we get table
T6.

Now, let us define (d,H)-tree using Table 3 as its root (see Fig. 2). Fol-
lowing the path labeled by value [a =?] and [c = 2], we get the table T7 and
the table T8, respectively. Following the path labeled by value [a =?][c = 2],
we get the table T9. When we follow the path labeled by value [a = 2][c =?],
we get the table T10.

Fig. 2. (d, H)-tree

For tables T4, T5, T6, the attribute b is the only flexible attribute we have
and its value is arbitrary. Therefore, we cannot use these tables to construct
E-action rules. Now, it can be easily checked that only pairs of rules belonging
to tables {[T3, T9] and [T3, T10] can be used for E-action rules construction.

By comparing pairs of rules belonging to tables T3 and T9 we generate two
E-action rules:

[[(c = 2) ∧ (b, 2 → 1)] ⇒ (d, L → H)], and
[[(c = 2) ∧ (b, 3 → 1)] ⇒ (d, L → H)].

By comparing pairs of rules belonging to tables T3 and T10 we generate
two E-action rules:

[[(a, 2) ∧ (b, 2 → 1)] ⇒ (d, L → H)], and
[[(a, 2) ∧ (b, 3 → 1)] ⇒ (d, L → H)].



Tree-based construction of low-cost action rules 7

After the rules are formed, we evaluate them by checking their support
and confidence. Two strong E-action rules are discovered:

[[(a, 2) ∧ (b, 3 → 1)] ⇒ (d, L → H)], sup:2, conf: 100%
[[(c, 2) ∧ (b, 3 → 1)] ⇒ (d, L → H)], sup:2 conf: 100%

3 Cost and Feasibility of Action Rules

Assume now that DS = ({Si : i ∈ I}, L) is a distributed information system
(DIS), where Si = (Xi, Ai, Vi), i ∈ I. Let b ∈ Ai is a flexible attribute in Si and
b1, b2 ∈ Vi are its two values. By ρSi

(b1, b2) we mean a number from (0,+∞]
which describes the average cost needed to change the attribute value from
b1 to b2 for any of the qualifying objects in Si. Object x ∈ Xi qualifies for the
change from b1 to b2, if b(x) = b1. If the above change is not feasible in practice,
for one of the qualifying objects in Si, then we write ρSi

(b1, b2) = +∞. The
value of ρSi

(b1, b2) close to zero is interpreted that the change of values from
b1 to b2 is quite trivial to accomplish for qualifying objects in Si whereas any
large value of ρSi

(b1, b2) means that this change of values is practically very
difficult to achieve for some of the qualifying objects in Si.

If ρSi
(b1, b2) < ρSi

(b3, b4), then we say that the change of values from b1

to b2 is more feasible than the change from b3 to b4.

We assume here that the values ρSi
(bj1, bj2) are provided by experts for

each of the information systems Si. They are seen as atomic expressions and
will be used to introduce the formal notion of the feasibility and the cost of
action rules in Si.

So, let us assume that r = [(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ ∧ (bp, vp →
wp)](x) ⇒ (d, k1 → k2)(x) is a (r1, r2)-action rule. By the cost of r denoted
by cost(r) we mean the value

∑
{ρSi

(vk, wk) : 1 ≤ k ≤ p}. We say that r is
feasible if cost(r) < ρSi

(k1, k2).

It means that for any feasible rule r, the cost of the conditional part of r

is lower than the cost of its decision part and clearly cost(r) < +∞.

Assume now that d is a decision attribute in Si, k1, k2 ∈ Vd, and the user
would like to re-classify customers in Si from the group k1 to the group k2.
To achieve that, he may look for an appropriate action rule, possibly of the
lowest cost value, to get a hint which attribute values have to be changed.
To be more precise, let us assume that RSi

[(d, k1 → k2)] denotes the set of
all action rules in Si having the term (d, k1 → k2) on their decision site. For
simplicity reason, in Section 5 of this paper, attribute d will be omitted in
(d, k1 → k2). Now, among all action rules in RSi

[(d, k1 → k2)] he may identify
a rule which has the lowest cost value. But the rule he gets may still have the
cost value much to high to be of any help to him. Let us notice that the cost
of the action rule



8 Angelina A. Tzacheva and Li-Shiang Tsay

r = [(b1, v1 → w1)∧(b2, v2 → w2)∧...∧(bp, vp → wp)](x) ⇒ (d, k1 → k2)(x)
might be high only because of the high cost value of one of its sub-terms in
the conditional part of the rule.

Let us assume that (bj , vj → wj) is that term. In such a case, we may look
for an action rule in RSi

[(bj , vj → wj)] which has the smallest cost value.

Assume that r1 = [(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ ... ∧ (bjq, vjq →
wjq)](y) ⇒ (bj , vj → wj)(y) is such a rule which is also feasible in Si. Since
x, y ∈ Xi, we can compose r with r1 getting a new feasible rule which is given
below:

[(b1, v1 → w1) ∧ ... ∧ [(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ ... ∧ (bjq, vjq →
wjq)] ∧ ... ∧ (bp, vp → wp)](x) ⇒ (d, k1 → k2)(x).

Clearly, the cost of this new rule is lower than the cost of r. However, if its
support in Si gets too low, then such a rule has no value to the user. Otherwise,
we may recursively follow this strategy trying to lower the cost needed to re-
classify objects from the group k1 into the group k2. Each successful step will
produce a new action rule which cost is lower than the cost of the current
rule. Obviously, this heuristic strategy always ends.

One can argue that if the set RSi
[(d, k1 → k2)] contains all action rules re-

classifying objects from group k1 into the group k2 then any new action rule,
obtained as the result of the above recursive strategy, should be already in
that set. We agree with this statement but in practice RSi

[(d, k1 → k2)] is only
a subset of all action rules. Firstly, it is too expensive to generate all possible
classification rules from an information system (available knowledge discovery
packages extract only the shortest or close to the shortest rules) and secondly
even if we extract such rules it still takes too much time to generate all possible
action rules from them. So the applicability of the proposed recursive strategy,
to search for new rules possibly of the lowest cost, is highly justified.

Again, let us assume that the user would like to reclassify some objects
in Si from the class b1 to the class b2 and that ρSi

(b1, b2) is the current cost
to do that. Each action rule in RSi

[(d, k1 → k2)] gives us an alternate way
to achieve the same result but under different costs. If we limit ourself to
the system Si, then clearly we can not go beyond the set RSi

[(d, k1 → k2)].
But, if we allow to extract action rules at other information systems and use
them jointly with local action rules, then the number of attributes which can
be involved in reclassifying objects in Si will increase and the same we may
further lower the cost of the desired reclassification.

So, let us assume the following scenario. The action rule r = [(b1, v1 →
w1)∧ (b2, v2 → w2)∧ ...∧ (bp, vp → wp)](x) ⇒ (d, k1 → k2)(x), extracted from
the information system Si, is not feasible because at least one of its terms, let
us say (bj , vj → wj) where 1 ≤ j ≤ p, has too high cost ρSi

(vj , wj) assign to
it.



Tree-based construction of low-cost action rules 9

In this case we look for a new feasible action rule r1 = [(bj1, vj1 →
wj1) ∧ (bj2, vj2 → wj2) ∧ ... ∧ (bjq, vjq → wjq)](y) ⇒ (bj , vj → wj)(y) which
concatenated with r will decrease the cost value of desired reclassification. So,
the current setting looks the same to the one we already had except that this
time we additionally assume that r1 is extracted from another information
system in DS. For simplicity reason, we also assume that the semantics and
the granularity levels of all attributes listed in both information systems are
the same.

By the concatenation of action rule r1 with action rule r we mean a new
feasible action rule r1 ◦ r of the form:
[(b1, v1 → w1) ∧ ... ∧ [(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ ... ∧ (bjq, vjq →
wjq)] ∧ ... ∧ (bp, vp → wp)](x) ⇒ (d, k1 → k2)(x)
where x is an object in Si = (Xi, Ai, Vi).

4 Heuristic Strategy for the Lowest Cost Reclassification

of Objects

Let us assume that we wish to reclassify as many objects as possible in the
system Si, which is a part of DIS, from the class described by value k1 of
the attribute d to the class k2. The reclassification k1 → k2 jointly with its
cost ρSi

(k1, k2) is seen as the information stored in the initial node n0 of the
search graph built from nodes generated recursively by feasible action rules
taken initially from RSi

[(d, k1 → k2)]. For instance, the rule
r = [(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ ... ∧ (bp, vp → wp)](x) ⇒

(d, k1 → k2)(x)
applied to the node n0 = {[k1 → k2, ρSi

(k1, k2)]} generates the node
n1 = {[v1 → w1, ρSi

(v1, w1)], [v2 → w2, ρSi
(v2, w2)], ...,

[vp → wp, ρSi
(vp, wp)]},

and from n1 we can generate the node
n2 = {[v1 → w1, ρSi

(v1, w1)], [v2 → w2, ρSi
(v2, w2)], ...,

[vj1 → wj1, ρSi
(vj1, wj1)], [vj2 → wj2, ρSi

(vj2, wj2)], ...,
[vjq → wjq, ρSi

(vjq, wjq)], ..., [vp → wp, ρSi
(vp, wp)]}

assuming that the action rule
r1 = [(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ ... ∧ (bjq, vjq → wjq)](y) ⇒

(bj , vj → wj)(y)
from RSm

[(bj , vj → wj)] is applied to n1. /see [17]/

This information can be written equivalently as: r(n0) = n1, r1(n1) = n2,
[r1 ◦ r](n0) = n2. Also, we should notice here that r1 is extracted from Sm

and SupSm
(r1) ⊆ Xm whereas r is extracted from Si and SupSi

(r) ⊆ Xi.
By SupSi

(r) we mean the domain of action rule r (set of objects in Si

supporting r).

The search graph can be seen as a directed graph G which is dynamically
built by applying action rules to its nodes. The initial node n0 of the graph



10 Angelina A. Tzacheva and Li-Shiang Tsay

G contains information coming from the user, associated with the system
Si, about what objects in Xi he would like to reclassify and how and what
is his current cost of this reclassification. Any other node n in G shows an
alternative way to achieve the same reclassification with a cost that is lower
than the cost assigned to all nodes which are preceding n in G. Clearly, the
confidence of action rules labeling the path from the initial node to the node
n is as much important as the information about reclassification and its cost
stored in node n. Information from what sites in DIS these action rules have
been extracted and how similar the objects at these sites are to the objects
in Si is important as well.

Information stored at the node
{[v1 → w1, ρSi

(v1, w1)], [v2 → w2, ρSi
(v2, w2)], ..., [vp → wp, ρSi

(vp, wp)]}
says that by reclassifying any object x supported by rule r from the class
vi to the class wi, for any i ≤ p, we also reclassify that object from the
class k1 to k2. The confidence in the reclassification of x supported by node
{[v1 → w1, ρSi

(v1, w1)], [v2 → w2, ρSi
(v2, w2)], ..., [vp → wp, ρSi

(vp, wp)]} is
the same as the confidence of the rule r.

Before we give a heuristic strategy for identifying a node in G, built for a
desired reclassification of objects in Si, with a cost possibly the lowest among
all the nodes reachable from the node n0, we have to introduce additional
notations.

So, assume that N is the set of nodes in our dynamically built directed
graph G and n0 is its initial node. For any node n ∈ N , by f(n) =
(Yn, {[vn,j → wn,j , ρSi

(vn,j , wn,j)]}j∈In
) we mean its domain, the reclassifi-

cation steps related to objects in Xi, and their cost, all assigned by reclassi-

fication function f to the node n, where Yn ⊆ Xi /Graph G is built for the
client site Si/.

Let us assume that f(n) = (Yn, {[vn,k → wn,k, ρSi
(vn,k, wn,k)]}k∈In

). We
say that action rule r, extracted from Si, is applicable to the node n if:

• Yn ∩ SupSi
(r) 6= ∅,

• (∃k ∈ In)[r ∈ RSi
[vn,k → wn,k]]. /see [17] for definition of RSi

[...]/

Similarly, we say that action rule r, extracted from Sm, is applicable to
the node n if:

• (∃x ∈ Yn)(∃y ∈ SupSm
(r))[ρ(x, y) ≤ λ], /ρ(x, y) is the similarity rela-

tion between x, y (see [17] for its definition) and λ is a given similarity
threshold/

• (∃k ∈ In)[r ∈ RSm
[vn,k → wn,k]].

It has to be noticed that reclassification of objects assigned to a node of
G may refer to attributes which are not necessarily attributes listed in Si. In
this case, the user associated with Si has to decide what is the cost of such a
reclassification at his site, since such a cost may differ from site to site.



Tree-based construction of low-cost action rules 11

Now, let RA(n) be the set of all action rules applicable to the node n.
We say that the node n is completely covered by action rules from RA(n) if
Xn =

⋃
{SupSi

(r) : r ∈ RA(n)}. Otherwise, we say that n is partially covered
by action rules.

What about calculating the domain Yn of node n in the graph G con-
structed for the system Si? The reclassification (d, k1 → k2) jointly with its
cost ρSi

(k1, k2) is stored in the initial node n0 of the search graph G. Its do-
main Y0 is defined as the set-theoretical union of domains of feasible action
rules in RSi

[(d, k1 → k2)] applied to Xi. This domain still can be extended by
any object x ∈ Xi if the following condition holds:

(∃m)(∃r ∈ RSm
[k1 → k2])(∃y ∈ SupSm

(r))[ρ(x, y) ≤ λ].

Each rule applied to the node n0 generates a new node in G which domain
is calculated in a similar way to n0. To be more precise, assume that n is such
a node and f(n) = (Yn, {[vn,k → wn,k, ρSi

(vn,k, wn,k)]}k∈In
). Its domain Yn

is defined as the set-theoretical union of domains of feasible action rules in⋃
{RSi

[vn,k → wn,k] : k ∈ In} applied to Xi. Similarly to n0, this domain still
can be extended by any object x ∈ Xi if the following condition holds:

(∃m)(∃k ∈ In)(∃r ∈ RSm
[vn,k → wn,k])(∃y ∈ SupSm

(r))[ρ(x, y) ≤ λ].

Clearly, for all other nodes, dynamically generated in G, the definition of
their domains is the same as the one above.

5 Tree-based construction of low-cost action rules

In this section we show how to combine the Action-Forest algorithm for discov-
ering E-action rules, and the heuristic strategy for lowest cost reclassification
of objects to produce low-cost action rules using a tree-based construction. By
adding the Action-Forest algorithm to the heuristic strategy for lowest cost
reclassification we propose a new enhanced algorithm.

Let us assume that a rule

r = [(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ ... ∧ (bp, vp → wp)](x) ⇒
(d, k1 → k2)(x)

was extracted using the Action-Forest algorithm by creating trees for the
values of d − k1, k2, ..., kj . However, the user noticed that the cost of the
conditional sub-term (b2, v2 → w2) is too high. In other words, The action
rule r, extracted from the information system Si, is not feasible because at
least one of its terms, let’s say (b2, v2 → w2) has too high cost ρSb

(v2, w2)
assigned to it.

In such case we may look for a new action rule in RSi
[(b, v2 → w2)] which

has the smallest cost value, which concatenated with r will decrease the cost



12 Angelina A. Tzacheva and Li-Shiang Tsay

value of desired reclassification. Therefore, we can apply Action-Forest algo-
rithm again, this time creating trees for the values of b2−v2 and w2, where b2

will be our decision attribute. Assume the following feasible action rule was
generated:

r1 = [(ej1, vj1 → wj1) ∧ (ej2, vj2 → wj2) ∧ ... ∧ (ejq, vjq → wjq)] ⇒
(b2, v2 → w2)

We can then compose r with r1, i.e. r1 ◦ r getting a new feasible rule as
follows:

[(b1, v1 → w1) ∧ [(ej1, vj1 → wj1) ∧ (ej2, vj2 → wj2) ∧ ... ∧ (ejq, vjq →
wjq)] ∧ ...∧

(bp, vp → wp)](x) ⇒ (d, k1 → k2)(x)

We may recursively follow this strategy trying to lower the cost needed to
re-classify objects from the group k1 into the group k2. Each successful step
will produce a new action rule which cost is lower than the cost of the current
rule.

We recall that the search graph can be seen as a directed graph G which
is dynamically built by applying action rules to its nodes. The initial node n0

of the graph G contains information coming from the user, associated with
the system Si, about what objects in Xi he or she would like to reclassify,
and what is the current cost of this reclassification. Any other node n in G

shows an alternative way to achieve the same reclassification with a cost that
is lower than the cost assigned to all nodes which are preceding n in G.

For instance, if we take as an example the strong E-action rule r1 generated
in Section 2 :

[[(a, 2) ∧ (b, 3 → 1)] ⇒ (d, L → H)]

and the user identified that this rule is not feasible because the cost of
ρSb

(3, 1) of sub-term (b, 3 → 1) , the tree-based construction of low-cost action
rules is illustrated on Fig. 3. below:



Tree-based construction of low-cost action rules 13

Fig. 3. Tree-based construction of low-cost action rules - Search Graph G



14 Angelina A. Tzacheva and Li-Shiang Tsay

6 Conclusion

The proposed approach presents an elegant way to combine the Action-Forest
algorithm, and the heuristic strategy for lowest cost reclassification. It allows
for enhancement of both algorithms. In the first case, it associates the notion
of cost to the E-action rules, thus allowing for cheapest rules to be discovered.
In the second case, it allows for more efficient means of generating the base
of of action rules RSi

[(d, k1 → k2)] by using tree-based construction.

References

1. Adomavicius G, Tuzhilin A (1997) Discovery of actionable patterns in
databases: the action hierarchy approach. In: Proceedings of KDD97 Confer-
ence. Newport Beach, CA. AAAI Press

2. Chmielewski M R, Grzymala-Busse J W, Peterson N W, Than S (1993) The
rule induction system LERS - a version for personal computers. In: Foundations
of Computing and Decision Sciences. Vol. 18, No. 3-4, Institute of Computing
Science, Technical University of Poznan, Poland: 181–212

3. Dardzińska A, Raś Z W (2003) On Rule Discovery from Incomplete Information
Systems. In Proceedings of ICDM’03 Workshop on Foundations and New Direc-
tions of Data Mining, (Eds: T.Y. Lin, X. Hu, S. Ohsuga, C. Liau). Melbourne,
Florida, IEEE Computer Society, 31–35

4. Geffner H, Wainer J (1998) Modeling action, knowledge and control. In: ECAI
98, Proceedings of the 13th European Conference on AI, (Ed. H. Prade). John
Wiley & Sons, 532–536

5. Greco S, Matarazzo B, Pappalardo N, Slowinski R (2005) Measuring expected
effects of interventions based on decision rules. In: Special Issue on Knowledge
Discovery, (Ed. Z.W. Raś). Journal of Experimental and Theoretical Artificial
Intelligence. Taylor and Francis, Vol. 17, No. 1-2, 103–118

6. Grzymala-Busse J (1997) A new version of the rule induction system LERS.
In: Fundamenta Informaticae, Vol. 31, No. 1, 27–39

7. Liu B, Hsu W, Chen S (1997) Using general impressions to analyze discovered
classification rules. In: Proceedings of KDD97 Conference, Newport Beach, CA,
AAAI Press

8. Pawlak Z (1991) Rough sets-theoretical aspects of reasoning about data.
Kluwer, Dordrecht

9. Pawlak Z (1981) Information systems - theoretical foundations. In: Information
Systems Journal, Vol. 6, 205–218

10. Polkowski L, Skowron A (1998) Rough sets in knowledge discovery. In: Studies
in Fuzziness and Soft Computing, Physica-Verlag, Springer

11. Raś Z, Wieczorkowska A (2000) Action rules: how to increase profit of a com-
pany. In: Principles of Data Mining and Knowledge Discovery, (Eds. D.A.
Zighed, J. Komorowski, J. Zytkow), Proceedings of PKDD’00, Lyon, France,
LNCS/LNAI, No. 1910, Springer-Verlag, 587–592

12. Raś Z W, Tsay L-S (2003) Discovering extended action-rules (System DEAR).
In: Intelligent Information Systems 2003, Proceedings of the IIS’2003 Sympo-
sium, Zakopane, Poland, Advances in Soft Computing, Springer-Verlag, 293–
300



Tree-based construction of low-cost action rules 15

13. Raś Z, Gupta S (2002) Global action rules in distributed knowledge systems.
In: Fundamenta Informaticae Journal, IOS Press, Vol. 51, No. 1-2, 175–184

14. Silberschatz A, Tuzhilin A (1995) On subjective measures of interestingness in
knowledge discovery. In: Proceedings of KDD9́5 Conference, AAAI Press

15. Silberschatz A, Tuzhilin A (1996) What makes patterns interesting in knowl-
edge discovery systems. In: IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 5, No. 6

16. Tsay L-S, Raś Z.W (2005) Action rules discovery: System DEAR2, method and
experiments. In: Special Issue on Knowledge Discovery, (Ed. Z.W. Raś). Journal
of Experimental and Theoretical Artificial Intelligence. Taylor and Francis, Vol.
17, No. 1-2, 119–128

17. Tzacheva A, Raś Z.W (2005) Action rules mining. International Journal of
Intelligent Systems. Wiley, Vol. 20, No. 7, 719–736


