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Abstract. In this paper, we present a generalization of a strategy pro-
posed in [7] that allows to reduce a disclosure risk of confidential data
in an information system S [10] using methods based on knowledge dis-
covery. The method proposed in [7] protects confidential data against
Rule-based Chase, the null value imputation algorithm driven by cer-
tain rules [2], [4]. This method identifies a minimal subset of additional
data in S which needs to be hidden to guarantee that the confidential
data are not revealed by Chase. In this paper we propose a bottom-up
strategy which identifies, for each object x in S, a maximal set of values
of attributes which do not have to be hidden and still the information
associated with secure attribute values of x is protected. It is achieved
without examining all possible combinations of values of attributes. Our
method is driven by classification rules extracted from S and takes into
consideration their confidence and support.

1 Introduction

This article discusses an important issue in data mining: how to provide mean-
ingful knowledge without compromising data confidentiality. In conventional
database systems, data confidentiality is to be achieved by hiding sensitive data
from unauthorized users. However, hiding is not sufficient in knowledge discov-
ery systems (KDS ) due to null imputation method like rule-based Chase ([2],
[4]) which are designed to predict null or missing values. Suppose that attributes
in a database contain medical information about patients; some portions are
not confidential while others are confidential (they are hidden from users). In
this case, part or all of the confidential data in the attribute may be revealed
by Chase using knowledge extracted from the database. In other words, self-
generated rules extracted from non-confidential portions of data can be used to
find secret data.

Security in KDS is studied in many research areas, such as cryptography,
statistics, and data mining. A well known security problem in cryptography
area is how to acquire global knowledge without revealing the data stored in
each local site in a distributed autonomous information system (DAIS). Pro-
posed solutions are based primarily on secure multiparty protocol ([12], [5])



that ensures each participant cannot learn more than its own input data and
outcome of a public function. Various authors expanded the idea. Clifton and
Kantarcioglou employed the protocol for association rule mining for vertically
and horizontally partitioned data [8]. Authors Du and Zhan pursued a similar
idea to build a decision tree system [6]. Protection of sensitive rules has been
discussed by Oliveira and Zaiane [9]. Authors suggested a solution to protecting
sensitive association rules in the form of ”sanitization process” that hides selec-
tive patterns from frequent itemsets. The data security problem discussed in this
article is different from other researches in the following ways. First, we focus on
the accuracy of existing data or knowledge instead of statistical characteristics of
data. Second, we aim to protect sensitive data in a database instead of sensitive
rules.

Our paper takes the definition of an information system proposed by Pawlak
[10] as a simplified model of a database. However, the notion of its incomplete-
ness differs from the classical rough set approach by allowing a set of weighted
attribute values as a value of an attribute. We also assume that the sum of these
weights has to be equal 1. If weights assigned to attribute values have to be
greater than a user specified threshold value λ, then we get information system
of type λ as introduced in [4].

Additionally we assume that one or more attributes in an information system
S of type λ contain confidential data that have to be protected and S is a part
of a distributed autonomous information system (DAIS) which provides a set
of rules applicable at S as a KB [11]. We have to be certain that values of any
confidential attribute can not be revealed from the available data in S and KB
by Chase [2] or any other null value imputation method while minimizing the
changes in the original information system. Also, we assume that we can hide the
precise information about objects from the user but we can not replace existing
data by false data. For instance, if someone is 18 years old, we can say that she
is young or her age is unknown but we can not say that she is 24 years old. In
pursue of such requirements, we propose a protection method named as SCIKD
for information systems of type λ. The method identifies weighted transitive
closure of attribute values involved in confidential data reconstruction, and uses
the result to identify the maximum number of attribute values that can remain
unchanged.

2 ERID and Chase as Tools for Revealing Hidden Values

We briefly provide some background on a null value imputation algorithm Chase
and next we outline the strategy called ERID [2]. Assume that S = (X,A, V ),
where V =

⋃{Va : a ∈ A} and each a ∈ A is a partial function from X into
2Va − {∅}. In the first step, Chase algorithm identifies all incomplete attributes
in S. An attribute is incomplete if there is an object in S with incomplete
information on this attribute. The values of all incomplete attributes in S are
treated as concepts to be learned (in a form of rules) either directly from S or



from S and its remote sites (if S is a part of DAIS). The second step of Chase
algorithm is to extract all these rules and store them in a knowledge base D
for S [11]. The next step is to replace incomplete information in S by values
provided by rules in D. This process is recursively repeated till no new hidden
values in S can be revealed.

Definition 1:
We say that S = (X, A, V ) is a partially incomplete information system of type
λ, if the following four conditions hold:

– X is the set of objects, A is the set of attributes, and V =
⋃{Va : a ∈ A} is

the set of values of attributes,

– (∀x ∈ X)(∀a ∈ A)[aS(x) ∈ Va or aS(x) = {(vi, pi) : 1 ≤ i ≤ m}] ,

– (∀x ∈ X)(∀a ∈ A)[(aS(x) = {(vi, pi) : 1 ≤ i ≤ m}) → ∑m
i=1 pi = 1],

– (∀x ∈ X)(∀a ∈ A)[(aS(x) = {(vi, pi) : 1 ≤ i ≤ m}) → (∀i)(pi ≥ λ)].

An example of an information system of type λ = 1
5 is given in Table 1 and

Table 2.
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Table 1. Information System S

It can be easily checked that the values a(x1), b(x5), c(x2), a(x2) in S1 differ
from the corresponding values in S2. In each of these four cases, a new attribute
value assigned to an object in S2 is less general than in S1.

Now, let us assume that S, S2 are partially incomplete information systems,
both of type λ. They provide descriptions of the same set of objects X using the
same set of attributes A. The meaning and granularity of values of attributes
in A for both systems S, S2 is also the same. Additionally, we assume that
aS(x) = {(ai, pi) : i ≤ m} and aS2(x) = {(a2i, p2i) : i ≤ m2}.
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Table 2. Information System S2

Now, we introduce the relation Ψ , called containment relation. We say that
(S, S2) ∈ Ψ , if the following two conditions hold:

– (∀x ∈ X)(∀a ∈ A)[card(aS(x)) ≥ card(aS2(x))],

– (∀x ∈ X)(∀a ∈ A)[[card(aS(x)) = card(aS2(x))] →
[
∑

i 6=j |p2i − p2j | >
∑

i 6=j |pi − pj |]].

Instead of saying that containment relation holds between S and S2, we can
equivalently say that S was transformed into S2 by containment mapping Ψ . We
can also say that containment mapping Ψ transforms any partially incomplete
value aS(x) of any attribute a, describing object x, into a new value aS2(x) which
is more complete.

It can be checked that Ψ(S) = S2, if S, S2 are systems represented by Table
1 and Table 2, correspondingly.

Algorithm Chase2, described by Dardzińska and Raś in [2], converts an
information system S of type λ to a new more complete information system
Chase2(S) of the same type. This algorithm differs from other known strate-
gies for chasing incomplete data in relational tables because of the assumption
concerning partial incompleteness of data (sets of weighted attribute values can
be assigned by Chase2 to an object as its new value). This assumption forced
authors to develop a new discovery algorithm, called ERID, for extracting rules
from incomplete information systems of type λ [3]. The syntax of classification
rules discovered by ERID is the same as syntax of similar rules discovered by
classical methods, like LERS or Rosetta. Only, the method of computing their
confidence and support differs.

Algorithm Chase2 based on ERID can be used as a null value imputation
tool revealing quite successfully hidden symbolic data. The method proposed in
[7] protects confidential data against Chase driven by certain rules. It identifies



a minimal subset of additional data in S which needs to be hidden to guarantee
that the confidential data are not revealed by Chase. In this paper we generalize
this strategy by proposing an algorithm which protects confidential data against
Chase2 based on ERID. It is a bottom-up strategy which identifies, for each
object x in S, a maximal set of values of attributes which do not have to be
entirely hidden and still the information associated with secure attribute values
of x is protected.

3 Algorithm Protecting Confidential Data against
Rule-based Chase

In this section we present an algorithm which protects values of a hidden at-
tribute over null value imputation Chase based on ERID. Suppose we have an
information system S as shown in Table 1 of type λ = 1

5 . S is transformed to
Sd by hiding the confidential attribute d as shown in Table 3. The rules in the
knowledge base KB are summarized in Table 4. For instance r1 = [b1 · c1 → a1]
is an example of a rule belonging to KB and its confidence is 1.
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Table 3. Information System Sd

To describe the algorithm, first we define the following sets,

– α(x) = {a ∈ A : a(x) 6= Null}, the set of attribute values in Sd used to
describe x

– α(t), the set of attribute values used in t, where t is their conjunction
– R(x) = {(t → c) ∈ KB : α(t) ⊆ α(x)}, the set of rules in KB where the

attribute values used in t are contained in α(x)
– β(x) = ∪{α(t) ∪ {c} : [t → c] ∈ R(x)}.

In our example R(x1) = {r1,r2,r3,r4,r5,r6,r7,r8,r9,r10}, and β(x1) = {a1, b1, c1, d1, e1, f1, g1}.
By using Chase2 based on ERID, d1 replaces the hidden slot d(x1) by rules from



Rule Conf a b c d e f g

r1 1 (a1) b1 c1

r2 1 (a1) c1 f1

r3
2
3

(b1) c1

r4 1 (b1) e1

r5 1 a1 (c1) f1

r6 1 a1 c1 (e1)
r7

2
3

(c1) e1 g1

r8 1 a1 c1 (d1)
r9 1 b1 c1 (d1)
r10 1 (d1) f1

Table 4. Rules contained in KB. Values in parenthesis are decision values

{r8, r9, r10}. Rules r9, r10 guarantee the confidence 1 assigned to d1, whereas
the rule r8 only guarantees the confidence 2

3 which is above the threshold value
λ = 1

5 . In addition, other rules from R(x1) also predict attribute values listed
in {t8, t9, t10}. These interconnections often build up a complex chain of infer-
ences. The task of blocking such inference chains and identifying the minimal
set of concealing values is not straightforward [7], especially that the confidence
assigned to rules in KB and the confidence assigned to attribute values in Sd

have to be taken into consideration.

To reduce the complexity and minimize the size of the set of hidden values,
a bottom up approach has been adapted. We check the values that will remain
unchanged starting from a singleton set containing attribute value a by using
weighted transitive closure [4] (if a → b and b → c, then a → c, which gives
us the set {a, b, c}). What about computing the weights assigned to a, b, c?
Let us assume that a → b has a confidence λ1 and b → c has a confidence λ2.
Then, weight 1 is assigned to a, weight λ1 is assigned to b, and weight (λ1 · λ2)
is assigned to c. If λ3 is a weight associated with a, then weight (λ3 · λ1) is
assigned to b, and weight (λ3 · λ1 · λ2) is assigned to c. If the weight assigned
to any of the elements in {a, b, c} is below the threshold value λ, then this
element is removed from {a, b, c}. Our goal is to increase the initial set size as
much as possible. Let us notice that any element of the resulting set can be
generated by following two different paths. Each path assigns a different weight
to that element. In all such cases, the highest weight is chosen by our algorithm.
This approach automatically rules out any superset of must-be-hidden values,
and minimizes the computational cost. The justification of this is quite simple.
Weighted transitive closure has the property that the superset of a set s also
contains s. Clearly, if a set of attribute values predicts d1, then the set must be
hidden regardless of the presence/abscence of other attribute values.

To outline the procedure, we start with a set β(x) = {(a1,
2
3 ), b1, c1, e1, f1, g1}

for the object x1 which construction is supported by 10 rules from KB, and
check the transitive closure of each singleton subset δ(x) of that set. If the



transitive closure of δ(x) contains classified attribute value d1 and the weight
associated with d1 is greater than λ, then δ(x) does not sustain, it is marked,
and it is not considered in later steps. Otherwise, the set remains unmarked. In
the second iteration of the algorithm, all two-element subsets of β(x) built only
from unmarked sets are considered. If the transitive closure of any of these sets
does not contain d1 with weight associated to it greater than λ, then such a set
remains unmarked and it is used in the later steps of the algorithm. Otherwise,
the set is getting marked. If either all sets in a currently executed iteration step
are marked or we have reached the set β(x), then the algorithm stops. Since
only subsets of β(x) are considered, the number of iterations will be usually not
large.

So, in our example the following singleton sets are considered:

{(a1,
2
3
)}+ = {(a1,

2
3
)} is unmarked

{b1}+ = {b1, } is unmarked

{c1}+ = {(a1,
2
3
), (b1,

2
3
), c1, (e1,

4
9
), (d1,

4
9
)} contains d1 and 4

9
≥ λ so it is marked

{e1}+ = {b1, e1} is unmarked

{f1}+ = {d1, f1} contains d1 so it is marked

{g1}+ = {g1} is unmarked

Clearly, c1 and f1 have to be concealed. The next step is to build sets of
length 2 and determine which of them can sustain. We take the union of two
sets only if they are both unmarked and one of them is a singleton set.

{(a1,
2
3
), b1}+ = {(a1,

2
3
), b1} is unmarked

{(a1,
2
3
), e1}+ = {(a1,

2
3
), b1, e1} is unmarked

{(a1,
2
3
), g1}+ = {(a1,

2
3
), g1} is unmarked

{b1, e1}+ = {b1, e1} is unmarked

{b1, g1}+ = {b1, g1} is unmarked

{e1, g1}+ = {(a1,
2
3
), (b1,

2
3
), (c1,

2
3
), (d1,

2
3
), e1, g1} contains d1 and 2

3
≥ λ so it is

marked

Now we build 3-element sets from previous sets that have not been marked.

{(a1,
2
3
), b1, e1}+ = {(a1,

2
3
), b1, e1} is unmarked

{(a1,
2
3
), b1, g1}+ = {(a1,

2
3
), b1, g1} is unmarked

{b1, e1, g1}+ is not considered as a superset of {e1, g1} which was marked.

We have {a1, b1, e1} and {a1, b1, g1} as unmarked sets that contain the max-
imum number of elements and do not have the transitive closure containing d
with associated weight greater than λ. In a similar way, we compute the maximal
sets for any object xi.

Now, we are ready to present more precise description of the algorithm for
identifying the minimal number of attribute values in Sd which have to be ad-
ditionally hidden from users in order to guarantee that attribute d cannot be



reconstructed through knowledge discovery. For simplicity reason, we assume
that all threshold are equal to 1. So, let us assume that KB is a knowledge base
for Sd and that the attribute d ∈ A needs to be hidden.

SCIKD(Sd,KB)

begin
i := 1;
while i ≤ l do
begin

for all v ∈ α(xi) do Mark(v) := F ;
for all v ∈ α(xi) do
begin

R(xi) = {r ∈ KB : (∃d1 ∈ Vd)[r = v → d1]};
γ(xi) := d(xi);
α1(xi, v) := {v};
β(xi, v) = α1(xi, v) ∪ {d1 : [v → d1] ∈ R(xi)};
while γ(xi) 6∈ β(xi, v) and α1(xi, v) 6= β(xi, v) do
begin

α1(xi, v) := β(xi, v);
R(xi) = {r ∈ KB : (∃t ⊂ α1(xi, v))[r = t → d1]};
β(xi, v) = α1(xi, v) ∪ {d1 : (∃t)([t → d1] ∈ R(xi))};

end
if γ(xi) ∈ β(xi, v) then Mark(v) := T ;

end
j:= 2;
while j ≤ ki − 1 do
begin

for each w ⊂ α(xi) such that [card(w) = j
and all subsets of w are unmarked] do
begin

α1(xi, w) := w;
β(xi, w) = α1(xi, w) ∪ {d1 : (∃t ⊂ w)[t → d1] ∈ R(xi)};
while γ(xi) 6∈ β(xi, w) and α1(xi, w) 6= β(xi, w) do
begin

α1(xi, w) := β(xi, w);
R(xi) = {r ∈ KB : (∃t ⊂ α1(xi, w))[r = t → d1]};
β(xi, w) = α1(xi, w) ∪ {d1 : (∃t)([t → d1] ∈ R(xi))};

end
if γ(xi) ∈ β(xi, w) then Mark(w) := T ;

end
end
i := i + 1

end
end



The algorithm presented here is a simplified version of the system SCIKD
which was implemented and tested. Namely, its implemented version allows pos-
sible rules to be used in KB. If one of the possible attribute values to be placed
in a hidden slot has a confidence below λ, then this attribute value is not con-
sidered in further steps of the algorithm. This approach is similar to the one
followed in the paper [2].

4 Experiment and Conclusion

We implemented the method on a PC running Windows XP and Oracle database
version 10g. The code was written in PL/SQL language with PL/SQL Developer
version 6. HTML DB and some additional Javascript have been used to create
a graphical user interface.

The sampling data table containing 4,000 objects with 10 attributes was ex-
tracted randomly from a complete database describing personal income reported
in the Census data [1]. The data table was randomly partitioned into 4 tables
that each have 1,000 tuples. One of these tables is called a client and the re-
maining 3 are called servers. Now, we hide all the values of one attribute that
includes income data in the client. From the servers, 13 rules are extracted which
are used to describe values of hidden attribute by Distributed Chase algorithm,
and 75 rules are extracted from the client which are used to describe the values
of remaining attributes by Local Chase algorithm. All these rules are generated
using ERID and stored in KB of the client.

It appears that 739 attribute values (7.39% of the total number of attribute
values in client table) have to be additionally hidden. The presented method can
easily be used to protect two or more confidential attributes in an information
system. In this case, a set of attribute values in xi should be hidden if the closure
of the set contains any of the classified data.
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