Preparing for Final Exam

We will have 5 problems to solve on the exam. They will be of the same type as the ones below, except with different numbers / data, or a distance function. The distance function to be used will be specified. Partial credit will be given if only part of the solution is correct. For example, if you solved half of the problem you will get half of the points.

1. Find the set of optimal rules in Table T1 describing C in terms of A, F, G. Use ID3 algorithm.

	X
	A
	F
	G
	C

	x1
	a2
	f1
	g3
	c2

	x2
	a1
	f2
	g1
	c1

	x3
	a1
	f2
	g2
	c1

	x4
	a1
	f1
	g1
	c2

	x5
	a2
	f2
	g2
	c2

	x6
	a1
	f2
	g3
	c2

Table T1
Solution:

E(A) = 4/6(1) + 2/6(0)

 = 0.6667

E(F) = 4/6(1) + 2/6(0)

//same as E(A)

 = 0.6667

E(G) = 2/6(0) + 2/6(1) + 2/6(1)

 = 0 + 2/6 + 2/6

 = 4/6

 = 0.6667

We need to decide which attribute to use, in order to split the tree (table). We choose the attribute with the smallest entropy. They are all the same = 0.6667. We can choose either. We choose E(A) here:

	X
	F
	G
	C

	x2
	f2
	g1
	c1

	x3
	f2
	g2
	c1

	x4
	f1
	g1
	c2

	x6
	f2
	g3
	c2

	X
	F
	G
	C

	x1
	f1
	g3
	c2

	x5
	f2
	g2
	c2

 T2

The table to the right has all values for decision attribute C = c2, so we create a leaf for it.

For the table to the left, (we will call it T2) we have different values for the decision attribute C, so we need to split further. So, we calculate entropy for it:

E(T2, F) = 1/4(0) + 3/4(–1/3log1/3 – 2/3log2/3)

 = 0 + 3/4(0.159 + 0.117)

 = 0.207

E(T2, G) = 1/4(0) + 1/4(0) + 2/4(1)

 = 0 + 0 + 2/4

 = 1/2

 = 0.5

We choose the attribute with the smallest entropy - E(T2, F) = 0.207

	X
	G
	C

	x2
	g1
	c1

	x3
	g2
	c1

	x6
	g3
	c2

	X
	G
	C

	x4
	g1
	c2

 T3

For the table to the left, there is only 1 object (when G=1, we always have c2), so we create a leaf.

For the table to the right, (we will call it T3) we have different values for the decision attribute C, so we need to split further. The only attribute we have left is - G, so there is no need to calculate entropy, and we just use G:

Optimal Rules:

(by traversing the tree we get the following rules)

a2 → c2

a1 ^ f1 → c2

a1 ^ f2 ^ g1 → c1

a1 ^ f2 ^ g2 → c1

a1 ^ f2 ^ g3 → c2

2. Find coverings of C in Table T1 (from the previous problem) using Rosetta algorithm.

Solution:

Discernibility Matrix

	x1
	
	
	
	
	
	

	x2
	afg
	
	
	
	
	

	x3
	afg
	-
	
	
	
	

	x4
	-
	f
	fg
	
	
	

	x5
	-
	ag
	a
	-
	
	

	x6
	-
	g
	g
	-
	-
	

	
	x1
	x2
	x3
	x4
	x5
	x6

Discernibility Function

C(A, F, G) = (a) (f) (a + f + g) (f + g) (g) (a + g)

 = (af) (af + ag)

 = afg

Possible coverings: {a, f, g}

3. Let (S, S1) be a distributed information system. Find certain objects in S satisfying query q = b1*c1*f1. Use help from S1.

System S

System S1

	
	A
	B
	C
	D
	E

	x1
	a1
	b1
	c1
	d1
	e1

	x2
	a2
	b1
	c1
	d1
	e1

	x3
	a1
	b2
	c2
	d2
	e1

	x4
	a1
	b2
	c1
	d1
	e1

	x5
	a2
	b2
	c2
	d2
	e2

	
	A
	B
	C
	G
	F

	y1
	a1
	b1
	c1
	g1
	f1

	y2
	a1
	b1
	c1
	g2
	f1

	y3
	a2
	b1
	c2
	g1
	f1

	y4
	a2
	b2
	c1
	g2
	f2

	y5
	a2
	b2
	c2
	g1
	f1

Solution:

Since the attribute F is not present in the System S, to which the query q = b1*c1*f1 was sent to, the system cannot answer the query. Therefore, we need to extract definitions of f1 from a remote site – system S1, in terms of attributes, which the system S recognizes. So, we will use the attributes, that are common for both databases –

{A, B, C} (overlap).

We do that by following LERS strategy (find definitions of F in terms of A, B, C in the System S1). We will obtain:

certain rules:

//we only use certain rules, since we are asked

a1 → f1

//to find certain objects satisfying the query

b1 → f1

by using the definition of f1 which we learned: a1 → f1 and b1 → f1 we can replace f1 with either a1 OR b1 in the query: (we recall that OR is represented by the + (plus sign), and AND is represented by the * (multiplication sign))

So, q = b1*c1*f1 = b1*c1*(a1 + b1)

 = b1*c1*a1 + b1*c1

 =
b1*c1*a1 + b1*c1

 //since b1*c1 includes b1*c1*a1

 = b1*c1

Certain objects in S satisfying the query:
x1, x2

4. Cluster the following four objects (with (x, y) representing locations) into two clusters.

Initial cluster centers are: Medicine A (1, 1) and Medicine B (2, 1). Use Euclidean distance. Use k-means algorithm to find the two cluster centers after the first iteration.
	Object
	Attribute 1 (x)
	Attribute 2 (y)

	Medicine A
	1
	1

	Medicine B
	2
	1

	Medicine C
	4
	3

	Medicine D
	5
	4

Solution:

Iteration 1

	
	(1, 1)
	(2, 1)
	

	Point
	Dist Mean 1
	Dist Mean 2
	Cluster

	(1, 1)
	
	
	

	(2, 1)
	
	
	

	(4, 3)
	
	
	

	(5, 4)
	
	
	

First we list all objects / points in the first column of the table above. The initial cluster centers – means, are (1, 1) and (2, 1) - chosen randomly. Next, we will calculate the distance from the first point (1, 1) to each of the two means, by using the distance function - Euclidean distance.

The distance from the first point (1, 1) to the first mean – (1, 1) is = 0, because the point is equal to the mean.

point

mean2

x1, y1

x2, y2
(1, 1)

(2, 1)
We recall from a previous lecture, the formula for Euclidean distance between two points i and j is:

d(i, j) = |xi1 - xj1 |2+ | xi2 - xj1|2 + … + | xip - xjp|2

where xi1 is the value of attribute 1 for i and xj1 is the value of attribute 1 for j, and so on, as many attributes we have … shown up to p - xip in the formula.

In our case, we only have 2 attributes. So, the Euclidean distance between our points point1 and mean2, which have attributes x and y would be calculated as follows:

d(point1, mean2) = |xp1 – xp1 |2+ | yp1 - yp2|2

 = |1 – 2 |2+ | 1 – 1|2

 = | 1 |2+ | 0 |2

 = 1 + 0

 = 1
 = 1
*Note: Euclidean distance calculator can be found here: http://people.revoledu.com/kardi/tutorial/Similarity/EuclideanDistance.html

Square root calculator can be found here:

http://www.csgnetwork.com/squarerootsquarecalc.html

So, we fill in these values in the table:

Iteration 1

	
	(1, 1)
	(2, 1)
	

	Point
	Dist Mean 1
	Dist Mean 2
	Cluster

	(1, 1)
	0
	1
	1

	(2, 1)
	
	
	

	(4, 3)
	
	
	

	(5, 4)
	
	
	

Which cluster should the point (1, 1) be placed in? The one, where the point has the shortest distance to the mean – that is mean 1 (cluster 1), since the distance is 0.

Cluster 1

Cluster 2

(1, 1)

So, we go to the next point; and, analogically, we fill in the rest of the table.

Iteration 1

	
	(1, 1)
	(2, 1)
	

	Point
	Dist Mean 1
	Dist Mean 2
	Cluster

	(1, 1)
	0
	1
	1

	(2, 1)
	1
	0
	2

	(4, 3)
	3.60
	2.83
	2

	(5, 4)
	5
	4.24
	2

Cluster 1

Cluster 2

(1, 1)

(2, 1)

(4, 3)

(5, 4)
Next, we need to re-compute the new cluster centers (means). We do so, by taking the mean of all points in each cluster.

For Cluster 1, we only have one point A(1, 1), which was the old mean, so the cluster center remains the same.

For Cluster 2, we have ((2+4+5)/3, (1+3+4)/3) = (3.66, 2.66)
5. Assume that the database D is given by the table below. Follow single link technique to find clusters in D. Use as a distance measure - the number of attribute values, on which the objects differ.

D

	X
	A
	F
	G
	C

	x1
	a2
	f1
	g3
	c2

	x2
	a1
	f2
	g1
	c1

	x3
	a2
	f2
	g2
	c1

	x4
	a1
	f1
	g1
	c2

	x5
	a2
	f2
	g2
	c2

	x6
	a1
	f2
	g3
	c2

Solution:

Calculate the distance from each object to all other objects, using as a distance measure - the number of attribute values, on which the objects differ. For example, the object x1 has the following values:

x1 (a2, f1, g3, c2)

The object x3 has the following values:

x3 (a2, f2, g2, c1)

The distance between x1 and x3 is the number of attribute values, on which the objects differ:

x1 (a2, f1, g3, c2)

x3 (a2, f2, g2, c1)

They differ on 3 of the attribute values.

Distance matrix

	x1
	0
	
	
	
	
	

	x2
	4
	0
	
	
	
	

	x3
	3
	2
	0
	
	
	

	x4
	2
	2
	4
	0
	
	

	x5
	2
	3
	1
	3
	0
	

	x6
	2
	2
	3
	2
	2
	0

	
	x1
	x2
	x3
	x4
	x5
	x6

With single link, we start by placing each object in a separate cluster. Next, we identify the two clusters with the shortest distance in the matrix, and merge them together. Re-compute the distance matrix, as those two clusters are now in a single cluster, (no longer exist by themselves).

By looking at the distance matrix above, we see that x3 and x5 have the smallest distance from all - 1 So, we merge those two in a single cluster, and re-compute the distance matrix.

dendogram

Since, we have merged (x3, x5) together in a cluster, we now have one entry for

(x3, x5) in the table, and no longer have x3 or x5 separately. Therefore, we need to re-compute the distance from each point to our new cluster - (x3, x5). We recall that, with the single link method the proximity of two clusters is defined as the minimum of the distance between any two points in the two clusters. Therefore, the distance between let’s say (x3, x5) and x1 would be calculated as follows:

dist((x3, x5), x1) = MIN (dist(x3, x1) , dist(x5, x1))

 = MIN (3 , 2)

//from original matrix

 = 2

Distance matrix

	x1
	0
	
	
	
	

	x2
	4
	0
	
	
	

	(x3, x5)
	2
	2
	0
	
	

	x4
	2
	2
	2
	0
	

	x6
	2
	2
	2
	2
	0

	
	x1
	x2
	(x3, x5)
	x4
	x6

Looking at the last distance matrix above, we see that the smallest distance is 2 . A number of clusters have that same distance, so we can pick either one. We choose (x3, x5) and x4 to merge together.

dendogram

Re-computing the distance matrix with the new cluster:

Distance matrix

	x1
	0
	
	
	

	x2
	4
	0
	
	

	(x3, x5, x4)
	2
	2
	0
	

	x6
	2
	2
	2
	0

	
	x1
	x2
	(x3, x5, x4)
	x6

Looking at the last distance matrix above, we see that the smallest distance is 2 . A number of clusters have that same distance, so we can pick either one. We choose (x3, x5, x4) and x2 to merge together.

dendogram

Re-computing the distance matrix with the new cluster:
Distance matrix

	x1
	0
	
	

	(x3, x5, x4, x2)
	2
	0
	

	x6
	2
	2
	0

	
	x1
	(x3, x5, x4, x2)
	x6

Looking at the last distance matrix above, we see that the smallest distance is 2 . A number of clusters have that same distance, so we can pick either one. We choose (x3, x5, x4, x2) and x1 to merge together.

dendogram

Re-computing the distance matrix with the new cluster:
Distance matrix

	(x3, x5, x4, x2, x1)
	0
	

	x6
	2
	0

	
	(x3, x5, x4, x2, x1)
	x6

The only two clusters left are (x3, x5, x4, x2) and x1 , so we merge them together.
dendogram

There is no need to re-compute the distance matrix at this time, as there are no more clusters to merge.

A

1

2

A

1

2

c2

F

1

2

A

1

2

c2

F

1

2

By looking at the table T3, we can see that we only have 1 object for each value of G (when G=1, we always have c1; when G=2, we always have c1; when G=3, we always have c2) so we create leaves.

c2

G

1

2

3

c1

c2

c1

-3

-2

-1

x3

x5

-3

-2

-1

x3

x5

x4

-3

-2

-1

	x2 	x4	 x3 x5

-3

-2

-1

x1	x2 	x4	 x3 x5

-3

-2

-1

x1	x2 	x4	 x3 x5	 x6

PAGE
12

