Computing Association Rules – Frequent Pattern (FP) Tree

Frequent Pattern Growth Strategy

Example

Given the following transaction database D, find the frequent item-sets with minimum support = 3, using the frequent pattern growth method.

D

	Transactions

	abcde

	abc

	acde

	bcde

	bc

	bde

	cde

1. Scan the transaction database D once. Find the set of frequent items F (items which support is equal or higher than 3 would be considered frequent) and their supports. I.e. count the number of times each item occurred in the database D.

1.1. Sort F by the support in descending order as L - the list of frequent items.

L

	Order

	c – 6

	b – 5

	d – 5

	e – 5

	a – 3

2. Build the frequent pattern (FP)-tree using the ordered transactions.

2.1. Create the root of the FP-tree, and label it “null”.

2.2. For each transaction do the following:

2.2.1. Select and sort the frequent items in the transaction according to the order of L.

D

	Transactions

	abcde

	abc

	acde

	bcde

	bc

	bde

	cde

	Transactions Ordered
	No.

	cbdea
	1

	cba
	2

	cdea
	3

	cbde
	4

	cb
	5

	bde
	6

	cde
	7

L

	Order

	c – 6

	b – 5

	d – 5

	e – 5

	a – 3

2.2.3. If the tree has a child which name corresponds to the name of the current item, increment its count; else, create a new node and let its count be 1, and create a link to it from its parent.

Transaction 1. - cbdea

· So, we start with the first transaction from our Transactions Ordered list in Step 2.2.1. - cbdea . That transaction contains the items: c, b, d, e, a . The tree has no child, since the only node we have is the root “null” (that we created in the step 2.1.)

· Therefore, we start with the first item from our transaction cbdea - c and create a new node for it, and let its count (the number in green to the left) be 1.

Then, we create a link to it (to the node) from its parent (which here is the root “null”)

· Next, we go to the next item from our transaction cbdea - b and create a new node for it, and let its count (the number in green to the left) be 1.

Then, we create a link to it (to the node) from its parent (which here is the node c)

· Next, we go to the next item from our transaction cbdea - d and create a new node for it, and let its count (the number in green to the left) be 1.

Then, we create a link to it (to the node) from its parent (which here is the node b)

· Next, we go to the next item from our transaction cbdea - e and create a new node for it, and let its count (the number in green to the left) be 1.

We, also, create a link to it (to the node) from its parent (which here is the node d)

· Next, we go to the next item from our transaction cbdea - a and create a new node for it, and let its count (the number in green to the left) be 1.

We, also, create a link to it (to the node) from its parent (which here is the node e)

· At this time we have gone through all the items of the first transaction cbdea , so we go to the next transaction from our Transactions Ordered list in Step 2.2.1.

Transaction 2. – cba

· The transaction contains the items c, b, a.

· So, we start with the first item from our transaction cba - c . The tree has a child which name corresponds to the name of the current item c , so we increment its count (the number in green to the left is changed from 1 to 2)

· Next, we go to the next item from our transaction cba - b . In the tree, we are still at the node c (from the previous step), and now we check to see if the node c has a child which name corresponds to the name of the current item b . Yes, it does. So we increment its count (the number for the node b is changed from 1 to 2)

· Next, we go to the next item from our transaction cba - a . In the tree, we are still at the node b (from the previous step), and now we check to see if the node b has a child which name corresponds to the name of the current item a . No, it does not (it has a child named d). So, we create a new node for item a , and let its count be 1.

We, also, create a link to it (to the new node) from its parent (the node b)

· At this time we have gone through all the items of the second transaction cba , so we go to the next transaction from our Transactions Ordered list in Step 2.2.1.

Transaction 3. – cdea

· The transaction contains the items c, d, e, a .

· So, we start with the first item from our transaction cdea - c . The tree has a child which name corresponds to the name of the current item c , so we increment its count (the number in green to the left is changed from 2 to 3)

· Next, we go to the next item from our transaction cdea - d . In the tree, we are still at the node c (from the previous step), and now we check to see if the node c has a child which name corresponds to the name of the current item d . No, it does not (it has a child named b). So, we create a new node for item d, and let its count be 1.

We, also, create a link to the new node from its parent (the node c)

· Next, we go to the next item from our transaction cdea - e . In the tree, we are still at the node d (from the previous step), and now we check to see if the node d has a child which name corresponds to the name of the current item e . No, it does not (it has no children). So, we create a new node for item e, and let its count be 1.

We, also, create a link to it (to the new node) from its parent (the node d)

· Next, we go to the next item from our transaction cdea - a . In the tree, we are still at the node e (from the previous step), and now we check to see if the node e has a child which name corresponds to the name of the current item a . No, it does not (it has no children). So, we create a new node for item a, and let its count be 1.

We, also, create a link to the new node from its parent (the node е)

· At this time we have gone through all the items of the third transaction cdea , so we go to the next transaction from our Transactions Ordered list in Step 2.2.1.

Transaction 4. – cbde

· The transaction contains the items c, b, d, e .

· So, we start with the first item from our transaction cbde - c . The tree has a child which name corresponds to the name of the current item c , so we increment its count (the number in green to the left is changed from 3 to 4)

Next, we go to the next item from our transaction cbde - b . In the tree, we are still at the node c (from the previous step), and now we check to see if the node c has a child which name corresponds to the name of the current item b . Yes, it does. So we increment its count (the number for the node b is changed from 2 to 3)

· Next, we go to the next item from our transaction cbde - d . In the tree, we are still at the node b (from the previous step), and now we check to see if the node b has a child which name corresponds to the name of the current item d . Yes, it does. So we increment its count (the number for the node d is changed from 1 to 2)

· Next, we go to the next item from our transaction cbde - e . In the tree, we are still at the node d (from the previous step), and now we check to see if the node d has a child which name corresponds to the name of the current item e . Yes, it does. So we increment its count (the number for the node e is changed from 1 to 2)

· At this time we have gone through all the items of the fourth transaction cbde , so we go to the next transaction from our Transactions Ordered list in Step 2.2.1.

Transaction 5. – cb

· The transaction contains the items c, b .

· So, we start with the first item from our transaction cb - c . The tree has a child which name corresponds to the name of the current item c , so we increment its count (the number in green to the left is changed from 4 to 5)

· Next, we go to the next item from our transaction cb - b . In the tree, we are still at the node c (from the previous step), and now we check to see if the node c has a child which name corresponds to the name of the current item b . Yes, it does. So we increment its count (the number for the node b is changed from 3 to 4)

· At this time we have gone through all the items of the fifth transaction cb so we go to the next transaction from our Transactions Ordered list in Step 2.2.1.

Transaction 6. – bde

· The transaction contains the items b, d, e .

· So, we start with the first item from our transaction bde - b . The tree has no child (starting from the root “null”), which name corresponds to the name of the current item b (the only child the root “null” has is named c). Therefore, we create a new node for the item b, and let its count (the number in green to the right) be 1.

We, also, create a link to the new node from its parent (the root “null”)

· Next, we go to the next item from our transaction bde - d . In the tree, we are still at the node b (from the previous step), and now we check to see if the node b has a child which name corresponds to the name of the current item d . No, it does not (it has no children). So, we create a new node for item d, and let its count be 1.

We, also, create a link to it (to the new node) from its parent (the node b)

· Next, we go to the next item from our transaction bde - e . In the tree, we are still at the node d (from the previous step), and now we check to see if the node d has a child which name corresponds to the name of the current item e . No, it does not (it has no children). So, we create a new node for item e, and let its count be 1.

We, also, create a link to it (to the new node) from its parent (the node d)

· At this time we have gone through all the items of the sixth transaction bde , so we go to the next transaction from our Transactions Ordered list in Step 2.2.1.

Transaction 7. – cde

· The transaction contains the items c, d, e .

· So, we start with the first item from our transaction cde - c . The tree has a child which name corresponds to the name of the current item c , so we increment its count (the number in green to the left is changed from 5 to 6)

· Next, we go to the next item from our transaction cde - d . In the tree, we are still at the node c (from the previous step), and now we check to see if the node c has a child which name corresponds to the name of the current item d . Yes, it does. So we increment its count (the number for the node d , immediately below c, is changed from 1 to 2)

· Next, we go to the next item from our transaction cde - e . In the tree, we are still at the node d (from the previous step), and now we check to see if the node d has a child which name corresponds to the name of the current item e . Yes, it does. So we increment its count (the number for the node e , immediately below d, is changed from 1 to 2)

· At this time we have gone through all the items of the seventh transaction cde . There are no more transactions in our Transactions Ordered list in Step 2.2.1. , therefore, we have finished building the FP-Tree.

FP-Tree

3. Mining the FP-tree for frequent item-sets is performed as follows:

Start from each length 1 pattern (initial suffix pattern), and construct it conditional pattern base (a “subdatabase” of transactions which contain the suffix pattern). The pattern base excludes the suffix pattern from the transactions (prefix paths). Reorder the items in support descending order. Build a conditional FP-tree.

The pattern growth is achieved by concatenation of the suffix pattern with the frequent patterns generated from the tree (considering the minimum support).

In other words, for each item found in our transactions (here called a suffix pattern), for example a, b, c, d, and so on … (these items are listed in the list L in step 1.1.) we do the following:

3.1. Looking at the FP-Tree we created in step 2., find all paths which lead to that item. For example, for item a , we would find all the paths cbdea, cba, cdea, etc. (here called a pattern base); and then, write the count (the number) for item a , at that path. For example, looking at the tree by following the path cbdea the count for a there is 1. So, we write (cbdea, 1).

3.2. Cross out (remove) the item (suffix pattern) we are currently on. For example, for item a , the transactions cbdea, cba, cdea, etc. would become: cbdea, cba, cdea, etc. This is called prefix paths (as these are the paths that lead to the item a)
3.3. Count the number of times each item occurred in these prefix paths transactions from the previous step (3.2.) and write down the correct order – i.e. sort them by the support in descending order (just like we did with the list L in step 1.1.). Order the transactions using the correct order.

3.4. Build an FP-Tree based on the new transactions formed in the previous step (3.3.) just like we did earlier (in step 2.), here called a conditional FP-tree (as it is a tree related only to the current item, for example a)

3.5. Looking at that tree, created in the previous step (3.4.), we find each item/node, which has a minimum count/support = 3 (if item is listed twice or more, then the counts can be added together). Next, starting at the top of the tree, we write the path which leads to that node (with a minimum count/support = 3) , add back the item (suffix pattern) which we removed in step 3.2. , and then write the count/support afterwards. For example, if the item b had a count = 3, then we would write (c, b, a, 3). These would be our frequent item-sets.
So, we start with the first one of our items – a

a – 3 (suffix pattern)
prefix paths
 correct order
(c b d e a, 1)

c – 3
(c b a, 1)

b – 2

(c d e a, 1)

d – 2

e – 2

Looking at the tree, we see that only node c (prefix path) has the minimum support 3. Thus, the only frequent item-set generated is:

(c, a, 3)

Then, we go to the next item - b
b – 5 (suffix pattern)

prefix paths
 correct order

(c b , 4)

c – 4

(b, 1)

Frequent item-sets:
(c, b, 4)

Then, we go to the next item - c
c – 6 (suffix pattern)

prefix paths

none (as it is immediately below the root “null”)

Frequent item-sets:
none

Next item – d

d – 5 (suffix pattern)

prefix paths
 correct order

(c b d, 2)

c – 4

(c d, 2)

b – 3
 (2+1 in the tree)

(b d, 1)

Frequent item-sets:
(c, d, 4)

(b, d, 3)

Next item - e

e – 5 (suffix pattern)

prefix paths
 correct order

(c b d e, 2)

d – 5

 (d c b, 2)

(c d e, 2)

c – 4
 => (d c, 2)

(b d e, 1)

b – 3

 (d b, 1)

Frequent item-sets:
(d, e, 5)

(d, c, e, 4)

(d, b, e, 3)

1

1

1

d

e

1

1

d

e

b

1

c

1

null

1

d

b

1

c

1

null

1

d

b

1

c

1

null

2

1

2

2

1

1

1

e

d

b

a

e

d

d

e

a

a

b

2

4

c

1

1

6

null

null

null

1

c

b

1

c

1

null

b

1

c

1

null

c

1

null

1

1

1

e

d

d

e

b

1

2

c

3

2

b

b

c

1

4

d

5

null

4

1

c

b

b

2

4

c

a

b

1

c

1

null

1

1

1

d

e

a

b

1

c

2

null

1

1

1

d

e

a

b

2

c

2

null

1

1

1

1

1

1

1

1

d

d

e

a

a

b

e

2

c

2

null

a

a

b

2

c

3

null

1

1

1

1

1

1

d

d

e

a

a

b

1

1

1

2

c

3

null

1

1

1

e

d

d

e

a

a

b

1

2

c

3

null

1

1

1

1

a

e

d

d

e

a

a

b

1

2

c

3

null

1

1

1

1

1

1

a

e

d

d

e

a

a

b

1

2

c

4

null

1

1

1

1

1

1

a

e

d

d

e

a

a

b

1

3

c

4

null

1

1

2

1

1

1

a

e

d

d

e

a

a

b

1

3

c

4

null

1

1

2

2

1

1

a

e

d

d

e

a

a

b

1

3

c

4

null

1

1

2

2

1

1

a

e

d

d

e

a

a

b

1

3

c

5

null

1

1

2

2

1

1

a

e

d

d

e

a

a

b

1

4

c

5

null

1

1

2

2

1

1

1

1

2

b

a

e

d

d

e

a

a

b

1

4

c

2

1

5

null

1

1

1

1

d

b

a

e

d

d

e

a

a

b

1

4

c

1

1

5

null

2

2

1

1

1

e

d

b

a

e

d

d

e

a

a

b

1

4

c

1

1

5

null

1

1

2

2

1

1

1

e

d

b

a

e

d

d

e

a

a

b

1

4

c

1

1

6

null

1

1

2

2

1

1

1

e

d

b

a

e

d

d

e

a

a

b

2

4

c

1

1

6

null

2

1

2

2

1

1

1

e

d

b

a

e

d

d

e

a

a

b

2

4

c

1

1

6

null

PAGE
23

