
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023 607

Timely Multi-Process Estimation Over Erasure
Channels With and Without Feedback:

Signal-Independent Policies
Karim Banawan , Member, IEEE, Ahmed Arafa , Member, IEEE,

and Karim G. Seddik , Senior Member, IEEE

Abstract—We consider a multi-process remote estimation
system observing K independent Ornstein-Uhlenbeck processes.
In this system, a shared sensor samples the K processes in such a
way that the long-term average sum mean square error (MSE) is
minimized using signal-independent sampling policies, in which
sampling instances are chosen independently from the processes’
values. The sensor operates under a total sampling frequency
constraint fmax. The samples from all processes consume random
processing delays in a shared queue and then are transmitted over
an erasure channel with probability ε. We study two variants of
the problem: first, when the samples are scheduled according to a
Maximum-Age-First (MAF) policy, and the receiver provides an
erasure status feedback; and second, when samples are scheduled
according to a Round-Robin (RR) policy, when there is no
erasure status feedback from the receiver. Aided by optimal
structural results, we show that the optimal sampling policy for
both settings, under some conditions, is a threshold policy. We
characterize the optimal threshold and the corresponding optimal
long-term average sum MSE as a function of K, fmax, ε, and the
statistical properties of the observed processes. Our results show
that, with an exponentially distributed service rate, the optimal
threshold τ∗ increases as the number of processes K increases, for
both settings. Additionally, we show that the optimal threshold
is an increasing function of ε in the case of available erasure
status feedback, while it exhibits the opposite behavior, i.e., τ∗ is
a decreasing function of ε, in the case of absent erasure status
feedback.

Index Terms—Age of Information, multi-process estima-
tion, erasure channel, feedback, signal-independent sampling,
maximum-age-first policy, round-robin policy.

I. INTRODUCTION

WE STUDY the problem of timely tracking of multiple
random processes using shared resources. This set-

ting arises in many practical situations of remote estimation
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and IoT applications. Recent works have drawn connections
between the quality of the estimates at the destination, mea-
sured through mean square error (MSE), and the age of
information (AoI) metric that assesses timeliness and freshness
of the received data, see, e.g., the survey in [1, Sec. VI]. We
extend these results to multi-process estimation settings in this
work.

AoI is defined as the time elapsed since the latest received
message has been generated at its source. It has been studied
extensively in the literature in different contexts. This includes
analyzing AoI in various queuing systems [2], [3], [4], [5],
[6], [7], [8], [9], sampling and scheduling policy design for
AoI optimization [10], [11], [12], [13], [14], minimizing AoI
using energy harvesting and power constrained sensors [15],
[16], [17], [18], [19], [20], [21], AoI analysis for multihop
networks [22], [23], AoI-optimal source coding design [24],
fresh data market pricing using AoI [25], cloud computing
while maintaining data freshness [26], and using AoI for
scheduling in federated learning [27].

Relevant to this work is the fact that AoI can be closely
tied to MSE in random processes tracking applications. The
works in [28], [29], [30] characterize implicit and explicit
relationships between MSE and AoI under different estima-
tion contexts. References [31], [32], however, consider the
notion of the value of information (mainly through MSE)
and show that optimizing it can be different from opti-
mizing AoI. The quantification and optimality conditions
of the value of information in feedback control systems
of multi-dimensional Gaussian-Markov processes are fur-
ther investigated in [33], [34], [35]. Lossy source coding
and distorted updates for AoI minimization is considered
in [36], [37], [38]. The notion of age of incorrect information
(AoII) is introduced in [39], adding more context to AoI by
capturing erroneous updates. The works in [40], [41] consider
sampling of Wiener and Ornstein-Uhlenbeck (OU) processes
for the purpose of remote estimation, and draw connections
between MSE and AoI. Our recent work in [42] also focuses
on characterizing the relationship of MSE and AoI, yet
with the additional presence of coding and quantization.
Reference [43] shows the optimality of threshold policies
for tracking OU processes under rate constraints. The signal-
dependent variant of the problem of remote estimation of OU
processes is investigated in [44] through casting the problem as
choosing the optimal sequence of stopping times whenever the
estimation error exceeds a designed envelope. The work [45]
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Fig. 1. System model.

investigates optimal encoding and decoding policies to mini-
mize MSE under rate constraint. The works [46], [47] study
the optimal transmission and energy allocation schemes for
a sensor sending noisy measurements over a packet-dropping
direct and feedback channels.

Reference [41] is closely related to our setting, in which
optimal sampling methods to minimize the long-term average
MSE for an OU process are derived. It is shown that if
sampling times are independent of the instantaneous values
of the process (signal-independent sampling) the minimum
MSE (MMSE) reduces to an increasing function of AoI (age
penalty). Then, threshold policies are shown optimal in this
case, in which a new sample is acquired only if the expected
age-penalty by the time it arrives surpasses a certain value.
This paper extends [41] (and the related studies in [42], [43])
to multiple OU processes.

In this paper, we study a remote sensing problem consisting
of a shared controlled sensor, a shared queue, and a receiver
(see Fig. 1) to track K independent, but not necessarily
identical, OU processes.1 The sensor transmits the collected
samples over an erasure channel with probability ε after being
processed for a random delay with service rate μ. The sensor
generates the samples at will, subject to a total sampling
frequency constraint fmax. The goal is to minimize the long-
term average sum MSE of the K processes. We restrict our
sampling policies to the family of signal-independent policies,
where the chosen sampling instants are identified based on
the statistical measures of the processes and not the exact
processes’ values.2

In this work, we investigate two variants of the problem,
which are different based on the availability of erasure status
update at the transmitter.3 In the first setting, the receiver
sends an erasure status update to the transmitter. We focus on
maximum-age-first (MAF) scheduling, where the transmitter
chooses the process with the largest AoI to be sampled.
MAF scheduling results in obtaining a fresh sample from the
same process until an unerased sample from that process is

1The OU process is the continuous-time analog of the first-order autore-
gressive process [48], [49], and is used to model various physical phenomena,
and has relevant applications in control and finance.

2We note that there exists another family of sampling policies, namely,
signal-dependent policies. For this family of policies, the optimal sampling
instants are defined as a function of the actual processes’ values (or equiv-
alently the instantaneous MSE of the reconstructed processes). Considering
signal-dependent policies is an interesting future direction for this work, which
is outside the scope of this paper.

3We use the words sensor and transmitter interchangeably.

conveyed to the receiver. The erasure status update enables
the use of MAF scheduling as the transmitter can accurately
estimate the AoI of each process. In the second setting, the
erasure status feedback is absent at the transmitter. In this
setting, we focus on round-robin (RR) scheduling, where the
transmitter acquires samples from the processes in a fixed
order irrespective of the experienced erasure events. In both
problem variants, we concentrate on stationary deterministic
policies, where the sampling policy needs to induce a station-
ary distribution across transmission epochs. Based on this, the
optimal sampling policy reduces to optimizing a stationary
waiting policy. In this work, we do not aim to compare
the optimal sum MSE with and without erasure feedback
(naturally, a system with erasure feedback would prevail),
rather we focus on the behavior of the optimal sampling policy.

We show that, for both problem settings, we can aggregate
the waiting times without affecting the sum MSE value,
with a subtle difference between the two problem variants.
Specifically, in the presence of erasure status feedback, the
waiting times are aggregated at the beginning of the trans-
mission epoch, defined as the inter-delivery time between
successful samples, which includes the successful transmis-
sion of a sample from each process. In the absence of
erasure status feedback, however, the transmitter aggregates
the waiting times at the beginning of the transmission round,
which includes a transmission trial of a sample from each
process irrespective of the erasure outcome. We show that,
for both problems, under MAF or RR scheduling, the optimal
stationary deterministic policy is a threshold policy. We
characterize the optimal threshold τ ∗(K, fmax, ε, θ , σ ) and the
corresponding long-term average sum MSE in terms of the
processes’ statistical properties (θ , σ ), ε, and fmax. In both
cases, the threshold is a maximum of two threshold values: one
due to a nonbinding sampling frequency constraint scenario,
and another due to a binding scenario.

Surprisingly, our results show that optimal threshold τ ∗
behaves differently based on the availability erasure status
feedback. Specifically, our numerical results show that 1) the
optimal threshold τ ∗ is an increasing function in the erasure
probability ε in the presence of erasure status feedback under
MAF scheduling, 2) the optimal threshold τ ∗ is a decreasing
function in the erasure probability ε in the absence of erasure
status feedback under RR scheduling, and 3) the optimal
threshold is an increasing function in the number of the
observed processes K for both problem variants under the
respective scheduling policy.
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II. SYSTEM MODEL

We consider a sensing system in which K independent,
but not necessarily identical, OU processes are remotely
monitored using a shared sensor that transmits samples from
the processes over an erasure channel to a receiver. Denote the
kth process value at time s by X[k]

s . Given X[k]
s , the kth OU

process evolves, for t ≥ s, as [48], [49]

X[k]
t = X[k]

s e−θk(t−s) + σk√
2θk

e−θk(t−s)We2θk(t−s)−1, (1)

where Wt denotes a Wiener process, while θk > 0 and σk > 0
are fixed parameters that control how fast the process evolves.
We study the system in steady-state, hence, we assume that
the processes are initiated as X[k]

0 ∼ N (0, σ 2
k /2θk).4

To estimate {X[k]
t } at the receiver, the sensor acquires

samples from the kth OU process at specific time instants
{S[k]

i } and sends them to the receiver. Sampling instants are
fully-controlled, i.e., samples are generated-at-will. We focus
on signal-independent sampling policies, in which the optimal
sampling instants depend on the statistical measures of the
processes and not on exact processes’ values.5

The sensor must obey a total sampling frequency constraint
fmax. Let �i denote the ith sampling instant regardless of the
identity of the process being sampled. For example, if process
1 is sampled two times consecutively and then process 2 is
sampled, then we have �1 = S[1]

1 , �2 = S[1]
2 , and �3 = S[2]

1 .
Hence, it holds that {�i}∞i=1 ⊇ ∪k{S[k]

i }∞i=1. Therefore, the
sampling constraint is expressed as follows:

lim inf
n→∞

1

n
E

[
n∑

i=1

�i+1 − �i

]
≥ 1

fmax
, (2)

i.e., the long-term average inter-sampling time �i+1 − �i is
constrained to be no smaller than 1

fmax
, which indicates that

the sensor shares the sampling budget fmax among the K
processes. Samples go through a shared processing queue,
whose service model follows a Poisson process with service
rate μ, i.e., service times are independent and identically
distributed (i.i.d.) ∼ exp(μ) across samples. Served samples
are prune to erasures with probability ε, also occurring
independently across samples.

Samples are time-stamped prior to transmissions, and
successfully-received samples from process k determine the
age-of-information (AoI) of that process at the receiver,
denoted AoI[k](t). AoI is defined as the time elapsed since
the latest successfully received sample’s time stamp.

In this work, we investigate the effect of the pres-
ence/absence of the erasure status feedback on specifying
the sampling time instants {S[k]

i }. Specifically, we study the
following sampling scenarios:

1) Erasure status feedback is available: In this case, an
immediate erasure status feedback is available at the

4This way, the variance of X[k]
t is σ 2

k /2θk, ∀t, and the autocorrelation

function is
σ2

k
2θk

e−θk |τ |, τ ∈ R. Thus, large values of σk or θk indicate a
fast-varying process.

5We focus on the case in which the OU processes are non-observable prior
to sampling. The case in which the processes are fully observable is to be
studied in follow-up works.

sensor. We focus, in this case, on Maximum-Age-First
(MAF) scheduling, in which the processes are sampled
according to their relative AoI’s, with priority given to
the process with highest AoI. Hence, at time t, process

κ(t) � arg max
k

AoI[k](t) (3)

is sampled. Observe that the value of κ(t) will
not change unless a successful transmission occurs.
Therefore, in case of erasure events, a fresh sample
is generated from the same process being served and
transmission is re-attempted.

2) Erasure status feedback is unavailable: In this case,
the receiver does not provide any feedback signaling
to the sensor about the erasure status. In this case,
MAF scheduling is not a viable scheduling policy as
the sensor cannot identify the AoI of each process.
Alternatively, we employ in this case the round-robin
(RR) scheduling with new samples, i.e., the sensor
acquires a new sample from process 1, followed by a
new sample from process 2, · · · , etc., irrespective of the
erasure events.

Although both MAF and RR policies schedule the
processes’ samples in the same order 1, 2, . . . , K, the two
scheduling policies differ in the erasure counter-measure (or
lack thereof). Specifically, the MAF scheduling keeps re-
attempting to sample the same process until being successful.
This is in contrast to RR scheduling, which keeps the order
of the processes regardless of the erasure events due to the
absence of erasure status feedback.

Under both MAF and RR scheduling, and since the channel
behaves similarly for all processes, each process will eventu-
ally be given an equal share of the allowed sampling budget,
i.e., each process will be sampled at a rate of fmax/K, and the
sampling constraint in (2) becomes

lim inf
n→∞

1

n
E

[
n∑

i=1

S[k]
i+1 − S[k]

i

]
≥ K

fmax
, ∀k. (4)

Let S̃[k]
i denote the sampling instant of the ith success-

fully-received (unerased) sample from the kth process,6 and
(re-)define S[k]

i (m) as the sampling instant of the mth attempt
to convey the ith sample of the kth process, m = 1, . . . , M[k]

i ,
with M[k]

i denoting the number of trials. Hence, we have
S[k]

i (m) ≤ S̃[k]
i , ∀m, with equality at m = M[k]

i . Our channel
model indicates that M[k]

i ’s are i.i.d. ∼ geometric(1−ε). Each
sample X[k]

S[k]
i (m)

incurs a service time of Y [k]
i (m) time units

with Y [k]
i (m)’s being i.i.d. ∼ exp(μ). The successfully-received

sample, X[k]

S̃[k]
i

, arrives at the receiver at time D[k]
i , i.e.,

D[k]
i = S̃[k]

i + Y [k]
i

(
M[k]

i

)
. (5)

6In this work, we assume that a sample S[k]
i is either erased or exactly

reconstructed without any distortion. This corresponds to the case when the
samples are transmitted with infinite precision. Investigating the effects of
quantization and coding is an interesting future direction that is outside the
scope of this work. We refer the reader to [42], where these effects are studied
for single-process estimation problems.
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Fig. 2. Timing diagram of a typical epoch for K = 3 processes in the presence of erasure feedback and MAF scheduling. In this example, process 1 (in
blue) is successful after one trial, process 2 (in green) is successful after 3 trials, and process 3 (in red) is successful after 2 trials.

Based on this notation, one can characterize the AoI of the
kth OU process as follows:

AoI[k](t) = t − S̃[k]
i , D[k]

i ≤ t < D[k]
i+1. (6)

The receiver collects the unerased samples from all
processes and uses them to construct minimum mean square
error (MMSE) estimates. Since the processes are independent,
and by the strong Markov property of the OU process, the
MMSE estimate for the kth process at time t, denoted X̂[k]

t , is
based solely on the latest successfully-received sample from
that process. Thus, for D[k]

i ≤ t < D[k]
i+1, we have [41], [42]

X̂[k]
t = E

[
X[k]

t

∣∣∣S̃[k]
i , XS̃[k]

i

]
(1)= XS̃[k]

i
e
−θk

(
t−S̃[k]

i

)
. (7)

Let π denote the scheduling policy, with π ≡ MAF and
π ≡ RR in the presence and absence of erasure status
feedback, respectively. Hence, the instantaneous mean square
error (MSE) in estimating the kth process at time t ∈
[D[k]

i , D[k]
i+1) is [41], [42]

mse[k]
π

(
t, S̃[k]

i

)
� E

[(
X[k]

t − X̂[k]
t

)2
]

(8)

= σ 2
k

2θk

(
1− e

−2θk

(
t−S̃[k]

i

))
, (9)

which is an increasing function of the AoI in (6) as we have

mse[k]
π = σ 2

k
2θk

(1−e−2θkAoI
[k](t)). Note that the MSE under MAF

scheduling is different from that under RR scheduling, and
hence the distinction using the subscript π . Next, we define
the long-term time average MSE of the kth process as

mse[k]
π � lim sup

T→∞

∑T
i=1 E

[∫ D[k]
i+1

D[k]
i

mse[k]
π

(
t, S̃[k]

i

)
dt

]
∑T

i=1 E

[
D[k]

i+1 − D[k]
i

] . (10)

Our goal is to choose the sampling instants to minimize a

penalty function g(·) of {mse[k]
π } under the sampling frequency

constraint. More specifically, to solve the following problem
in the presence/absence of erasure status feedback:

min{
S[k]

i (m)
} g

(
mse[1]

π , . . . ,mse[K]
π

)

s.t. lim inf
n→∞

1

n
E

[
n∑

i=1

S[k]
i+1 − S[k]

i

]
≥ K

fmax
, ∀k. (11)

III. STATIONARY POLICIES: PROBLEM RE-FORMULATION

In this section, we re-formulate problem (11) in terms of a
stationary waiting policy for each process. In the sequel, we
provide the details of such re-formulation for both cases of
erasure feedback availability.

A. Problem Re-Formulation in the Presence of Erasure
Feedback

In this subsection, we focus on the case in which the erasure
status feedback is available. We define W[k]

i (m) as the mth
waiting time before the mth transmission attempt towards
conveying the ith sample from the kth process, 1 ≤ m ≤ M[k]

i .
Without loss of generality, let the MAF schedule be in the
order 1, 2, . . . , K. Thus, we have (see Fig. 2)

S[k]
i (m) = D[k−1]

i +
m−1∑
j=1

Y [k]
i (j)+

m∑
j=1

W[k]
i (j), (12)

with D[0]
i � D[K]

i−1. Problem (11) now reduces to optimizing

the waiting times {W[k]
i (m)}. We now define the ith epoch of

the kth process, denoted 	
[k]
i , as the inter-reception time in

between its ith and (i+ 1)th unerased samples, i.e.,

	
[k]
i = D[k]

i+1 − D[k]
i . (13)

In this work, we focus on stationary waiting policies in
which the waiting policy {W[k]

i (m)} has the same distribution
across all processes’ epochs. Note that under MAF scheduling,
each process epoch entails a successful transmission of every
other process. This, together with the fact that service times
and erasure events are i.i.d., induces a stationary distribution
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Fig. 3. Illustration of Lemma 1. The waiting times are grouped to the beginning of the epoch without affecting the long-term average MSE penalty.

across all processes’ epochs. Therefore, dropping the indices
i and k, we have 	

[k]
i ∼ 	, ∀i, k, where

	 =
K∑

k=1

M[k]∑
m=1

W[k](m)+ Y [k](m). (14)

Now consider a typical epoch for the kth process. By station-
arity, one can write (10) as

mse[k]
MAF =

E

[∫ D[k]+	

D[k] mse[k]
MAF

(
t, S̃[k]

)
dt
]

E[	]
. (15)

where D[k]
i ∼ D[k] and S̃[k]

i ∼ S̃[k], ∀i. In the sequel, we treat
the Kth (last) process’s epoch as the typical epoch.

In the next lemma, we prove an important structural result,
which asserts that the positions of the waiting times do not
matter. Specifically, we show that one can achieve the same
long-term average MSE penalty by grouping all the waiting
times at the beginning of the (typical) epoch (see Fig. 3).

Lemma 1: Under signal-independent sampling with MAF
scheduling, problem (11) is equivalent to the following
optimization problem for stationary waiting policies:

min
W≥0

g
(
mse[1]

MAF, . . . ,mse[K]
MAF

)

s.t. E

[
(1− ε)W +

K∑
k=1

Y [k]

]
≥ K

fmax
, (16)

where W �
∑K

k=1
∑M[k]

m=1 W[k](m) and the waiting is only
performed at the beginning of the epoch.

Proof: By inspection of the average MSE function in (15),
since 	 = ∑K

k=1
∑M[k]

m=1 W[k](m) +∑K
k=1

∑M[k]

m=1 Y [k](m), the
waiting times appear in the numerator and denominator as the
sum

K∑
k=1

M[k]∑
m=1

W[k](m). (17)

Thus, for the optimal waiting times {W[k]∗(m)} that
solve the optimization problem in (11), the waiting time

W∗ = ∑K
k=1

∑M[k]

m=1 W[k]∗(m) achieves the same mse[k]
MAF.

Conversely, starting with W∗ in the objective function of (16)
and breaking it arbitrarily to any waiting times such that

W∗ =∑K
k=1

∑M[k]

m=1 W[k]∗(m) gives the same objective function
in (11).

As for the sampling constraint, by observing the telescoping
sum in (4), we have that for process k,

lim inf
n→∞

1

n
E

[
n∑

i=1

S[k]
i+1 − S[k]

i

]
= lim inf

n→∞
1

n
E

[
S[k]

n+1

]
. (18)

Now define e(n) to be the index of the epoch correspond-
ing to the nth successfully-received sample. With W =∑K

k=1
∑M[k]

m=1 W[k]∗(m), we can write the sampling constraint as

lim inf
n→∞

e(n)

n
·
E

[
S[k]

n+1

]
e(n)

= 1

E
[
M[k]

] · lim inf
n→∞

1

e(n)

⎛
⎜⎝e(n)−1∑

i=1

E

⎡
⎢⎣ K∑

k=1

M[k]
i∑

m=1

W[k]
i (m)

+ Y [k]
i (m)

⎤
⎥⎦+ o(e(n))

⎞
⎟⎠ (19)

= 1

E
[
M[k]

] · lim inf
n→∞

1

e(n)

e(n)−1∑
i=1

×
(
E[W]+ E

[
M[k]

i

]
· E
[

K∑
k=1

Y [k]
i

])
(20)

= E

[
(1− ε)W +

K∑
k=1

Y [k]

]
, (21)

where (19) follows from the strong law of large numbers
and the fact that the time spent in the e(n)th epoch, 
 =∑k−1

k̃=1

∑M[k̃]

m=1 W[k̃]
i (m)+Y [k̃]

i (m)+∑m̃
m=1 W[k]

i (m)+Y [k]
i (m), is

o(e(n)) and hence lim infn→∞ 

e(n)
= 0; equation (20) follows

from Wald’s identity.
We now have the following remark:
Remark 1: Observe that the sampling constraint in

problem (16) will not be active if fmax > μ. This is intuitive
since the inter-sampling time, on average, would be larger
than the minimum allowable sampling time, controlled by the
maximum allowable sampling frequency, in this case.
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Fig. 4. Timing diagram of a typical epoch for K = 3 processes in the absence of erasure feedback and RR scheduling. In this example, we focus on
characterizing the epoch of process 3, which is successful after 2 transmission rounds. The erasures experienced by the remaining of the processes is irrelevant
to the epoch of process 3.

If the sampling constraint is binding, which occurs only
if fmax < μ, the average waiting time would monotonically
increase with the erasure probability ε. This is true because
no waiting is allowed in between unsuccessful transmissions,
whose rate increases with ε. Hence, to account for the expected
large number of back-to-back sample transmissions in the
epoch, one has to wait for a relatively larger amount of time
at its beginning so that the sampling constraint is satisfied.

B. Problem Re-Formulation in the Absence of Erasure
Feedback

In this subsection, we turn our attention to the other case, in
which the erasure status feedback is not available. Throughout
our treatment, we highlight the main differences compared to
the re-formulation in Section III-A.

Similar to Section III-A, we define the ith epoch of the kth
process 	

[k]
i as the inter-reception time in between its ith and

(i + 1)th successfully received samples. Despite the identical
definition, we note that the epoch 	

[k]
i , in this case, consists of

multiple transmission rounds. Each round implies transmitting
a new sample from each process in a round-robin fashion,
i.e., in the order of 1, 2, 3, . . . , K irrespective of the erasure
outcome of transmission at the receiver.

The transmitter introduces stationary waiting times
{W[k]

i (m)} between successive samples in each transmission
round, i.e., the transmitter waits for W[k]

i (m) time units after
transmitting a sample from the (k−1)th process before taking a
new sample from the kth process at the mth transmission round
(see Fig. 4). With a slight abuse of notation, let Y [k]

i (m) be the
service time of the sample from the kth process in the ith epoch
at the mth transmission round. We have that Y [k]

i (m)’s are i.i.d.
such that Y [k]

i (m) ∼ exp(μ). Let M[k]
i denote the total number

of transmission rounds needed to convey the ith sample of the
kth process. Consequently, M[k]

i ∼ geometric(1− ε). We note
that M[k]

i controls the epoch length 	
[k]
i irrespective of the

other processes’ erasure statuses. Without loss of generality,
we focus on the Kth process. Under RR scheduling, we can

express the sampling instant S[K]
i (m), for m = 1, . . . , M[K]

i as

S[K]
i (m) = S[K]

i (m− 1)+ Y [K]
i (m− 1)

+
K−1∑
k=1

Y [k]
i +

[K]∑
k=1

W[k]
i (m). (22)

Based on the aforementioned description, we can write the
ith epoch length corresponding to the kth process as

	
[k]
i =

M[k]
i∑

m=1

K∑
k=1

W[k]
i (m)+ Y [k]

i (m). (23)

By imposing the stationarity restriction of the waiting
policy, the i.i.d. statistics of the service times and the erasure
events, and the fact that epoch corresponding to the kth process
entails repeating the same cycle of transmissions M[k]

i ∼
geometric(1− ε) times, we can drop the indices i and k as we
have done in Section III-A to have7

	 =
M∑

m=1

K∑
k=1

W[k](m)+ Y [k](m) (24)

Consequently, despite the subtle differences and the slight
abuse of notation, we can still write the long-term average
MSE of the kth process as that in (15) (after replacing MAF
with RR).

Now, similar to Lemma 1, we can aggregate all waiting
times in the mth round at the beginning of each transmission
round, i.e., the transmitter waits for

Wi(m) =
K∑

k=1

W[k]
i (m) (25)

7It is worth noting that the epoch definitions in (14) and (24) differ only in
the order of summation. This signifies the fact that in the presence of erasure
status feedback, the transmitter takes M[k]

i samples from the kth process until
being successful before sampling the (k+ 1)th process. This is in contrast to
passing by all processes once and repeating this cycle M times to complete
the epoch in the absence of erasure status feedback.
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Fig. 5. Illustration of Lemma 2. The waiting times are grouped to the beginning of each transmission round without affecting the long-term average sum
MSE.

time units in the mth round. Specifically, the transmitter waits
for Wi(1) = ∑K

k=1 W[k]
i (1) at the first round, after which the

transmitter acquires and transmits a sample from process 1,
followed by a sample from process 2, . . . , followed by a
sample from process K, without any waiting times in between.
Then the transmitter waits for Wi(2) = ∑K

k=1 W[k]
i (2) before

completing the second round-robin cycle (second round) of
sampling across all processes, . . . , etc. Similar to Lemma 1,
this aggregation does not affect the long-term average MSE
and results in a simpler equivalent optimization problem (see
Fig. 5). This is summarized in the following lemma:

Lemma 2: Under signal-independent sampling with RR
scheduling, problem (11) is equivalent to the following
optimization problem for stationary waiting policies:

min
W≥0

g
(
mse[1]

RR, . . . ,mse[K]
RR

)

s.t. E

[
W(m)+

K∑
k=1

Y [k]

]
≥ K

fmax
, (26)

where W(m) �
∑K

k=1 W[k](m) and the waiting is only
performed at the beginning of the mth transmission round.

The proof of Lemma 2 follows the exact steps of the proof
of Lemma 1 while noting that the waiting time here is at the
beginning of every transmission round and not at the beginning
of the epoch as in Lemma 1. Hence, the proof is removed to
avoid unnecessary repetitions.

Remark 2: We note that, in the absence of erasure status
feedback, the transmitter cannot aggregate all waiting times at
the beginning of the epoch. This is due to the fact that the
epoch beginning time D[k]

i and end time D[k]
i+1 are only visible

at the receiver side due to the absence of the erasure status
feedback.

Remark 3: The sampling constraint in (26) lacks the erasure
effect in (16). This is due to the fact that the number of samples
at each transmission round is K samples, which is independent
of the erasure events. This is in contrast to the number of
samples in an epoch in (16), which is significantly dependent
on the erasure probability.

Remark 4: We note that when ε = 0, MAF ≡ RR
scheduling, and the optimization problems (11) with and
without erasure status feedback are indeed the same (i.e.,
problems (16) and (26) are the same) as the transmitter
acquires one sample only from each process during any epoch.

We discuss optimal solutions of problems (16) and (26) over
the next two sections, respectively, for specific MSE penalty
functions.

IV. OPTIMAL WAITING THRESHOLD AND MINIMUM SUM

MSE CHARACTERIZATION WITH ERASURE FEEDBACK

In this section, we provide the optimal solution of
problem (16) for a sum MSE penalty

g
(
mse[1]

MAF, . . . ,mse[K]
MAF

)
=

K∑
k=1

mse[k]
MAF, (27)

together with a stationary deterministic waiting policy, in
which the waiting value at the beginning of an epoch is given
by a deterministic function w(·) of the previous epoch’s total
service time, denoted Ỹ , i.e.,

Ỹ ∼
K∑

k=1

M[k]∑
m=1

Y [k](m). (28)

Note that such choice of waiting policies emerges naturally
since the MSE is an increasing function of the AoI, whose
value at the start of the epoch is, in turn, an increas-
ing function of Ỹ . Stationary deterministic policies have
been used extensively in similar contexts in the literature,
see, e.g., [40], [41], [42], and have been shown to perform
optimally.

Formally, substituting the above into problem (16), we now
aim at solving the following functional optimization problem:

min
w(·)≥0

∑K
k=1 E

[∫ D[k]+	

D[k] mse[k]
MAF

(
t, S̃[k]

)
dt
]

E[	]

s.t. E
[
w
(
Ỹ
)] ≥ 1

1− ε

(
K

fmax
− K

μ

)
. (29)
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Theorem 1 below provides the optimal solution of
problem (29). We use the compact vector notation θ �
[θ1 θ2 · · · θK] and σ � [σ 2

1 σ 2
2 · · · σ 2

K].
Theorem 1: The optimal waiting policy w∗(·) that

solves problem (29) is given by the threshold
policy

w∗(z) = [τ ∗MAF(K, fmax, ε, θ , σ )− z
]+

, (30)

where the optimal threshold τ ∗MAF(K, fmax, ε, θ , σ ) is given by

τ ∗MAF = max

{
G−1

θ ,σ

(
β∗
)
, H−1

(
1

(1− ε)

[
K

fmax
− K

μ

]+)}
,

(31)

in which

Gθ ,σ (x) �
K∑

k=1

σ 2
k

2θk

(
1− E

[
e−2θkY

]
e−2θkx

)
, (32)

and β∗ corresponds to the optimal long-term average
sum MSE in this case, and is given by the unique
solution of

p
(
β∗
) = K∑

k=1

σ 2
k

2θk

(
H
(
τ ∗MAF

)− 1

2θk
· μ

2θk + μ

(
1− Fk

(
τ ∗MAF

))

+ K

μ(1− ε)

)
− β∗

(
H
(
τ ∗MAF

)+ K

μ(1− ε)

)
= 0,

(33)

in which H(·) and Fk(·) are defined as follows:

H(τ ) =
∞∑

ρ=K

(
ρ − 1

K − 1

)
ερ−K(1− ε)K

×
[
τγ (μτ, ρ)− ρ

μ
γ (μτ, ρ + 1)

]
, (34)

Fk(τ ) =
∞∑

ρ=K

(
ρ − 1

K − 1

)
ερ−K(1− ε)K

[
e−2θkτ γ (μτ, ρ)

+
(

μ

2θk + μ

)ρ(
1− γ ((2θk + μ)τ, ρ)

)]
, (35)

where γ (x, y) is the normalized incomplete Gamma function:
γ (x, y) = 1

(y−1)!

∫ x
0 ty−1e−tdt.

Proof: We follow Dinkelbach’s approach [50] to
solve the optimization problem in (29). We start by
defining an auxiliary function p(β), for β ≥ 0,
such that:

p(β) = min
w(·)≥0

K∑
k=1

E

[∫ D+	(K,ε,w)

D
mse[k]

MAF

(
t, S̃[k]

i

)
dt

]

− βE[	(K, ε, w)]

s.t. E

[
(1− ε)w

(
Ỹ
)+ K∑

k=1

Y [k]

]
≥ K

fmax
(36)

The optimal solution of our original optimization problem (29)
is the solution of p(β∗) = 0 of the auxiliary problem
above [50].

The Lagrangian corresponding to the auxiliary problem can
be written as:

L =
K∑

k=1

E

[∫ D+	(K,ε,w)

D
mse[k]

MAF

(
t, S̃[k]

i

)
dt

]
− βE[	(K, ε, w)]

− ζ

(
E

[
(1− ε)w

(
Ỹ
)+ K∑

k=1

Y [k]

]
− K

fmax

)

−
∫ ∞

0
η(y)w(y)dy (37)

where the last term in the first line of (37), namely,∫∞
0 η(y)w(y) corresponds to the non-negativity constraint

on the waiting function w(·). Now, denoting Ỹ =∑K
k=1

∑M[k]

m=1 Y [k](m), we calculate the expected epoch
length as:

E[	(K, ε, w)] = E

[
w
(
Ỹ
)+ K∑

k=1

Ỹ

]
(38)

= E
[
w
(
Ỹ
)]+ K∑

k=1

E

[
M[k]

]
E

[
Y [k]

]
(39)

= E
[
w
(
Ỹ
)]+ K

μ(1− ε)
(40)

where (39) follows from Wald’s identity. The expected total
MSE in the epoch can be calculated as:

E

[∫ Di+	(K,ε,w)

Di

σ 2
k

2θk

(
1− e

−2θk

(
t−S̃[k]

i

))
dt

]

= σ 2
k

2θk

(
E[	(K, ε, w)]

− 1

2θk
E

[
e2θkS̃[k]

i

(
e−2θkD − e−2θk(D+	(K,ε,w))

)])
(41)

= σ 2
k

2θk

(
E[	(K, ε, w)]

− 1

2θk
E

[
e−2θkY0

(
1− e−2θk	(K,ε,w)

)])
(42)

= σ 2
k

2θk

(
E[	(K, ε, w)]

− 1

2θk
E

[
e−2θkY

](
1− E

[
e−2θk	(K,ε,w)

)])
. (43)

We note the following functional derivatives with respect to
w(·) (at realization Ỹ = z),

∂

∂w(·)E
[
w
(
Ỹ
)] = fỸ(z), (44)

∂

∂w(·)E
[
e−2θk	(K,ε,w)

]
= ∂

∂w(·)E
[
e−2θk

(
w
(
Ỹ
)+Ỹ

)]
= −2θke−2θk(w(z)+z)fỸ(z), (45)

∂

∂w(·)
∫ ∞

0
η(y)w(y)dy = η(z). (46)
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By substituting in (37) and use the stationarity condition of the
Lagrangian with respect to the functional w(·), i.e., ∂L

∂w(z) = 0,
we get

K∑
k=1

σ 2
k

2θk

(
fỸ(z)− E

[
e−2θkY

]
e−2θk(w∗(z)+z)fỸ(z)

)
− βfỸ(z)− η(z)− ζ(1− ε)fỸ(z) = 0, (47)

which leads to

K∑
k=1

σ 2
k

2θk

(
1− E

[
e−2θkY

]
e−2θk(w∗(z)+z)

)

= β + ζ(1− ε)+ η(z)

fỸ(z)
. (48)

Now define the function Gθ ,σ 2(·) as

Gθ ,σ 2(x) =
K∑

k=1

σ 2
k

2θk

(
1− E

[
e−2θkY

]
e−2θkx

)
. (49)

Such function is monotonically increasing. Consequently, the
equation Gθ ,σ 2(w∗(z)+ z) = β+ ζ(1− ε)+ η(y)

fỸ (z) has a unique
solution, which is given by

w∗(z)+ z = G−1
θ ,σ 2

(
β + ζ(1− ε)+ η(y)

fỸ(z)

)
. (50)

Using the complementary slackness for the constraint
w(·) ≥ 0 [51], we have,

w∗(z) =
[
G−1

θ ,σ 2(β + ζ(1− ε))− z
]+

. (51)

This proves the first part of the theorem, which states that
the optimal waiting function is in fact a threshold policy with
a threshold

τ ∗MAF

(
K, fmax, ε, θ , σ 2

)
= G−1

θ ,σ 2(β + ζ(1− ε)) (52)

Now, we focus on characterizing the Lagrange multiplier ζ .
First, if fmax ≥ μ, then E[w(Ỹ)] ≥ 0, which is feasible for any
w(·) ≥ 0. Consequently, in this case the sampling constraint
is never active and ζ ∗ = 0, i.e.,

τ ∗MAF

(
K, fmax, ε, θ , σ 2

)
= G−1

θ ,σ 2(β), iffmax ≥ μ. (53)

Next, we consider the other case, i.e., when fmax < μ. In
this case, we need to evaluate the expected value of the waiting
function E[w(Ỹ)] with an arbitrary threshold τ . We denote this
expected value by H(τ ):

H(τ ) = E
[
w
(
Ỹ
)] = E

[(
τ − Ỹ

)+]
. (54)

To evaluate (54), we need to characterize the statistical
distribution of Ỹ . By the law of total probability, we can write,

fỸ(z) =
∞∑

ρ=K

fỸ|∑K
k=1 M[k]

(
z

∣∣∣∣∣
K∑

k=1

M[k] = ρ

)

× P

(
K∑

k=1

M[k] = ρ

)
. (55)

Conditioned on
∑K

k=1 M[k] = ρ, then Ỹ =∑K
k=1

∑M[k]

m=1 Y [k](m) is a sum of ρ i.i.d. exponen-
tial random variables. Hence, Ỹ|ρ ∼ Erlang(ρ, μ),
i.e.,

fỸ|∑K
k=1 M[k](z|ρ) = μρzρ−1e−μz

(ρ − 1)!
, z ≥ 0. (56)

Further, the distribution of
∑K

k=1 M[k] is given by

P

(
K∑

k=1

M[k] = ρ

)
=
(

ρ − 1

K − 1

)
ερ−K(1− ε)K, ρ ≥ K. (57)

Substituting the above in (54) leads to

H(τ ) =
∫ τ

0
(τ − z)fỸ(z)dz (58)

=
∞∑

ρ=K

(
ρ − 1

K − 1

)
ερ−K(1− ε)K μρ

(ρ − 1)!

×
[
τ

∫ τ

0
zρ−1e−μzdz−

∫ τ

0
zρe−μzdz

]
(59)

=
∞∑

ρ=K

(
ρ − 1

K − 1

)
ερ−K(1− ε)K μρ

(ρ − 1)!

×
[
τ

(ρ − 1)!

μρ
γ (μτ, ρ)− ρ!

μρ+1
γ (μτ, ρ + 1)

]
(60)

=
∞∑

ρ=K

(
ρ − 1

K − 1

)
ερ−K(1− ε)K

×
[
τγ (μτ, ρ)− ρ

μ
γ (μτ, ρ + 1)

]
, (61)

where interchanging sum and integral in (59) follows from the
dominated convergence theorem and γ (x, y) is the normalized
incomplete Gamma function:

γ (x, y) = 1

(y− 1)!

∫ x

0
ty−1e−tdt (62)

Now observe that the sampling constraint in (18) can be
written as:

(1− ε)H(τ ) ≥ K

fmax
− K

μ
. (63)

Thus, if (1− ε)H(G−1
θ ,σ 2(β)) > K

fmax
− K

μ
, then ζ ∗ = 0 and the

threshold for the unconstrained problem (without the sampling
constraint) is optimal.

Otherwise, the constraint is satisfied with equality, i.e.,
(1− ε)H(τ ) = K

fmax
− K

μ
, and hence,

τ ∗ = 1

(1− ε)
H−1

(
K

fmax
− K

μ

)
. (64)

All this put together implies that

τ ∗MAF

(
K, fmax, ε, θ , σ 2

)
= max

{
G−1

θ ,σ 2(β),
1

(1− ε)
H−1

(
K

fmax
− K

μ

)}
. (65)
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Finally, we solve for the optimal long-term MMSE, β∗.
Denote E[e−2θk	(K,ε,w)] by F(τ ). By observing that

Fk(τ ) = E

[
e−2θk	(K,ε,w)

]
(66)

=
∫ τ

0
e−2θkτ fỸ(z)dz+

∫ ∞
τ

e−2θkzfỸ(z)dz (67)

=
∞∑

ρ=K

(
ρ − 1

K − 1

)
ερ−K(1− ε)K μρ

(ρ − 1)!

×
[

e−2θkτ

∫ τ

0
zρ−1e−μzdz+

∫ ∞
τ

zρ−1e−(2θk+μ)zdz

]
(68)

=
∞∑

ρ=K

(
ρ − 1

K − 1

)
ερ−K(1− ε)K

[
e−2θkτ γ (μτ, ρ)

+
(

μ

2θk + μ

)ρ(
1− γ ((2θk + μ)τ, ρ)

]
, (69)

β∗ can be obtained by solving the auxiliary problem
p(β∗) = 0, i.e., solving (33). This concludes the proof.

Remark 5: We observe that the optimal threshold τ ∗ in (31)
is increasing with the erasure probability ε. This is indeed the
case since both G−1

θ ,σ (·) and H−1(·) are increasing functions,
and both of their arguments are increasing with ε (the optimal
long-term average sum MSE β∗, for instance, can only
increase with higher erasure rates). This can be attributed
to the fact that for higher erasure probabilities, the average
samples’ inter-delivery time increases. This, in turn, causes
the transmitter to wait more before sending a new sample
to make sure that the new sample is sufficiently different
from the previously delivered sample; this new sample will
be used to estimate the signal over a large period of time
because of the large expected inter-delivery time caused by
the high erasure probability. In this case, the transmitter will
be blocked from generating new samples waiting for the
previous sample to be delivered. On the other hand, and for
smaller erasure probabilities, we can see that the waiting time
decreases. Again, this can be attributed to the fact that for
smaller erasure probabilities, the average samples’ delivery
time decreases. This means that when the transmitter has a
chance to transmit a sample, it would be better to do so as
this sample will be delivered quickly and it will not block the
transmitter from sending new samples.

Note that the fact that second term in the max function,
H−1, is increasing with ε is consistent with the observation in
Remark 1; the higher the erasure rate, the larger the waiting
time should be to compensate for the high rate of back-to-back
transmissions under MAF scheduling that takes a toll on the
sampling frequency in this case.

V. OPTIMAL WAITING THRESHOLD AND MINIMUM SUM

MSE CHARACTERIZATION WITHOUT ERASURE FEEDBACK

In this section, we consider the setting in which the receiver
does not provide erasure status feedback to the transmitter. As
in Section IV, we focus on the sum MSE penalty together
with stationary deterministic waiting policies.

With a slight abuse of notation, let Ỹi(m) = ∑K
k=1 Y [k]

i (m)

be the sum of the service times during the mth transmission

round. To develop a stationary deterministic waiting policy, we
cannot rely on the starting MSE of the epoch (or the starting
AoI) since the transmitter does not know of its exact starting
time due to the absence of the erasure feedback. Alternatively,
we focus our attention on a waiting time that is a function w(·)
of the sum of service times of all processes in the preceding
transmission round, as opposed to the preceding epoch, i.e.,
we set

Wi(m) = w
(
Ỹi(m− 1)

) = w

(
K∑

k=1

Y [k]
i (m− 1)

)
, (70)

with Ỹi(0) � Yi−1(Mi−1) by definition. This policy is
realizable in the absence of erasure feedback since the start
and end of transmission rounds are known at the transmitter
side. Note that this policy is a stationary deterministic waiting
policy since Ỹi(m)’s are i.i.d across all transmission rounds.

Similar to Section IV, problem (26) in Lemma 2 can be
written in the following functional form:

min
w(·)≥0

∑K
k=1 E

[∫ D[k]+	

D[k] mse[k]
RR

(
t, S̃[k]

)
dt
]

E[	]

s.t. E
[
w
(
Ỹ
)] ≥ K

fmax
− K

μ
. (71)

Theorem 2 below provides the solution of problem (71).
Theorem 2: The optimal waiting policy w∗(·) that solves

problem (71) is given by the threshold policy

w∗(z) = [τ ∗RR(K, fmax, ε, θ , σ )− z
]+

, (72)

where the optimal threshold τ ∗RR(K, fmax, ε, θ , σ ) is given by

τ ∗RR

(
K, fmax, ε, θ , σ 2

)
= max

{
G̃−1

θ ,σ 2,ε
(β), H̃−1

(
K

fmax
− K

μ

)}
(73)

in which

G̃θ ,σ 2,ε(x) �
K∑

k=1

σ 2
k

2θk

(
1− E

[
e−2θkY

] (1− ε)2e−2θkx

(1− εLk(x))2

)
, (74)

with Lk(·) being

Lk(x) � e−2θkxγ (μx, K)+
(

μ

μ+ 2θk

)K

× (1− γ ((2θk + μ)x, K) , (75)

and β∗ corresponds to the optimal long-term average sum
MSE in this case, and is given by the unique solution of

p̃(β) =
K∑

k=1

σ 2
k

2θk

(
H̃
(
τ ∗RR

)+ K
μ

1− ε
− 1

2θk
· μ

μ+ 2θk

× (1− F̃k
(
τ ∗RR

)))− β

(
H̃
(
τ ∗RR

)+ K
μ

1− ε

)
= 0, (76)

in which H̃(·) and F̃k(·) are defined as follows:

H̃(τ ) = τγ (μτ, K)− K

μ
γ (μτ, K + 1), (77)

F̃k(τ ) = (1− ε)Lk(τ )

1− εLk(τ )
(78)
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where γ (x, y) is the normalized incomplete Gamma function.
Proof: Similar to the proof of Theorem 1, we follow

the Dinkelbach’s approach to solve the optimization problem
in (71). We start by defining the auxiliary function p̃(β) for
β ≥ 0, such that:

p̃(β) = min
w(·)≥0

K∑
k=1

E

[∫ D+	(K,ε,w)

D
mse[k]

RR

(
t, S̃[k]

i

)
dt

]

− βE[	(K, ε, w)]

s.t. E

[
w
(
Ỹ
)+ K∑

k=1

Y [k]

]
≥ K

fmax
(79)

Hence, the Lagrangian function corresponding the auxiliary
problem above is given by

L =
K∑

k=1

E

[∫ D+	(K,ε,w)

D
mse[k]

RR

(
t, S̃[k]

i

)
dt

]

− βE[	(K, ε, w)]−
∫ ∞

0
η(y)w(y)dy

− ζ

(
E

[
w
(
Ỹ
)+ K∑

k=1

Y [k]

]
− K

fmax

)
. (80)

Without loss of generality, we focus on the epoch of the
Kth process. In this case, we can write 	

[K]
i as

	
[K]
i = w

(
Ỹi−1

(
M[K]

i−1

))
+

M[K]
i −1∑
m=1

Ỹi(m)

+ w
(
Ỹi(m)

)+ Ỹi

(
M[K]

i

)
, (81)

where M[K]
i ≥ 2. Note that 	

[1]
i ∼ · · · ∼ 	

[K]
i ∼ 	(K, w, ε).

Moreover, due to the stationarity of the waiting policy, we can
drop the indices i, and K, and re-define Ỹ [K]

i−1(M
K
i−1) = Ỹ , and

Ỹ [K]
i (MK

i ) = ˜̄Y . Hence, we have the expected epoch length
given by

E[	(K, ε, w)] = E

[
	

[K]
i

]
(82)

= E
[
w
(
Ỹ
)]+ E[M − 1] · E[Ỹ + w

(
Ỹ
)]+ E

[ ˜̄Y]
(83)

= E[M] · (E[Ỹ]+ E
[
w
(
Ỹ
)])

(84)

=
K
μ
+ E

[
w
(
Ỹ
)]

1− ε
(85)

where (83) follows from Wald’s equation, (84) follows from
the fact that the aggregate service times Ỹ ∼ Ỹ ∼ ˜̄Y ∼
Erlang(K, μ) as the individual service times are i.i.d. ∼
exp(μ), and (85) follows from the fact that the number of
transmission rounds M ∼ geometric(1 − ε). From (43), we
have the expected MSE in the epoch given by

E

[∫ Di+	(K,ε,w)

Di

σ 2
k

2θk

(
1− e

−2θk

(
t−S̃[k]

i

))
dt

]

= σ 2
k

2θk

(
E[	(K, ε, w)]− 1

2θk
E

[
e−2θkY

]

×
(

1− E

[
e−2θk	(K,ε,w)

]))
. (86)

Due to the stationary policy w(·), and the fact that all
service times are i.i.d., we can evaluate the expectation
E[e−2θk	(K,ε,w)] as follows:

E

[
e−2θk	(K,ε,w)

]
= E

[
E

[
e−2θk

∑M−1
m=0 w

(
Ỹ(m)

)+Ỹ(m)|M
]]

(87)

=
∞∑

m=1

(
E

[
e−2θk

(
w
(
Ỹ
)+Ỹ

)])m
εm−1(1− ε) (88)

=
(1− ε)E

[
e−2θk

(
w
(
Ỹ
)+Ỹ

)]
1− εE

[
e−2θk

(
w
(
Ỹ
)+Ỹ

)] (89)

where (87) follows from iterated expectation over the number
of transmission rounds M with Ỹ(0) = Ỹ ∼ ˜̄Y . This
leads to the following functional derivative of the expectation
E[e−2θk	(K,ε,w)] with respect to w(·) (at realization Ỹ = z),

∂

∂w(·)E
[
e−2θk	(K,ε,w)

]
= −2θk(1− ε)e−2θk(w(z)+z)fỸ(z)(

1− εE
[
e−2θk

(
w
(
Ỹ
)+Ỹ

)])2
.

(90)

Applying the stationarity condition of the Lagrangian with
respect to the functional w(·), ∂L

∂w(z) = 0, we get the following
optimality condition:

K∑
k=1

σ 2
k

2θk

⎛
⎜⎝1− E

[
e−2θkY

] (1− ε)2e−2θk(w(z)+z)(
1− εE

[
e−2θk

(
w
(
Ỹ
)+Ỹ

)])2

⎞
⎟⎠

= β + (1− ε)η(z)

fỸ(z)
+ (1− ε)ζ. (91)

Define the function G̃θ ,σ 2,ε,w(·) as

K∑
k=1

σ 2
k

2θk

⎛
⎜⎝1− E

[
e−2θkY

] (1− ε)2e−2θkx(
1− εE

[
e−2θk

(
w
(
Ỹ
)+Ỹ

)])2

⎞
⎟⎠ (92)

Observe that the function Gθ ,σ 2,ε,w is a monotonically increas-

ing function in x (given that E[e−2θk(w(Ỹ)+Ỹ)] for any specific
choice of w(·) is fixed, irrespective of the realizations). Thus,
using the complementary slackness condition, the optimal
waiting function is indeed a threshold waiting policy in the
form of8

w∗(z) =
[
G̃−1

θ ,σ 2,ε,w
(β + (1− ε)ζ )− z

]+
. (93)

Now that the threshold behavior has been established, we
note that the threshold policy maintains the monotonicity
behavior of G̃(·) since E[e−2θk(w(Ỹ)+Ỹ)] would be a monotone
decreasing function in the threshold value.

8The optimal threshold seems to be self-dependent through the expectation
term E[e−2θk(w(Ỹ)+Ỹ)]. This does not affect the claim that the optimal waiting
policy is a threshold policy, as the function G̃θ ,σ2,ε,w(·) is a monotone
function for any choice of w(·), which further implies the existence of
a unique solution. Nevertheless, finding this threshold numerically would
require iterating back and forth between the expectation term Lk(τ ) (see (94))
and the inverse function G̃−1

θ ,σ2,ε,w
(·) as we show later on in the proof.
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Considering a threshold waiting policy of the form w(ỹ) =
[τ − ỹ]+, and since Ỹ ∼ Erlang(K, μ), we can evaluate the
expectation in E[e−2θk(w(Ỹ+Ỹ))], denoted by Lk(τ ), as follows:

Lk(τ ) � E

[
e−2θk

(
w
(
Ỹ+Ỹ

))]
=
∫ τ

0
e−2θkτ

μKỹK−1e−μỹ

(K − 1)!
dỹ

+
∫ ∞

τ

e−2θkỹ μKỹK−1e−μỹ

(K − 1)!
dỹ (94)

= e−2θkτ γ (μτ, K)+ μK

(K − 1)!

∫ ∞
τ

ỹK−1e−(2θk+μ)dỹ

(95)

= e−2θkτ γ (μτ, K)

+
(

μ

μ+ 2θk

)K

(1− γ ((2θk + μ)τ), K). (96)

In this case, the function G̃θ ,σ 2,ε(·) (we dropped the w(·)
dependence as we deal with a threshold structure) can be re-
written as:

G̃θ ,σ 2,ε(x) =
K∑

k=1

σ 2
k

2θk

(
1− E

[
e−2θkY

] (1− ε)2e−2θkx

(1− εLk(x))2

)
(97)

We also evaluate the expected waiting time function, H̃(τ ), as

H̃(τ ) � E
[
w
(
Ỹ
)]

= E

[[
τ − Ỹ

]+]
(98)

=
∫ τ

0
(τ − ỹ)f (ỹ)dỹ (99)

= τ

∫ τ

0

μKỹK−1e−μỹ

(K − 1)!
dỹ−

∫ τ

0
ỹ
μKỹK−1e−μỹ

(K − 1)!
dỹ

(100)

= τγ (μτ, K)− K

μ
γ (μτ, K + 1). (101)

Finally, for compactness, we define

F̃k(τ ) � E

[
e−2θk	(K,ε,w)

]
= (1− ε)Lk(τ )

1− εLk(τ )
. (102)

Plugging all these quantities into the long-term average
MSE penalty, we get

K∑
k=1

mse[k]
RR =

∑K
k=1 E

[∫ D[k]+	

D[k] mse[k]
RR

(
t, S̃[k]

)
dt
]

E[	]
(103)

=
K∑

k=1

σ 2
k

2θk

(
1− 1

2θk
· E

[
e−2θkY

]
E[	(K, ε, w)]

×
(

1− E

[
e−2θk	(K,ε,w)

]))

(104)

=
K∑

k=1

σ 2
k

2θk

(
1− 1

2θk
· μ

μ+ 2θk
· 1− ε

H̃(τ )+ K
μ

× (1− F̃k(τ )
))

(105)

Algorithm 1 Nested Bisection Search for Evaluating the
Optimal Policy in Theorem 2
Require: K, σ , θ fmax, μ, ε, δ, τmax

β� ← 0, and βh ←
∑K

k=1
σ 2

k
2θk

while βh−β� > δ do � Outer bisection over the sum MSE value
β ← βh+β�

2
τ� ← 0, and τh ← τmax
while τh − τ� > δ do � Inner bisection over the unconstrained

threshold
τ ← τh+τ�

2
Oτ ← G̃(τ )− β
if Oτ > 0 then

τh ← τ
else

τ� ← τ
end if

end while
return τ0 ← τ � Unconstrained solution of the threshold

if H̃(τ0) < K
fmax
− K

μ then � Checking the sampling
frequency constraint

τ� ← τ0, and τh ← τmax
while τh − τ� > δ do � Inner bisection over the

constrained threshold
τ ← τh+τ�

2
Oτ ← H̃(τ )−

(
K

fmax
− K

μ

)
if Oτ > 0 then

τh ← τ
else

τ� ← τ
end if

end while
else

τ ← τ0
end if
return τ∗ = τ

Oβ ← p̃(β) =∑K
k=1

σ 2
k

2θk

(
H̃(τ )+K

μ

1−ε
− 1

2θk
· μ

μ+2θk

·(1− F̃k(τ )
))− β

(
H̃(τ )+K

μ

1−ε

)
if Oβ > 0 then

βh ← β
else

β� ← β
end if

end while
return β∗ = β

Hence, the optimal solution the auxiliary problem, p̃(β∗) = 0,
is given by solving

K∑
k=1

σ 2
k

2θk

(
H̃(τ )+ K

μ

1− ε
− 1

2θk
· μ

μ+ 2θk
· (1− F̃k(τ )

))

− β∗
(

H̃(τ )+ K
μ

1− ε

)
= 0 (106)

as stated in the theorem.
Focusing on the sampling frequency constraint, one can

rewrite it as

H̃(τ ) ≥ K

fmax
− K

μ
. (107)

Hence, similar to the proof of Theorem 1, if the sampling
constraint is non-binding, i.e., if H̃(G̃−1

θ ,σ 2,ε
(β)) > K

fmax
− K

μ
, the
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Fig. 6. The optimal threshold (τ∗MAF (right) and τ∗RR (left)) versus the erasure probability (ε) for different sampling frequency constraints (fmax).

Fig. 7. Comparison between the optimal threshold behavior versus erasure
probability in both cases of the presence (with MAF)/absence (with RR) of
erasure status feedback with fmax = 1.5.

unconstrained solution of the threshold is optimal. Otherwise,
we satisfy the constraint with equality, i.e., we set

τ ∗RR = H̃−1
(

K

fmax
− K

μ

)
. (108)

Combining the above two cases gives (73), and completes the
proof.

Remark 6: Different from Theorem 1, the function G̃σ ,θ ,ε

is not necessarily increasing in ε as the numerator and
denominator are both monotonically decreasing functions in
ε. Consequently, the optimal threshold in the absence of an
erasure status feedback cannot be always increasing in ε as in
Theorem 1. In fact, our numerical evaluation of the optimal
threshold in the absence erasure status feedback shows that
the optimal threshold is indeed decreasing as the erasure prob-
ability ε increases. This is intuitive as the transmitter, in this
case, has no knowledge about the current age of the processes’
at the receiver other than it is on average increasing in ε.

Fig. 8. Comparison between the sum MSE with optimal waiting (in solid
lines) versus the erasure probability in both cases of the presence (with
MAF)/absence (with RR) of erasure status feedback with fmax = 1.5. For each
case, we compare the resultant sum MSE with its counterpart if the zero-wait
policy is employed (in dotted lines).

Consequently, waiting less is more conservative and leads to
a reduction in the overall long-term average of the sum MSE.

In Algorithm 1, we illustrate how to evaluate the optimal
policy in Theorem 2 using a nested bisection method.
Specifically, we run an outer bisection search over the sum
MSE value, β, and an inner bisection search over the threshold
value, τ . For the inner bisection, we efficiently evaluate the
inverse function G̃−1(·) or H̃−1(·), while the outer bisec-
tion solves for the unique solution of the auxiliary problem
p̃(β) = 0.

Remark 7: Algorithm 1 can be used to evaluate Theorem 1
as well after replacing G̃(·) by G(·), H̃(·) by H(·), F̃(·) by
F(·), p̃(·) by p(·), and the condition for satisfying the sampling
frequency constraint from H̃(τ0) < K

fmax
− K

μ
to H(τ0) <

1
1−ε

( K
fmax
− K

μ
).
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Fig. 9. The optimal threshold (τ∗MAF (right) and τ∗RR (left)) versus the number of processes (K) for different sampling frequency constraints (fmax).

VI. NUMERICAL RESULTS: OPTIMAL

THRESHOLD BEHAVIOR

In this section, we present our numerical results concerning
Theorem 1 and Theorem 2. We study the effects of the erasure
probability, the number of users, and the speed of the processes
on the optimal waiting threshold and the MMSE with and
without erasure status feedback under MAF or RR scheduling,
respectively.

A. Effect of Erasure Probability

We study a 2-process system with θ = [0.1 0.5], and σ =
[1 2]. The exponential service rate is μ = 1. In case of the
presence/absence of the erasure status feedback, we study how
the optimal threshold τ ∗MAF/τ ∗RR behaves versus the erasure
probability ε for fmax = 0.5, 0.95, and 1.5.

First, we consider the case with erasure status feedback in
Fig. 6(a). Our results show that for all sampling frequency
constraints, the optimal threshold increases as the erasure
probability increases. This is due to the fact that the functions
G−1

θ ,σ (·) and H−1(·) are increasing functions in their argument,
which are, in turn, increasing functions of ε (see Remark 5).
Nevertheless, we have three different cases. First, when
fmax = 0.5, the sampling frequency constraint is binding even
at ε = 0. Hence, the optimal threshold is given by

H−1
(

1

1− ε

[
K

fmax
− K

μ

])
= H−1

(
2

1− ε

)
. (109)

We see that the optimal threshold is higher than the other two
cases and has a much steeper curve versus ε. On the other
hand, when fmax = 1.5, the sampling frequency constraint is
inactive since fmax > μ, and the optimal threshold is given by
G−1

θ ,σ (β∗) for all ε. Finally, for the case when fmax = 0.95,
we observe an interesting behavior: when ε < ε∗ = 0.7, the
threshold corresponding to G−1

θ ,σ (β∗) is (slightly) higher than
the threshold corresponding to H−1( 1

1−ε
[ K

fmax
− K

μ
]) (which is

shown as a dotted curve in Fig. 6(a)); while for ε > ε∗ =

Fig. 10. The optimal threshold (τ∗RR) versus the number of processes (K)

for different values of the erasure probability (ε) in the absence of erasure
status feedback and RR scheduling.

0.7, the sampling frequency constraint becomes binding and
therefore, the optimal threshold is characterized by H−1(·) and
becomes steeper.

In Fig. 6(b), we consider the case without erasure status
feedback. Our results show that the optimal threshold exhibits
the opposite behavior compared to the case with feedback
(see Remark 6). Specifically, when the sampling frequency
constraint is never binding, i.e., in the case of fmax = 1.5 >

μ = 1, the optimal threshold τ ∗RR is decreasing as the
erasure probability increases. Furthermore, when ε > 0.6, the
transmitter employs a zero-wait policy and sends its samples
immediately after acquiring them, since τ ∗RR = 0 in this case.
Second, we note that the optimal threshold in the case of
fmax = 0.5 is constant irrespective of the erasure probability.
This is due to the fact that the waiting time needed to satisfy
the sampling constraint is independent of ε in the case of
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Fig. 11. The optimal threshold (τ∗MAF (left) and τ∗RR (right)) and the optimal long-term average MMSE versus θ2 for tracking two processes with different
sampling frequency constraints (fmax); the first process has fixed parameters σ 2

1 = 1 and θ1 = 1.

absent erasure status feedback as the waiting appears at the
beginning of each transmission round regardless of the erasure
events. Finally, we see that for fmax = 0.95, the optimal
threshold is decreasing (following the unconstrained solution
of the problem) until it saturates at τ ∗RR = 1 starting from
ε = 0.2 to satisfy the sampling frequency constraint.

In Fig. 7, we show the optimal threshold for both cases
of erasure status feedback availability at fmax = 1.5 (non-
binding sampling frequency constraint) on the same figure.
Fig. 7 shows that both thresholds begin from the same value at
ε = 0. This is due to the fact that both settings are equivalent
when there are no erasure events. The optimal thresholds then
part their way as the erasure probability increases and behave
oppositely as stated above.

In Fig. 8, we show the resultant sum MSE versus the erasure
probability for both cases of erasure status feedback availabil-
ity at fmax = 1.5 (non-binding sampling frequency constraint)
on the same figure. We compare the resultant MSE values with
their counterparts if the zero-wait policy is employed. Fig. 8
shows that the sum MSE in the presence of erasure status
feedback is smaller than that in the absence of erasure status
feedback. Furthermore, the sum MSE with optimal waiting
for both cases outperforms the zero-wait policy, as expected.
In the case of no erasure status feedback, the sum MSE
with optimal waiting converges to its counterpart with zero-
waiting policy, as the optimal threshold converges to zero as
ε increases. Surprisingly, Fig. 8 shows that for small erasure
probability (up to ≈ 0.07), employing optimal waiting with
RR scheduling outperforms zero-waiting with MAF scheduling.
I.e., our results show that feedback information can be less
impactful if it is not employed to design the optimal sampling
instants and use zero-waiting instead of optimal waiting (at
least for some range of ε).

B. Effect of the Number of Processes

We now consider a symmetric system with K processes,
each having σ 2

k = 1 and θk = 0.5, for all k, communicating
through a channel with ε = 0.3. In Fig. 9(a), We study

the optimal threshold versus the number of processes K in
the presence of erasure status feedback. We observe that the
long-term average sum MMSE increases with K (as expected,
since more processes need to be conveyed through a shared
channel). Fig. 9(a) shows that as K increases, the optimal
threshold increases as well. The slope of the curve depends
on fmax. When fmax = 0.5, the sampling frequency constraint
is binding, and τ ∗ appears to linearly increase with K with
a steeper slope. When fmax = 1.5 > μ = 1, i.e., for an
unconstrained version of the problem, the optimal threshold
is slowly increasing with K. For fmax = 0.95, the optimal
threshold matches the unconstrained solution for K = 1, 2.
Nevertheless, when K > 2, the sampling frequency constraint
becomes binding and the linear-like profile of the optimal
threshold prevails.

The exact general patterns hold for the case of the absence
of erasure status feedback in Fig. 9(b). We note, however, that
the slopes of curves in Fig. 9(a) are relatively higher than their
counterparts in Fig. 9(b). This is consistent with the results
of the previous subsection, where larger waiting (at the same
erasure probability) is employed if erasure feedback is present.

Finally, we study how the optimal threshold without feed-
back, τ ∗RR behaves with K over a set of different values of
ε. Interestingly, despite the general increasing trend of the
τ ∗RR versus the number of processes K for fixed ε, it is at
the same time monotonically decreasing in ε for fixed K.
This is illustrated in Fig. 10. This implies that there exists a
specific number of processes K, after which the transmitter
starts to wait before each transmission round. This is a
contrasting behavior compared to the case of having erasure
status feedback, in which increasing ε always increases the
τ ∗MAF for any number of processes.

C. Effect of the Variation Speed of the Processes

We consider a 2-process system with σ 2
1 = 2, σ 2

2 = 1, and
θ1 = 0.5. We vary θ2 ∈ [0.1, 1] and observe its effect on the
optimal threshold and the MMSE for the same service rate
μ = 1.
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In Fig. 11(a), in the case of available erasure status update,
we observe that when the sampling frequency constraint is
binding, e.g., when fmax = 0.5, the optimal threshold is inde-
pendent of θ2 as the argument of H−1(·) is independent of θ2.
The optimal threshold, however, is a monotonically decreasing
function in θ2 for fmax = 1.5 as the process becomes faster,
and thus the system needs to wait less to track the variations
in the process as long as the sampling constraint is inactive.
In both cases, the long-term average MMSE is decreasing in
θ2 since the sum of the processes’ variances decreases.

Similar observations can be drawn for the case of the
absence of erasure status feedback in Fig. 11(b). Different
from Fig. 11(a), it appears that the optimal threshold is
changing slightly with respect to θ2 even for the uncon-
strained problem (under the considered system parameters).
Furthermore, as expected, we can observe that the MMSE
function (versus θ2) for the case of no erasure status feedback
is higher than its counterpart if the erasure status feedback is
available.

VII. CONCLUSION

In this paper, we investigated the problem of estimating K
independent OU processes under a total sampling constraint
fmax, with the goal of identifying the optimal sampling instants
such that the long-term average sum MSE is minimized. The
acquired samples experience independent erasure events with
an erasure probability ε. We focused on characterizing the
optimal sampling policy in two cases: first, when erasure status
feedback is available at the transmitter. In this case, we assume
that the transmitter acquires the samples according to the
MAF scheduling policy. In the second case, the erasure status
feedback is non-existent at the transmitter, and the transmitter
employs an RR scheduling policy. We re-formulated both
problems in terms of optimizing a stationary waiting policy. In
the case of available erasure status feedback, we demonstrated
that aggregating waiting at the beginning of the epoch does not
hurt the long-term average MSE. In the case of absent erasure
status feedback, however, this aggregation needs to be done
at the beginning of each RR transmission round. We showed
that the optimal waiting policy is indeed a threshold policy in
both settings. We characterized the optimal threshold in terms
of K, fmax, and ε.

Our numerical evaluations and our structural results show
an intriguing behavior of the optimal threshold. While, the
optimal threshold τ ∗ at ε = 0 is identical for both settings,
with increasing ε, the optimal threshold for both settings part
ways: it increases for the case of available erasure status
feedback, and decreases when the erasure status feedback is
non-existent. Furthermore, we show that for both settings, the
optimal threshold is an increasing function of the number of
processes K. Finally, we show the effect of the variation speed
of the process on the long-term average sum MSE.

Future directions of this work may include investigating
fully-observable processes (OU or otherwise), different age-
dependent penalties other than the sum MSE penalty, the
behavior of the waiting policy for generalized statistical
models for the service queue other than the exponential

distribution, exogenous sampling with and without preemption
rather than the generate-at-will model, and signal-dependent
sampling rather than signal-independent sampling.
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