
Constraint Based Action Rule Discovery with Single
Classification Rules

Angelina A. Tzacheva1 and Zbigniew W. Ras2

1 Department of Informatics, University of South Carolina Upstate, Spartanburg, SC
29303 USA. E-Mail: ATzacheva@USCUpstate.edu
2 Department of Computer Science, University of North Carolina, Charlotte, NC 28233
USA. E-Mail: ras@uncc.edu

Abstract

Action rules can be seen as an answer to the question: what one can do with results of
data mining and knowledge discovery? Some applications include: medical field, e-
commerce, market basket analysis, customer satisfaction, and risk analysis. Action
rules are logical terms describing knowledge about possible actions associated with
objects, which is hidden in a decision system. Classical strategy for discovering them
from a database requires prior extraction of classification rules which next are
evaluated pair by pair with a goal to suggest an action, based on condition features in
order to get a desired effect on a decision feature. An actionable strategy is
represented as a term r = [(ω)∧(α→β)]⇒[φ→ψ], where ω, α, β, φ, and ψ are
descriptions of objects or events. The term r states that when the fixed condition ω is
satisfied and the changeable behavior (α→β) occurs in objects represented as tuples
from a database so does the expectation (φ→ψ). With each object a number of
actionable strategies can be associated and each one of them may lead to different
expectations and the same to different reclassifications of objects. In this paper we will
focus on a new strategy of constructing action rules directly from single classification
rules instead of pairs of classification rules. It presents a gain on the simplicity of the
method of action rules construction, as well as on its time complexity. We present A*-
type heuristic strategy for discovering only interesting action rules, which satisfy user-
defined constraints such as: feasibility, maximal cost, and minimal confidence. We,
therefore, propose a new method for fast discovery of interesting action rules.

Keywords
Action rules, interestingness, information richness, knowledge discovery, knowledge
management, decision support systems.

1. Introduction
There are two aspects of interestingness of rules that have been studied in data mining
literature, objective and subjective measures (Liu, 1997), (Adomavicius & Tuzhilin,
1997), (Silberschatz & Tuzhilin, 1995, 1996). Objective measures are data-driven and
domain-independent. Generally, they evaluate the rules based on their quality and
similarity between them. Subjective measures, including unexpectedness, novelty and
actionability, are user-driven and domain-dependent.

The notion of an action rule, constructed from certain pairs of association rules, has been
proposed in (Ras & Wieczorkowska, 2000). Its different definition was given earlier in
(Geffner & Wainer, 1998). Also, interventions introduced in (Greco, 2006) are
conceptually very similar to action rules. Action rules have been investigated further in
(Tsay & Ras, 2005, 2006), (Tzacheva & Ras, 2005), (Ras & Dardzinska, 2006).

In (Tzacheva & Ras, 2005) the notion of a cost and feasibility of an action rule was
introduced. The cost is a subjective measure and feasibility is an objective measure.
Usually, a number of action rules or chains of action rules can be applied to re-classify a
certain set of objects. The cost associated with changes of values within one attribute is
usually different than the cost associated with changes of values within another attribute.
The strategy for replacing the initially extracted action rule by a composition of new
action rules, dynamically built and leading to the same reclassification goal, was
proposed in (Tzacheva & Ras, 2005). This composition of rules uniquely defines a new
action rule. Objects supporting the new action rule also support the initial action rule but
the cost of reclassifying them is lower or even much lower for the new rule.

In (Ras & Dardzinska, 2006) authors propose a new simplified strategy for constructing
action rules. In this paper, we present a heuristic strategy for discovering interesting
action rules which satisfy user-defined constraints such as: feasibility, maximal cost, and
minimal confidence. There is a close correspondence in syntax between the rules
generated by Tree-Based Strategy (Tsay & Ras, 2005) and rules constructed by this new
method.

2. Action Rules
In the paper by (Ras & Wieczorkowska, 2000), the notion of an action rule was
introduced. The main idea was to generate, from a database, special type of rules which
basically form a hint to users showing a way to re-classify objects with respect to some
distinguished attribute (called a decision attribute). Values of some of attributes, used to
describe objects stored in a database, can be changed and this change can be influenced
and controlled by user. However, some of these changes (for instance “profit”) can not be
done directly to a decision attribute. In such a case, definitions of this decision attribute in
terms of other attributes (called classification attributes) have to be learned. These new
definitions are used to construct action rules showing what changes in values of some
attributes, for a given class of objects, are needed to re-classify these objects the way
users want. But, users may still be either unable or unwilling to proceed with actions
leading to such changes. In all such cases, we may search for definitions of a value of any
classification attribute listed in an action rule. By replacing this value of attribute by its
definition extracted either locally or at remote sites (if system is distributed), we construct
new action rules which might be of more interest to users than the initial rule (Tzacheva
& Ras, 2004).

We start with a definition of an information system given in (Pawlak, 1991).
By an information system we mean a pair S = (U, A), where:

1. U is a nonempty, finite set of objects (object identifiers),

2. A is a nonempty, finite set of attributes i.e. a: U→ Va for a ∈ A, where Va is
 called the domain of a.

Information systems can be seen as decision tables. In any decision table together with
the set of attributes a partition of that set into conditions and decisions is given.
Additionally, we assume that the set of conditions is partitioned into stable and flexible
(Ras & Wieczorkowska, 2000).

Attribute a ∈ A is called stable for the set U if its values assigned to objects from U can
not be changed in time. Otherwise, it is called flexible. “Place of birth” is an example of a
stable attribute. “Interest rate” on any customer account is an example of a flexible
attribute. For simplicity reason, we consider decision tables with only one decision. We
adopt the following definition of a decision table:

By a decision table we mean an information system S = (U, ASt∪ AFl ∪ {d}), where d
∉ASt∪ AFl is a distinguished attribute called the decision. The elements of ASt are called
stable conditions, whereas the elements of AFl ∪ {d} are called flexible. Our goal is to
change values of attributes in AFl for some objects in U so the values of the attribute d for
these objects may change as well. Certain relationships between attributes from ASt∪ AFl

and the attribute d will have to be discovered first.

By Dom(r) we mean all attributes listed in the IF part of a rule r extracted from S. For
example, if r = [(a1,3)*(a2,4) → (d,3)] is a rule, then Dom(r) = {a1,a2}. By d(r) we
denote the decision value of rule r. In our example d(r) = 3.

If r1, r2 are rules and B ⊆ AFl ∪ ASt is a set of attributes, then r1/B = r2/B means that
the conditional parts of rules r1, r2 restricted to attributes B are the same.
For example if r1 = [(a1,3) → (d,3)], then r1/{a1} = r/{a1} .

Assume also that (a, v → w) denotes the fact that the value of attribute a has been
changed from v to w. Similarly, the term (a, v → w)(x) means that a(x)=v has been
changed to a(x)=w. Saying another words, the property (a, v) of an object x has been
changed to property (a, w). Assume now that rules r1, r2 have been extracted from S
and r1/[Dom(r1)∩Dom(r2)∩ASt] = r2/[Dom(r1)∩Dom(r2)∩ASt] , d(r1)=k1, d(r2)=k2.
Also, assume that (b1, b2,…, bp) is a list of all attributes in Dom(r1) ∩ Dom(r2) ∩ AFl
on which r1, r2 differ and r1(b1)= v1, r1(b2)= v2,…, r1(bp)= vp, r2(b1)= w1, r2(b2)=
w2,…, r2(bp)= wp.

By (r1,r2)-action rule we mean a statement r:
[r2/ASt ∧ (b1, v1→ w1) ∧ (b2, v2 → w2) ∧…∧ (bp, vp → wp)] ⇒ [(d, k1 → k2)].

Object x ∈ U supports action rule r, if x supports the description [r2/ASt ∧ (b1, v1) ∧
(b2, v2) ∧…∧ (bp,vp) ∧ (d, k1)]. The set of all objects in U supporting r is denoted by
U<r>. The term r2/ASt is called the header of action rule.

Extended action rules, introduced in (Ras & Tsay, 2003), form a special subclass of
action rules. We construct them by extending headers of action rules in a way that their
confidence is getting increased. The support of extended action rules is usually lower
than the support of the corresponding action rules.

3. Action Rule Discovery Based on a Single Classification Rule
Let us assume that S = (U, ASt ∪AFl ∪{d}) is a decision system, where d ∉ ASt ∪AFl is a
distinguished attribute called the decision. Assume also that d1 ∈ Vd and x ∈ U. We say
that x is a d1-object if d(x)=d1. Finally, we assume that {a1, a2,..., ap} ⊆ AFl, {b1, b2,...,
bq} ⊆ ASt, a[i,j] denotes a value of attribute ai, b[i,j] denotes a value of attribute bi, for any
i, j and that

r = [[a [1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]] ∧ [b[1,1] ∧ b[2,1] ∧ ∧ b[q,1]] → d1]
is a classification rule extracted from S supporting some d1-objects in S. By sup(r) and
conf(r), we mean the support and the confidence of r, respectively. Class d1 is a
preferable class and our goal is to reclassify d2-objects into d1 class, where d2 ∈Vd.

By an action rule r[d2 → d1] associated with r and the reclassification task (d, d2 → d1)
we mean the following expression (Ras & Dardzinska, 2006):

r[d2 → d1] = [[a [1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]] ∧
 [(b1, → b[1,1]) ∧ (b2, → b[2,1]) ∧ ∧ (bq, → b[q,1])] ⇒ (d, d2 → d1)] .

In a similar way, by an action rule r[→ d1] associated with r and the reclassification
task (d, → d1) we mean the following expression:

r[→ d1] = [[a [1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]] ∧
 [(b1, → b[1,1]) ∧ (b2, → b[2,1]) ∧ ∧ (bq, → b[q,1])] ⇒ (d, → d1)] .

The term [a [1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]] built from values of stable attributes, is called the
header of the action rule r[d2 → d1] and its values can not be changed.

The support set of the action rule r[d2 → d1] is defined as:
Sup(r[d2 → d1]) = {x ∈ U: (a1(x)=a[1,1] ∧ a2(x)=a[2,1] ∧ ... ∧ ap(x)=a[p,1]) ∧ (d(x)=d2) }.

In the following paragraph we show how to calculate the confidence of action rules. Let
r[d2 → d1], r'[d2 → d3] are two action rules extracted from S. We say that these rules are p-
equivalent (≈), if the condition given below holds for every bi ∈ AFl ∪ASt:

if r/bi, r'/bi are both defined, then r/bi = r'/bi.

Now, let us take d2-object x ∈ Sup(r[d2 → d1]). We say that x positively supports r[d2 → d1]
if there is no classification rule r' extracted from S and describing d3 ∈ Vd, d3 ≠ d1,
which is p-equivalent to r, such that x∈ Sup(r'[d2 →d3]). The corresponding subset of
Sup(r[d2 → d1]) is denoted by Sup+(r [d2 → d1]). Otherwise, we say that x negatively supports
r[d2 → d1]. The corresponding subset of Sup(r[d2 → d1]) is denoted by Sup-(r [d2 → d1]).

By the confidence of r[d2 → d1] in S we mean:
Conf(r[d2 → d1]) = [card[Sup+(r [d2 → d1])]/card[Sup(r[d2 →d1])]] ⋅⋅⋅⋅ conf(r).

4. Cost and Feasibility of Action Rules
Depending on the cost of actions associated with the classification part of action rules,
business user may be unable or unwilling to proceed with them.

Assume that S = (X, A, V) is an information system. Let Y⊆ X, b ∈ A is a flexible
attribute in S and b1, b2 ∈ Vb are its two values. By ℘S (b1, b2) we mean a number from
(0, +∞] which describes the average cost of changing the attribute value b1 to b2 for any
of the qualifying objects in Y. These numbers are provided by experts. Object x ∈ Y
qualifies for the change from b1 to b2, if b(x) = b1. If the above change is not feasible,
then we write ℘S (b1, b2) = +∞ . Also, if ℘S (b1, b2) < ℘S (b3, b4), then we say that the
change of values from b1 to b2 is more feasible than the change from b3 to b4.

Let us assume that
 r = [(b1, v1 → w1) ^ (b2, v2 → w2) ^ … ^ (bp, vp → wp)] ⇒ (d, k1 → k2)
is an action rule.

By the cost of r in S denoted by cost(r) we mean the value ∑{℘S (vk , wk) : 1 ≤ k ≤ p}.

We say that r is feasible if cost(r) < ℘S (k1 , k2).

Now, let us assume that RS [(d, k1 → k2)] denotes the set of action rules in S having the
term (d, k1 → k2) on their decision side. Sometimes, for simplicity reason, attribute d will
be omitted. An action rule in RS [(d, k1 → k2)] which has the lowest cost value may still
be too expensive to be of any help. Let us notice that the cost of an action rule

r = [(b 1, v1 → w1) ^ (b2, v2 → w2)^ … ^ (bp, vp → wp)] ⇒ (d, k1 → k2)

might be high because of the high cost value of one of its sub-terms in the conditional
part of the rule. Let us assume that (bj, vj → wj) is that term. In such a case, we may look
for an action rule in RS [(bj, vj → wj)], which has the smallest cost value. Assume that

 r1 = [(b j1, vj1 → wj1) ^ (bj2, vj2 → wj2) ^ … ^ (bjq, vjq → wjq)] ⇒ (bj, vj → wj)

is such a rule which is also feasible in S.

Now, we can compose r with r1 getting a new feasible action rule which is given below:

[(b1, v1 → w1) ^…^ [(bj1, vj1 → wj1) ^ (bj2, vj2 → wj2) ^ … ^

 (bjq, vjq → wjq)] ^…^ (bp, vp → wp)] ⇒ (d, k1 → k2)

Clearly, the cost of this new rule is lower than the cost of r. However, if its support in S
gets too low, then such a rule has no value to the user. Otherwise, we may recursively
follow this strategy trying to lower the cost of re-classifying objects from the group k1
into the group k2. Each successful step will produce a new action rule which cost is lower
than the cost of the current rule. Obviously, this heuristic strategy always ends.

5. Reclassification Graph and A*-type Algorithm for Action Rules Construction.
Let us assume that we wish to reclassify as many objects as possible in an information
system S, from the class described by value k1 of the attribute d to the class k2.

The term k1 → k2 jointly with its cost ℘S (k1, k2) is stored in the initial node n0 of the
search graph G built from nodes generated recursively by feasible action rules taken
initially from RS [(d, k1 → k2)] .

For instance, the rule

r = [[(b 1, v1 → w1) ^ (b2, v2 → w2) ^ … ^ (bp, vp → wp)] ⇒ (d, k1 → k2)]

applied to the node n0 = {[k 1 → k2 , ℘S (k1, k2)]} generates the node

n1 = {[v 1 → w1 , ℘S (v1, w2)], [v2 → w2 , ℘S (v2, w2)], …, [vp → wp , ℘S (vp, wp)]}

and from n1 we can generate the node

n2 = {[v 1 → w1 , ℘S (v1, w1)], [v2 → w2 , ℘S (v2, w2)], …, [vj1 → wj1 , ℘S (vj1, wj1)],

 [vj2 → wj2 , ℘S (vj2, wj2)], …,[vjq → wjq , ℘S (vjq, wjq)],…, [vp → wp , ℘S (vp, wp)]}

assuming that the action rule

r1 = [(b j1, vj1 → wj1) ^ (bj2, vj2 → wj2) ^ … ^ (bjq, vjq → wjq)] ⇒ (bj, vj → wj)

from RS[(bj, vj → wj)] is applied to n1 .

This information can be written equivalently as:

 r(n0) = n1 , r1(n1) = n2 , [r1 º r](n0) = r1(r(n0)) = n2.

By DomS(r) we mean the domain of action rule r (set of objects in S supporting r).

Search graph G is dynamically built by applying action rules to its nodes. Its initial node
n0 contains information given by the user. Any other node n in G shows an alternative
way to achieve the same reclassification with a cost that is lower than the cost assigned to
all nodes which are preceding n in G. Clearly, the confidence of action rules labeling the
path from the initial node to the node n is as much important as the information about
reclassification and its cost stored in node n.

The A*-type strategy for identifying a node in G, built for a desired reclassification of
objects in S, with a cost possibly the lowest among all the nodes reachable from the node
n, was given in (Tzacheva and Ras, 2005). This strategy was controlled by three
threshold values: λ1 - for minimum confidence of action rules, λ2 - for maximum cost of
action rules, and λ3 - for feasibility of action rules. The last threshold was introduced to
control the minimal acceptable decrease in the cost of an action rule to be constructed. If
the search is stopped by the threshold λ1, then we do not continue the search along that
path. If the search is stopped by the threshold λ2, then we can either stop or continue the
search till it is stopped by threshold λ1.

Assume that N is the set of nodes in graph G for S and n0 is its initial node.

For any node n ∈ N, by F(n) = (Yn, {[vn,j → wn,j , ℘S (vn,j, wn,j,Yn)]} j ∈ In) we mean its
domain (set of objects in S supporting r), the reclassification steps for objects in Yn, and
their cost, all assigned by reclassification function F to the node n, where Yn ⊆ X .

The cost of the node n, denoted by cost(n), is equal to Σ{℘S (vn,j, wn,j,Yn): j∈ In}.

We say that action rule r is applicable to the node n if:

Yn ∩ DomS(r) ≠ Ø
(∃k ∈ In)[r ∈ RS [vn,kj → wn,k]]

If node n1 is a successor of the node n in G obtained by applying the action rule r to n,
then Yn1 = Yn ∩ DomS(r).

We assume here that the function cost h(ni) = [cost(n,Yi) - λ2]/λ3 is associated with
any node ni in G. It shows the maximal number of steps that might be needed to reach
the goal from the node ni.

By conf(n), we mean the confidence of action rule associated with the node n.

A search node in a graph G associated with node m is a pair

p(m) = ([conf(m),f(m)],[m,n1,n2,no]),

where f(m) = g(m)+h(m) and g(m) is the function cost defined as the length of the path
[m,n1,n2,no] in G (without loops) from the initial state no to the state m.

The search node associated with the initial node no of G is equal to ([conf(no),f(no)],[n o]) .
It is easy to show that f(m) is admissible and never overestimates the cost of a solution
through the node m.

6. Action Rules Discovery based on Single Classification Rules
In this section we propose a modified version of A*-type heuristic strategy discussed in
Section 5 which is based on the new method of construction of action rules directly from
single classification rules instead of their pairs. It presents a gain on the simplicity of the
method of action rules construction, as well as on its time complexity.

First, we introduce the notion of a cost linked with the attribute value itself as ℘S (b1),
where b1∈Vb, which again is a number from (0, +∞] describing the average cost
associated with changing any value of attribute b to value b1.

Next, assume that R is a classification rule extracted from S:

R =

a b c e m k n r d
a1 b1 c1 e1 m1 k1 n1 r1 → d1

We denote the stable attributes in R by St(R) and the flexible by Fl(R). Assume St(R) =
{a, b, c, e} and Fl(R) = {m, k, n, r}. Also, assume that the class d1 is the most interesting
class of the decision attribute d, or it has the highest preference. The rule R defines the
concept d1. Assume that Vd = {d1, d2, d3, d4 }.

Clearly, there may be other classification rules that define concept d1. We pick the rule,
which has the lowest total cost on the flexible part, i.e. the sum of cost of all flexible
attributes ∑{℘S Fl(R)i : i=m, k, …, r } is the minimum.

Next, following the method for action rule discovery based on a single classification rule
described in Section 3, we are picking objects from X which have property, let’s say, d2
i.e. objects of class d2, which satisfy the header of stable attribute values in R:

Y = {x: a(x)=a1, b(x)= b1, c(x)= c1, e(x)=e1, d(x)= d2}

In order to ‘grab’ these objects into the class d1 we may construct the following action
rule:

[(a1 ^ b1 ^ c1 ^ e1)] ^ [(m, → m1) ^ (k, → k1) ^ (r, r→r1)] ⇒ (d, d2 →d1)

In other words, if we make the specified changes to the attributes in Fl(R), the
expectation is that the objects in Y will move to the desired class d1. Looking at the
changes needed, the user may notice that the change (k, → k1) is the worst, i.e. it has the
highest cost, and it contributes most to the cost of the sum (total cost) of all changes.
Therefore, we may search for new classification rules, which define the concept k1 , and
compose the feasible action rule R1 which suggests the reclassification to k1 at the lowest
cost,

R1 = [St(R1)] ^ [Fl(R1)]
where St(R) ⊆ St(R1). As defined earlier, such action rule will be feasible if the sum (total
cost) of all changes on the left hand side of the rule is lower, than the right side.
Therefore, the action rule R1 will specify an alternative way to achieve the reclassification
to k1 at a cost lower than the currently known cost to the user,

Next, we will concatenate the two action rules R and R1 by replacing (k, → k1) in R, with
[Fl(R1)] , and modifying the header to include St(R) ∪ St(R1).

[(a1 ^ b1 ^ c1 ^ e1) ^ St(R1)] ^ [(m, → m1) ^ Fl(R1) ^ (r, r→r1)] ⇒ (D, d2 →d1)

Clearly, there may be many classification rules that we can choose from. We only
consider the ones, which stable part does not contradict with St(R). We propose having
only classification rules with minimal number of new stable attributes to be concatenated,
as each time we add a new stable attribute that would decrease the total number of objects
in Y which can be moved to the desired class d1.

In relation to the flexible attributes, they have to be the same on the overlapping part of a
new classification rule and the rule R. This may further decrease the number of potential
objects in Y which can be moved to the desired class d1.

Therefore, we need a heuristic strategy, similar to the one presented in the previous
section for classical action rules, to look for classification rules to be concatenated with R
and which have the minimal number of new stable attributes in relation to R and minimal
number of new flexible attributes jointly with flexible attributes related to the overlapping
part with R.

We propose a modified version of the A*-algorithm we saw in the previous section.
Again we assume that the user will specify the following constraints: λ1 - threshold for
minimum confidence of action rules, λ2 - threshold for maximum cost of action rules, and
λ3 - threshold for feasibility of action rules.

Clearly, it is expensive to build the complete graph G and next search for a node of the
lowest cost satisfying both thresholds λ1, λ2. The heuristic value associated with a node n

in G is defined as h(n) = [cost(n) - λ2]/λ3.. It shows the maximal number of steps that
might be needed to reach the goal. The cost function g(m) is defined as the length of the
path in G (without loops) from the initial state no to the state m. It is easy to show that
f(m) = g(m)+h(m) is admissible and never overestimates the cost of a solution through
the node m

Conclusion
The new algorithm for constructing action rules of the lowest cost is a significant
improvement of the algorithm presented in (Tzacheva & Ras, 2005) because of its
simplicity in constructing headers of action rules and because the concatenation of action
rules is replaced by concatenation of classification rules.

Acknowledgements
This research was partially supported by the National Science Foundation under grant
IIS-0414815.

References:

[1] Grzymala-Busse, J. (1997). A new version of the rule induction system LERS,

Fundamenta Informaticae, Vol. 31, No. 1, 27-39
[2] Liu, B., Hsu, W., Chen, S. (1997). Using general impressions to analyze discovered

classification rules, Proceedings of KDD97 Conference, Newport Beach, CA,
AAAI Press

[3] Adomavicius, G., Tuzhilin, A. (1997). Discovery of actionable patterns in
databases: the action hierarchy approach, in Proceedings of KDD97 Conference,
Newport Beach, CA, AAAI Press

[4] Hilderman, R.J., Hamilton, H.J. (2001). Knowledge Discovery and Measures of
Interest (Dordrecht: Kluwer)

[5] Geffner, H., Wainer, J. (1998). Modeling action, knowledge and control, ECAI 98,
13th European Conference on AI, (Ed. H. Prade), John Wiley & Sons, 532-536

[6] Greco, S., Matarazzo, B., Pappalardo, N., Slowinski, R. (2005). Measuring
expected effects of interventions based on decision rules, Journal of Experimental
and Theoretical Artificial Intelligence, Taylor Francis, Vol. 17, No. 1-2

[7] Pawlak, Z. (1991). Information systems - theoretical foundations, Information
Systems Journal, Vol. 6, 205-218

[8] Greco, S., Pawlak, Z., Slowinski, R. (2004). Can Bayesian confirmation measures
be useful for rough set decision rules? Engineering Applications of Artificial
Intelligence, 17 (4): 345-361.

[9] Ras, Z. (1999). Discovering rules in information trees, in Principles of Data
Mining and Knowledge Discovery, (Eds. J. Zytkow, J. Rauch), Proceedings of
PKDD'99, Prague, Czech Republic, LNAI, No. 1704, Springer, 518-523

[10] Silberschatz, A., Tuzhilin, A., (1995). On subjective measures of interestingness in
knowledge discovery, Proceedings of KDD'95 Conference, AAAI Press

[11] Silberschatz, A., Tuzhilin, A., (1996). What makes patterns interesting in
knowledge discovery systems, IEEE Transactions on Knowledge and Data
Engineering Vol. 5, No. 6

[12] Ras, Z., Wieczorkowska, A. (2000). Action Rules: how to increase profit of a
company, in Principles of Data Mining and Knowledge Discovery, (Eds. D.A.
Zighed, J. Komorowski, J. Zytkow), Proceedings of PKDD'00, Lyon, France,
LNAI, No. 1910, Springer, 587-592

[13] Ras, Z.W., Tzacheva, A., Tsay, L.-S. (2005). Action rules, Encyclopedia of Data
Warehousing and Mining, (Ed. J. Wang), Idea Group Inc., 1-5

[14] Ras, Z.W., Dardzinska, A. (2006). Action rules discovery, a new simplified strategy,
in Foundations of Intelligent Systems, Proceedings of ISMIS'06, F. Esposito et al.
(Eds.), Bari, Italy, LNAI, No. 4203, Springer, 445-453

[15] Tsay, L.-S., Ras, Z.W. (2005). Action rules discovery system DEAR, method and
experiments, Journal of Experimental and Theoretical Artificial Intelligence,
Taylor & Francis, Vol. 17, No. 1-2, 119-128

[16] Tsay, L.-S., Ras, Z.W. (2006). Action rules discovery system DEAR3, in
Foundations of Intelligent Systems, Proceedings of ISMIS'06, F. Esposito et al.
(Eds.), Bari, Italy, LNAI, No. 4203, Springer, 483-492

[17] Tzacheva, A., Ras, Z.W. (2005). Action rules mining, International Journal of
Intelligent Systems, Wiley, Vol. 20, No. 7, 719-736

