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Abstract—We introduce the concept of a fresh data market,
in which a destination user requests, and pays for, fresh data
updates from a source provider. Data freshness is captured by the
age of information (AoI) metric, defined as the time elapsed since
the latest update has reached the destination. The source incurs
an operational cost, modeled as an increasing convex function
of the number of updates. The destination incurs an age-related
cost, modeled as an increasing convex function of the AoI. The
source charges the destination for each update and designs a
pricing mechanism to maximize its profit; the destination on
the other hand chooses a data update schedule to minimize the
summation of its payments to the source and its age-related cost.
The interaction among the source and destination is hence game-
theoretic. Motivated by the existing pricing literature, we first
study a time-dependent pricing scheme, in which the price for
each update depends on when it is requested. We show in this
case that the game equilibrium leads to only one data update,
which does not yield the maximum profit to the source. This
motivates us to consider a quantity-based pricing scheme, in which
the price of each update depends on how many updates have been
previously requested. We show that among all pricing schemes
in which the price of an update may vary according to both time
and quantity, the quantity-based pricing scheme performs best:
it maximizes the source’s profit and minimizes the social cost of
the system, defined as the aggregate source’s operational cost and
the destination’s age-related cost. Numerical results show that the
optimal quantity-based pricing can be 27% more profitable for
the source and incurs 54% less social cost, compared with the
optimal time-dependent pricing.

I. INTRODUCTION

A. Motivation

Information usually has the greatest value when it is fresh
[1, p. 56]. Data freshness is becoming increasingly significant
due to the fast growth of the number of mobile devices
and the dramatic increase of real-time applications: news
updates, traffic alerts, stock quotes, and social media updates.
In addition, timely information updates are also critical in
real-time monitoring, data analytics, and control systems. For
instance, real-time knowledge of traffic information and the
speed of motor vehicles is crucial in autonomous driving and
unmanned aerial vehicles. Another instance is for phasor data
updates in power grid stabilization systems and application
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Fig. 1. Examples of potential fresh data markets.

program interface (API) monitoring [2]. Examples of real-time
datasets include real-time map data and traffic data, such as
the Google Maps Platform [3]. A suitable candidate metric to
measure the freshness of data is the age of information (AoI)
metric, introduced in [4], [5], which measures the amount of
time elapsed since the most recent data update.

However, the availability of fresh data relies on frequent
data generation, processing, and transmission, which can lead
to significant operational costs for the data provider. Such
operational costs make the pricing design of an essential
role in the data market, as pricing provides an incentive for
the data provider to update the data and prohibits the data
users (receivers) from requesting data updates unnecessarily
often. This is quite different from the traditional study of
pricing in networks, which often aims at maximizing a network
operator’s revenue and control the network congestion level.
The pricing for fresh data is under-explored, as all existing
pricing schemes for communication systems assume that a
consumer’s satisfaction with the service depends mainly on
the quantity/quality of the service received without considering
its timeliness. Such an interaction between data providers and
users requesting fresh data leads to the fresh data market,
examples of which are shown in Fig. 1. This paper tries
to partially fill in the gap by considering a single source-
destination pair, and addressing the following key question:

Question 1. How should the source choose the pricing scheme
to maximize its profit in a fresh data market?

B. Solution Approach and Contributions

As the first step toward studying the pricing mechanism
design for fresh data, we consider two types of pricing
schemes. The first one is a time-dependent pricing scheme,
in which the source of fresh data prices each data update
based on the time at which the update is requested. Due to
the nature of the AoI, the destination’s desire for updates
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increases as time (since the most recent update) goes by,
which makes it potentially profitable to explore this time
sensitivity. This pricing scheme is also motivated by many
existing time-dependent pricing schemes (in which users are
not age-sensitive) of mobile networks, e.g., [6]–[14].

The second pricing scheme that we consider is a quantity-
based pricing scheme, in which the price for each update
depends on the number of updates requested so far (but does
not depend on the timing of the updates). Such a pricing
scheme is also known as second-degree price discrimination
or volume discount [15], and is motivated by practical pricing
schemes (e.g., for mobile data plans and data analytics [2]).

The challenge of designing a proper pricing scheme for
fresh data is two-fold. First, different from the classical pricing
setting, e.g., [6]–[14], the demands for fresh data over time are
interdependent due to the nature of AoI. That is, the desire for
an update at each time instance depends on the time elapsed
since the latest update. Hence, the source’s pricing scheme
choice needs to take such interdependence overall the entire
period into consideration. Second, in the case of the time-
dependent pricing scheme design, one needs to optimize a
continuous-time pricing function, i.e., solve an infinite dimen-
sional optimization problem. The above discussion motivates
our consideration of the following question:

Question 2. How profitable is it for the source to exploit the
time sensitivity in designing the pricing scheme for fresh data?

We summarize our approaches and contributions as follows:
• Fresh Data Market Modeling. To the best of our knowl-

edge, this paper presents the first model of a fresh data
market, in which an age-sensitive destination interacts
with a source data provider.

• Time-Dependent Pricing Scheme. We study a time-
dependent pricing scheme for the fresh data market,
aiming at exploiting the time sensitivity. We show that at
the optimal (equilibrium) time-dependent pricing scheme,
the source sends only one update, and hence exploiting
time sensitivity may not enhance profitability.

• Quantity-Based Pricing Scheme. We propose a quantity-
based pricing scheme, and show that it is more profitable
than the time-dependent pricing scheme. We further prove
that it maximizes the profit among all classes of time-and-
quantity dependent pricing schemes, and that it minimizes
the social cost of the system: the sum of the source’s
operational cost and the destination’s age-related cost.

• Simulation Results. The numerical results show that the
optimal quantity-based pricing scheme can be 27% more
profitable and incurs 54% less social cost, compared with
the optimal time-dependent pricing scheme on average.

We organize the rest of this paper as follows. In Section II,
we discuss some related work. In Section III, we describe the
system model and the game-theoretic problem formulation. In
Sections IV and V, we develop the time-dependent and the
quantity-based pricing schemes, respectively. We then relate
the two schemes and mention some relevant properties in
Section VI. We provide some numerical results in Section VII

to evaluate the performance of the two pricing schemes, and
conclude the paper in Section VIII.

II. RELATED WORK

The concept age-of-information was first proposed as a
metric of data freshness in the studies of databases [4], [5]
in the 1990s. In recent years, there have been many excellent
works focusing on the optimization of scheduling policies in
terms of minimizing the AoI in various system settings, see,
e.g., [16]–[33]. In [16], Kaul et al. recognized the importance
of real-time status updates in networks. In [17], [18], He et
al. investigated the NP-hardness of minimizing the AoI in
scheduling general wireless networks. In [19], Kadota et al.
studied the scheduling problem in a wireless network with a
single base station and multiple destinations. In [20], Kam et
al. investigated the AoI for a status updating system through
a network cloud. In [21], Sun et al. studied the optimal
management of the fresh information updates. References [22]
and [23] studied the optimal wireless network scheduling
with the interference constraint and the throughput constraint,
respectively. The AoI consideration has recently gained some
attention in energy harvesting communication systems, e.g.,
[24]–[28] and Internet of Things systems, e.g., [29], [30].
Several existing studies focused on game-theoretic interactions
in interference channels, without considering the interactions
in a fresh data market or the pricing scheme design [31]–[33].

There exists a rich literature on the pricing mechanism
design and revenue management in communication networks
(please refer to [6]–[14], surveys in [34], [35], and references
therein). Specifically, time-dependent pricing has also been
extensively studied, e.g., [6]–[11] while a few works focused
on the quantity-based pricing and other forms of price dif-
ferentiation for the Internet service providers, e.g., [12]–[14].
These works assumed that destinations are only interested in
the throughput/rate received instead of the data freshness.

References [36], [37] are the most closely-related works
to ours. In [36], a repeated game is studied between two
AoI-aware platforms, yet without studying pricing schemes.
While in [37], the authors considered a system in which
the destination designs a dynamic pricing scheme to incen-
tivize sensors to provide fresh updates, with random data
arrivals. Different from [37], our considered pricing schemes
are designed by the source, which is motivated by most
practical communication/data systems in which sources are
price designers while the destinations are price takers.

III. SYSTEM MODEL

A. System Overview

1) Single-Source Single-destination System: We consider
an information update system, in which one source node
generates data packets and sends them to one destination
through a channel.1

1We note that the single-source single-destination model has been widely
considered in the AoI literature (e.g., [20], [21], [24], [26], [28]). In addition,
the insights derived from this model allow us to potentially extend the results
to the multi-destination scenarios.
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Fig. 2. Illustrations of AoI ∆t and two types of AoI costs f(∆t). There are
two updates at S1 and S2.

2) Data Updates and Age of Information: We consider a
fixed time period of T = [0, T ], during which the source
sends its updates to the destination. We consider a generate-
at-will model, as in, e.g., [24]–[28], in which the source is
able to generate and send a new update when requested by
the destination. Updates reach the destination instantly, with
negligible transmission time, as in, e.g., [25]–[27].

We denote by Sk ∈ T the transmission time of the k-th
update. The set of all update time instances is S , {Sk}. Let
K denote the number of total updates, i.e., |S| = K, where
| · | denotes the cardinality of a set. The set S (and hence the
value of K) is a decision variable of the destination.

To measure the freshness of data, let us define the AoI
∆t(S) at time t as [4], [16]

∆t(S) = t− Ut, (1)

where Ut is the time stamp of the most recently received
update before time t, i.e., Ut = maxSk≤t{Sk}.

3) Source’s Operational Cost and Pricing: We denote the
source’s operational cost by C(K), which is modeled as an
increasing convex function in the number of updates K, with
C(0) = 0.2 This can represent transmission costs in case
the source is a network operator, or the cost of generating,
processing and transmission commission in case the source is
a content/data provider.

The source designs the pricing scheme for sending the data
updates. We consider a general scheme in which the price
for a particular update may depend on the time of the update
request and the number of previously requested updates. We
denote by p(t, k) : T × N → R+ the pricing function, with
p(t′, k′) being the price of the k′th update if requested at time
t′. Note that we denote by p(t, k) the function itself, while
we denote by p(t′, k′), i.e., using any argument other than
(t, k) specifically, the value of the function. As mentioned,
such a pricing scheme is motivated by (i) the time-sensitive
demand for an update due to the nature of AoI, and (ii) the
wide consideration of both time-dependent and quantity-based
pricing schemes in practice. Under a pricing scheme p(t, k),
the destination’s total payment to the source over the entire
period is P (S) =

∑K
k=1 p(Sk, k).

4) Destination’s AoI Cost: Besides the payment P (S), the
destination also experiences an AoI cost f(∆t) related to the

2Formally, C(·) is defined on the set of non-negative real numbers R+,
and then evaluated on the set of natural numbers N.

Stage I
The source determines the pricing scheme p(t, k).

⇓
Stage II

The destination determines its update policy S .

Fig. 3. Two-stage Stackelberg game.

destination’s desire for the new data update.3 We assume that
f(∆t) is increasing and convex in ∆t.4 Let Γ(S) denote the
aggregate AoI cost over the entire period T , defined as

Γ(S) ,
∫ T

0

f(∆t(S))dt. (2)

Fig. 2 illustrates the AoI, an exponential AoI cost, and a linear
AoI cost.

B. Stackelberg Game

We model the interaction between the source and the
destination as a two-stage Stackelberg game as shown in Fig.
3. Specifically, in Stage I, the source determines the pricing
scheme function p(t, k) at the beginning of the period, in order
to maximize its profit, given by the payment it receives minus
its operational cost, as follows:

Source : max
p(t,k)

P (S∗(p(t, k)))− C(|S∗(p(t, k))|), (3a)

s.t. p(t′, k′) ≥ 0, ∀t′ ∈ T , k′ ∈ N, (3b)

where S∗(p(t, k)) is the destination’s optimal update policy,
in response to the pricing scheme chosen by the source, which
is defined below.

In Stage II, the destination decides its update policy to
minimize its overall cost (aggregate AoI cost plus payment):

Destination : S∗(p(t, k)) = arg min
S∈Φ

Γ(S) + P (S), (4)

where Φ is the set of all feasible S, given by Φ =
∪K′∈NΦK

′
and ΦK

′
is the set of all transmission times

S = {S1, S2, ..., SK′}, with S′k ∈ T and Sk ≥ Sk−1 for
all 1 ≤ k ≤ K ′.

In the following two sections, we will separately consider
two special cases of p(t, k): p(t) and pq(k). We note that
analyzing the simplified pricing schemes is still challenging.
First, the optimal pure time-dependent pricing scheme involves
solving an infinite-dimensional optimization problem. Second,
the pricing scheme needs to take the optimal decisions S∗(·)
over the whole period into consideration.

IV. TIME-DEPENDENT PRICING SCHEME

In this section, we consider a (pure) time-dependent pricing
scheme, in which the price function only depends on the time
at which the update is requested and does not depend on the
number of updates.

3As the first work considering the pricing scheme design for fresh data, we
assume the benefit of receiving the data is constant, i.e. independent of the
total number of updates.

4An example of this AoI cost model exists in the online learning in real-
time applications such as online advertisement placement and online Web
ranking, in which fresh data is critical [38]–[40].
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Fig. 4. An illustrative example of the differential aggregate AoI cost function
and Lemma 1.

We derive the (Stackelberg) equilibrium price-update profile
(p∗(t),S∗(p∗(t))) using backward induction. First, given any
pricing scheme p(t) in Stage I, we characterize the destina-
tion’s update policy S∗(p(t)) that minimizes its overall cost
in Stage II. Then in Stage I, by characterizing the equilibrium
pricing structure, we convert the continuous pricing function
optimization into a vector one, based on which we characterize
the source’s optimal pricing scheme p∗(t).

A. Destination’s Update Policy in Stage II

Recall that K is the total number of updates. Let xk denote
the kth interarrival time, which is the time elapsed between
the generation of (k− 1)-th update and k-th update, i.e., xk is

xk , Sk − Sk−1, ∀k ∈ K(K + 1), (5)

where K(K+1) = {1, 2, ...,K+1}, S0 = 0, and SK+1 = T .
To analyze the aggregate AoI cost function Γ(S) in (2), we

define
F (x) ,

∫ x

0

f(t)dt, (6)

based on which we have Γ(S) =
∑
k∈K(K+1) F (xk).

Given the pricing scheme p(t), the destination’s problem in
(4) is equivalent to

min
K∈N∪{0},x∈RK+1

++

K+1∑
k=1

F (xk) +

K∑
k=1

p

∑
j≤k

xj

 , (7a)

s.t.

K+1∑
k=1

xk = T, (7b)

where x = {xk}k∈K(K+1) and RK+1
++ is the space of (K+1)-

dimensional positive vectors (i.e., the value of every entry is
positive).

To understand when the destination would choose to update,
we define the differential aggregate AoI cost function as

DF (x, y) ,
∫ x

0

[f(t+ y)− f(t)]dt. (8)

As illustrated in Fig. 4, for each update k, DF (xk+1, xk) is
the aggregate AoI cost increase if the destination changes its
update policy from S to S\{Sk} (removes the update at Sk).
We now introduce the following lemma:

Lemma 1. Any equilibrium price-update tuple (p∗(t),K∗,x∗)
should satisfy

p∗

 k∑
j=1

x∗j

 = DF (x∗k+1, x
∗
k), ∀k ∈ K(K∗ + 1). (9)

Proof Sketch: For each k-th update, the differential aggregate
AoI cost equals the destination’s maximal willingness to
pay. Hence, if p∗

(∑k
j=1 x

∗
j

)
> DF (x∗k+1, x

∗
k), then the

destination would prefer not to update at Sk, contradicting to
the fact that (p∗(t),K∗,x∗) is an equilibrium. In addition, if
p∗
(∑k

j=1 x
∗
j

)
< DF (x∗k+1, x

∗
k), we can show that the source

can always properly increase p∗
(∑k

j=1 x
∗
j

)
. The increase in

the price does not change the destination’s optimal solution
(K∗,x∗), and hence increases the source’s profit. This con-
tradicts the fact that (p∗(t),K∗,x∗) is an equilibrium.

Note that given that the optimal pricing scheme satisfies
(9), there might exist multiple optimal update policies as the
solutions of problem (4). This may lead to a multi-valued
source’s profit and thus an ill-defined problem (3). To ensure
the uniqueness of the received profit for the source, one can
impose infinitely large prices to ensure that the destination
does not update at any time instance other than

∑k
j=1 x

∗
j for

all k ∈ K(K∗ + 1).

B. Source’s Time-Dependent Pricing Design in Stage I

Based on Lemma 1, we can reformulate the time-dependent
pricing scheme as follows (the proof is omitted due to space
limits).

Theorem 1. The time-dependent pricing problem in (3) is
equivalent to the following problem:

max
K∈N∪{0},x∈RK+1

++

K∑
k=1

DF (xk+1, xk)− C(K), (10a)

s.t.

K+1∑
k=1

xk = T. (10b)

The decision variables in problem (10) correspond to the
interarrival time interval vector x instead of the continuous-
time pricing function p(t). By converting a continuous func-
tion optimization problem into a vector optimization problem,
we significantly simplify the problem. We are now ready to
present the following result:

Theorem 2. There will be only one update (i.e., K∗ = 1)
under any equilibrium time-dependent pricing scheme.

One can prove Theorem 2 by induction, showing that for an
arbitrary time-dependent pricing scheme yielding more than
K > 1 updates (K-update pricing), there always exists a
pricing scheme leading to a single-update equilibrium that is
more profitable. The following example illustrates this with a
linear AoI cost function:

Example 1. Consider a linear AoI cost f(∆t) = ∆t and an
arbitrary update policy (K,x), as shown in Fig. 5.
• Base case: When there are K = 2 updates, as shown in

Fig. 5, the source’s profit (the objective value in (10a))
is x1x2 + x2x3 − C(2). Consider another update policy
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Fig. 5. Illustrations of Example 1 with a linear cost function. Combining the
first interval into the third interval maintains the payment.

(K ′ = 1, x′1, x
′
2) where x′1 = x2 and x′2 = x3 + x1. The

objective value in (10a) becomes x2(x1 + x3) − C(1).
Comparing these two values, we see that (K ′, x′1, x

′
2) is

strictly more profitable than (K,x).
• Induction step: Let K ≥ n and suppose the statement

that, for an arbitrary K-update pricing, there exists a
more profitable (K−1)-update pricing is true for K = n.
The objective value in (10a) is

∑K
k=1 xkxk+1 − C(K).

Consider another update policy (K ′ = K − 1,x′) where
x′1 = x2, x′2 = x3 + x1, and x′k = xk+1 for all other
k. The objective value in (10a) becomes (x1 + x3)(x2 +
x4)+

∑K
k=4 xkxk+1−C(K−1), which is strictly larger

than P . It is then readily verified that (K ′,x′) is strictly
more profitable than (K,x). Based on induction, we can
show that we can find a (K ′−1)-update policy would be
more profitable than the (K ′,x′) policy. This eventually
leads to the conclusion that a single update policy is the
most profitable.

Based on the above technique, we can show that the above
argument works for any increasing convex AoI cost function.
The complete proof is omitted due to space limits.

To rule out trivial cases in which there is no update at the
equilibrium, we adopt the following assumption:

Assumption 1. The source’s operational cost function C(K)
satisfies C(1) ≤ DF (T/2, T/2).

Assumption 1 ensures that the operational cost for one
update C(1) is not larger than the maximal revenue for one
update DF (T/2, T/2), as shown in the following optimal
time-dependent pricing scheme:

Proposition 1. There exists an optimal time-dependent pricing
scheme such that5

p∗(t) = DF (T/2, T/2) , ∀t ∈ T , (11)

where the equilibrium update takes place at S∗1 = T/2.

Proposition 1 suggests the existence of an optimal time-
dependent pricing scheme that is in fact time-invariant. That
is, although our original intention is to exploit the time sensi-
tivity/flexibility of the destination through the time-dependent
pricing, it turns out not to be very effective. This motivates us
to consider a quantity-based pricing scheme next.

5There exist multiple optimal pricing schemes; the only difference among
all optimal pricing schemes are the prices for time instances other than T/2,
which can be arbitrarily larger than DF (T/2, T/2).
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Fig. 6. An illustrative example of Proposition 2 with an linear AoI cost
function f(∆t) = ∆t and K∗ = 3.

V. QUANTITY-BASED PRICING SCHEME

In this section, we focus on a (pure) quantity-based pricing
scheme, in which the price for each update depends on the
number of updates that the destination has requested so far.

The source determines the quantity-based pricing scheme
pq(k) in Stage I, in which pq(k) represents the price for the kth
update. The payment from the destination will be Pq(K) =∑K
k=1 pq(k). Based on pq = {pq(k)}k∈N, the destination in

Stage II chooses its update policy (K,x).
We derive the (Stackelberg) price-update equilibrium using

the bilevel optimization framework [42]. Specifically, the
bilevel optimization problem embeds the optimality condition
of the low-level problem (the destination’s problem (12))
into the upper-level problem (the source’s problem (3)). We
first characterize the conditions of the destination’s update
policy (K∗(pq),x

∗(pq)) that minimize its overall cost in
Stage II. We then substitute such conditions into the constraint
set of the source’s pricing problem in Stage I in order to
characterize the source’s optimal pricing p∗q accordingly. We
use (K∗,x∗) to denote the equilibrium update policy, i.e.,
(K∗,x∗) = (K∗(p∗q),x

∗(p∗q)).

A. Destination’s Update Policy in Stage II

Given the quantity-based pricing scheme pq , the destination
solves the following overall cost minimization problem:

min
K∈N∪{0},x∈RK+1

++

K+1∑
k=1

F (xk) +

K∑
k=1

pq(k), (12a)

s.t.

K+1∑
k=1

xk = T. (12b)

If we fix the value of K in (12), then problem (12) is convex
with respect to x. The convexity allows us to exploit the
Karush-Kuhn-Tucker (KKT) conditions on x to derive the
following lemma (the proof is omitted due to space limits):

Lemma 2. Under any given quantity-based pricing scheme
pq in Stage I, the destination’s optimal update policy
(K∗(pq),x

∗(pq)) satisfies

x∗k(pq) =
T

K∗(pq) + 1
, ∀k ∈ K(K∗(pq) + 1). (13)
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Lemma 2 indicates that the optimal update policy for the
destination equalizes the inter-update time intervals. Hence,
once the optimal interarrival time intervals is set according to
(13), the destination would search for the optimal K∗(pq) to
minimize the objective in (12):

K∗(pq) ∈ arg min
K′∈N∪{0}

Υ(K ′,pq), (14)

where Υ(K ′,pq) is the overall cost given the equalized
interarrival time intervals:

Υ(K ′,pq) , (K ′ + 1)F

(
T

K ′ + 1

)
+

K′∑
k=1

pq(k). (15)

B. Source’s Quantity-Based Pricing in Stage I

Instead of solving both K∗(pq) and x∗(pq) explicitly in
Stage II, we apply the bilevel optimization to solving the opti-
mal quantity-based pricing p∗q in Stage I. Doing so would lead
to the price-update equilibrium of our entire two-stage game
[42]. By substituting the solutions (13)-(14) into the source’s
pricing in (3), we obtain the following bilevel problem:

Bilevel : max
pq,K,x

K∑
k=1

pq(k)− C(K), (16a)

s.t. xk =
T

K + 1
, ∀k ∈ K(K + 1), (16b)

K ∈ arg min
K′∈N∪{0}

Υ(K ′,pq). (16c)

In problem (16), we treat (K,x) as variables with the desti-
nation’s behavior being part of the source’s constraints. The
optimal solution to the bilevel optimization problem (16) is
exactly the equilibrium (p∗q ,K

∗,x∗) [42].
The bilevel optimization in (16) leads to the following

result:

Proposition 2. The equilibrium update count K∗ and the
optimal quantity-based pricing scheme p∗q satisfy
K∗∑
k=1

p∗q(k) = F (T )− (K∗ + 1)F

(
T

K∗ + 1

)
, (17)

K′∑
k=1

p∗q(k) ≥ F (T )− (K ′ + 1)F

(
T

K ′ + 1

)
,∀K ′∈ N\{K∗}.

(18)

Proof Sketch: Fig. 6 provides an illustrative example to under-
stand Proposition 2. The area of the blue region is the aggre-
gate AoI cost of the optimal updates, (K∗+1)F (T/(K∗+1));
the area of the blue region plus the green region is the
aggregate AoI cost of a no-update scheme F (T ). The area
of the green region F (T ) − (K∗ + 1)F (T/(K∗ + 1)) is the
aggregate AoI cost difference between these two schemes.

We prove that inequality (18) together with (17) will ensure
that constraint (16c) holds. Specifically, if (18) is not satisfied
or if

∑K∗

k=1 p
∗
q(k) > F (T ) − (K∗ + 1)F (T/(K∗ + 1)), then

K∗ would violate constraint (16c). If
∑K∗

k=1 p
∗
q(k) < F (T )−

(K∗+1)F (T/(K∗ + 1)), then the source can always properly
increase p∗q(1) until (17) is satisfied. Such an increase does

not violate constraint (16c) but improves the source’s profit,
contradicting to the optimality of p∗q .

Substituting the pricing structure in (17) into (16), we can
obtain K∗ through solving the following problem:6

max
K∈N∪{0}

− (K + 1)F

(
T

K + 1

)
− C(K). (19)

To solve problem (19), we first relax the constraint K ∈
N ∪ {0} into K ∈ R+, hence transforming the integer pro-
graming problem (19) into a continuous optimization problem
as follows:

max
K∈R+

− (K + 1)F

(
T

K + 1

)
− C(K), (20)

which is a convex problem.7 We take the derivative of objec-
tive in (20) and obtain

f

(
T

K + 1

)
T

K + 1
− F

(
T

K + 1

)
︸ ︷︷ ︸

Marginal Revenue

− C ′(K)︸ ︷︷ ︸
Marginal Cost

. (21)

We can interpret the first term as the source’s marginal revenue
in K and the second term as the source’s marginal cost in K.

Based on the marginal revenue and the marginal cost in
(21), we define a threshold update count K̂ satisfying

f

(
T

K̂ + 1

)
T

K̂ + 1
− F

(
T

K̂ + 1

)
≥ C ′(K̂), (22a)

f

(
T

K̂ + 2

)
T

K̂ + 2
− F

(
T

K̂ + 2

)
< C ′(K̂ + 1). (22b)

The threshold count K̂ serves as one of the candidates for the
optimal update count to problem (19) as shown next.8

Proposition 3. The optimal update count K∗ to problem in
(16) satisfies

K∗ = arg min
K∈{K̂,K̂+1}

(K + 1)F

(
T

K + 1

)
+ C(K). (23)

Proof: Let K∗ be the optimal solution to problem (20).
By the definition of K̂ in (22), we have K̂ ≤ K∗ ≤ K̂ + 1.
The convexity of the objective in (20) implies that the objective
of (20) (which is also the objective of problem (19)) is non-
decreasing in K for all K ≤ K∗ and is non-increasing in K
for all K ≥ K∗. This implies an optimal solution to problem
(19) is either K̂ or K̂ + 1.

After obtaining K∗, we can construct an optimal pricing
scheme based on Proposition 2 as follows:

Proposition 4. An optimal quantity-based pricing p∗q is
p∗q(k) (24)

=


0, if k = 0,

F (T )− (k + 1)F ( T
k+1 )−

∑k−1
j=1 p

∗
q(j) + ε,

if 1 < k < K∗,

F (T )− (K∗ + 1)F ( T
K∗+1 )−

∑K∗−1
j=1 p∗q(j), if k ≥ K∗,

6Note that F (T ) in (17) is a constant and hence is not considered in (19).
7To see the convexity of (K + 1)F (T/(K + 1)), note that (K +

1)F (T/(K + 1)) is the perspective of function F (T ). The perspective of
F (T ) is convex since F (T ) is convex [38].

8Assumption 1 leads to the existence of a unique K̂ satisfying (22).
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Fig. 7. An illustrative example of the optimal quantity-based pricing scheme
in Proposition 4. The destination’s AoI cost is f(∆t) = ∆2

t and the source’s
operational cost is C(K) = 1/6K2.

where ε > 0 is an infinitesimal value to ensure (18).

Fig. 7 presents an illustrative example of (24). In Fig. 7
(up), the marginal revenue intersects with the marginal cost in
(21) at around K = 3.3. Hence, the threshold update count
is K̂ = 3 based on (22), and we can further verify based
on (23) that the optimal update count is K∗ = 3. In Fig. 7
(down), we present the optimal quantity-based pricing scheme
described in (24). As we can see, the optimal price drops until
the third update. The relatively high prices value of the first
two update prices are to ensure (18) holds for K ′ = {1, 2}
while the relatively lower price starting from the third update
is to ensure (17) holds.

VI. PROPERTIES

In this section, we study several properties of the pure
quantity-based pricing and the pure time-dependent pricing.
Let Πq denote the achievable profit of the pure quantity-based
pricing and Πt denote that of the pure time-dependent pricing.
We first compare Πq with Πt in the following Proposition:

Proposition 5. The achievable profit of the optimal quantity-
based pricing Πq and that of the optimal time-dependent
pricing Πt satisfy

Πt

(a)

≤ Πq

(b)
< 2Πt. (25)

Proof Sketch: We can show that the time-dependent pricing
scheme is a special case of the quantity-based pricing in Propo-
sition 4 by fixing K∗ = 1, which proves (a). To prove (b),
the destination’s payment under the optimal time-dependent
pricing scheme in Proposition 1 is DF (T/2, T/2), which
we can show to be at least F (T )/2; while the destination’s
payment under the optimal quantity-based pricing is at most
F (T ).

We are now ready to introduce the key result of this paper:

Theorem 3 (Profit Maximizing Structure). The optimal
quantity-based pricing achieves the maximum source profit
among all possible time-and-quantity dependent pricing
schemes in the form of p(t, k).
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Fig. 8. Performance comparison in terms of the aggregate AoI and the
aggregate AoI cost.

Proof Sketch: We first prove that, regardless of the pricing
choice, the destination’s payment is always upper-bounded
by the AoI cost reduction as we discussed in Proposition 3.
Meanwhile, the optimal quantity-based pricing in (18) attains
such a bound. We then prove it is profit-maximizing.

Theorem 3 implies that the relatively-simple quantity-based
pricing scheme is already optimal. Hence, even without ex-
ploiting the time flexibility explicitly, it is still possible to
obtain the optimal pricing structure, which again implies that
utilizing time flexibility may not be necessary.

Next we introduce the social cost minimization problem,
which minimizes the sum of the destination’s aggregate AoI
cost and the source’s operational cost:

min
K∈N∪{0},x∈RK+1

++

K+1∑
k=1

F (xk) + C(K), (26a)

s.t.

K+1∑
k=1

xk = T. (26b)

Proposition 6 (Social Cost Minimization). The optimal
quantity-based pricing scheme in (24) leads to the optimal
solution of (26), i.e., minimizing the social cost.

Proof Sketch: We first prove that the social cost minimizing
update policy equalizes the time intervals, due to the similar
reason as in Lemma 2. In this case, problem (26) becomes
equivalent to problem (19). Hence, the solution in (19) yields
the minimal social cost.

VII. NUMERICAL RESULTS

In this section, we perform simulations to numerically com-
pare both proposed pricing schemes regarding the aggregate
AoI, the source’s profit, and the social cost.

We consider a time interval of T = 30 (days).9 The
destination’s AoI cost function is f(∆t) = ∆κ

t , where the
exponent κ is the destination’s age sensitivity. Hence, the
function F (t) is F (t) = tκ+1/(κ+1). The source has a cubic
operational cost function, i.e., C(K) = c ·K3, where c is the
source’s operational cost coefficient. Let κ follow a normal
distribution N (1.5, 0.2) truncated into the interval [1, 2]; let
c follow a normal distribution N (6, 1.5) truncated into the
interval [2, 10].

9Examples of such a period of interest include the API monitoring platform
[2] and Google Map platform [3].
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Fig. 9. Performance comparison in terms of the social cost, the source’s
profit, and the destination’s payment.

We compare the performance of three schemes: the optimal
time-dependent pricing, the optimal quantity-based pricing,
and a no-update benchmark. In Fig. 8, we first compare
the three schemes in terms of the aggregate AoI and the
aggregate AoI cost. The no-update scheme incurs a much
larger aggregate AoI than both proposed pricing schemes.
Moreover, the optimal quantity-based pricing scheme incurs
an aggregate AoI which is only 59% of that incurred by the
optimal time-dependent pricing. In terms of the aggregate AoI
cost, we observe a similar trend.

In Fig. 9, we compare the three schemes in terms of
the social cost, profit (of the source), and payment (of the
destination). First, we observe that the optimal quantity-
based pricing is 27% more profitable than the optimal time-
dependent pricing. Such an improvement is consistent with
the analytical bounds in Proposition 5. Finally, the optimal
time-dependent pricing only incurs 34% of the social cost
of the no-update scheme, while the optimal quantity-based
pricing further reduces the social cost and incurs only 46%
of that of the optimal time-dependent pricing. Note that the
large standard deviations for both profits and payments of the
proposed pricing schemes are mainly due to the large standard
deviation of the aggregate AoI cost for the no-update scheme
as shown in Fig. 8.

VIII. CONCLUSIONS

We have presented the first pricing scheme design for a fresh
data market and proposed two pricing schemes. Our results
have revealed that (i) the optimal time-dependent pricing
scheme yields a single-update equilibrium, which does not
effectively exploit the time flexibility, and (ii) the optimal
quantity-based pricing scheme achieves the maximum profit
for the source among all time-and-quantity dependent pricing
schemes, and leads to the minimal social cost. Future work
includes the extension to multi-destination scenarios, and
studying incomplete user information settings.
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