
Timely Cloud Computing: Preemption and Waiting
Ahmed Arafa1, Roy D. Yates2, and H. Vincent Poor1

1Electrical Engineering Department, Princeton University
2Department of Electrical and Computer Engineering, Rutgers University

Abstract— The notion of timely status updating is investigated
in the context of cloud computing. Measurements of a time-
varying process of interest are acquired by a sensor node, and
uploaded to a cloud server to undergo some required computa-
tions. These computations have random service times that are
independent and identically distributed across different uploads.
After the computations are done, the results are delivered to a
monitor, constituting an update. The goal is to keep the monitor
continuously fed with fresh updates over time, which is assessed
by an age-of-information (AoI) metric. A scheduler is employed
to optimize the measurement acquisition times. Following an
update, an idle waiting period may be imposed by the scheduler
before acquiring a new measurement. The scheduler also has the
capability to preempt a measurement in progress if its service
time grows above a certain cutoff time, and upload a fresher
measurement in its place. Focusing on stationary deterministic
policies, in which waiting times are deterministic functions of the
instantaneous AoI and the cutoff time is fixed for all uploads,
it is shown that the optimal waiting policy that minimizes the
long term average AoI has a threshold structure, in which a new
measurement is uploaded following an update only if the AoI
grows above a certain threshold that is a function of the service
time distribution and the cutoff time. The optimal cutoff is then
found for standard and shifted exponential service times. While
it has been previously reported that waiting before updating can
be beneficial for AoI, it is shown in this work that preemption
of late updates can be even more beneficial.

I. INTRODUCTION

We consider the problem of timely computing. The setting
is motivated by some applications in which monitoring a time-
varying process of interest can be computationally demanding.
Hence, instead of extracting useful information from local
data measurements acquired by sensor nodes, measurements
are uploaded to a cloud server that can handle heavy-duty
computation tasks, and send them back in the form of updates.
Computation times, however, are random, and the process
may have already changed by the time they are done. We
therefore investigate the benefits of preempting an upload in
progress and replacing it by a new, fresher, one. Such fresh-
ness/timeliness is assessed by the age-of-information (AoI),
defined as the time elapsed since the latest received update.

Lots of work pertaining to AoI minimization have appeared
in the recent literature, with frameworks that include queuing,
optimization and scheduling, energy harvesting, remote esti-
mation, and coding, see, e.g., [1]–[14]. Of particular relevance
to our work are those in [15]–[23], which show that the notion
of preemption of updates in service and replacing them by new

This research was supported in part by the National Science Foundation
under Grants CCF-0939370, CCF-1513915 and CCF-1717041.

uploads

server
cloud

sensor

scheduler

monitor

Tx

updates

measurements

Fig. 1. A scheduler decides on when to acquire new measurements by the
sensor and send them to the cloud server by the transmitter. The server updates
the system’s monitor after it completes the required computations.

ones is viable for AoI minimization in various settings. This
is mainly owing to the nature of AoI that promotes sending
fresh updates. This is discussed in a queuing framework in
[15]–[17], and more recently in [18] that also extends to
the case of multiple sources. Different from [15]–[18] that
focus on exponential service times, the work in [19] considers
general service time distributions for multiple Poisson sources
with preemption. Preemption for general arrival and service
time distributions, for a single source, has been recently
studied in [20]. Reference [21] characterizes settings for which
preemption is age-minimal, subject to energy harvesting con-
straints with Poisson arrivals (of both energy and updates) and
exponential service times. The studies in [22], [23] investigate
a similar tradeoff, under different system models, namely,
that while preemption lets the system work with the freshest
information, it leads to restarting service from the beginning.
Thus, a decision has to be made on whether to drop the newly
arriving updates or switch to them via preemption. Recently,
in the context of computing, AoI analysis has been carried
out through various tandem queuing models in [24]–[27], and
through a task-specific age metric in [28]. The notion of
sending timely measurements to the cloud has been discussed
in the context of gaming in [29].

In this paper we investigate the tradeoff in [22], [23] in a
cloud computing setting. Different from [22], [23], however,
we consider a generate-at-will model, in which measurement
times are controlled by a scheduler. Each measurement is up-
loaded to a cloud server to undergo some computations before
being sent back as an update. The scheduler has the ability
to preempt a measurement in service if its computation time
is larger than a certain cutoff time and upload a fresher one
instead. After an update is eventually received, the acquisition
of a new measurement may be scheduled after an idle waiting
period. We note that due to preemption, the optimal waiting
policy derived in [3] does not apply in our setting.



Focusing on stationary deterministic policies, in which
cutoff times are constant and waiting times are function of the
instantaneous AoI, we show that optimal waiting has a thresh-
old structure. Specifically, a new measurement is uploaded,
following an update, only if the AoI grows above a certain
threshold that is a function of the cutoff time and the service
time distribution. Such function is given in closed-form. We
also provide a necessary and sufficient condition on the
optimality of zero-wait policies, in which a new measurement
is uploaded just-in-time as an update is received. When zero-
wait is not optimal, we provide a a relatively simple method
of evaluating the long term average AoI through a bisection
search. We then discuss the evaluation of the optimal cutoff
time explicitly under exponential service times. Finally, we
compare the proposed preemption and waiting scheme to three
baselines: no preemption and zero-waiting; no preemption and
optimal waiting, the scheme proposed in [3]; and optimal
preemption and zero-waiting. While it is demonstrated that
our proposed scheme perfoms best, our results also show that,
depending on the system parameters, the optimal preemption
and zero-waiting policy can actually beat the no preemption
and optimal waiting policy. This sheds light on the fact that,
in some situations, working with fresh measurements provides
the highest gains in terms of AoI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system comprised of a sensor, a scheduler,
a transmitter, a cloud computing server and a monitor. The
overall goal is to keep the system’s monitor continuously fed
with fresh status updates pertaining to a physical phenomenon
of interest. Such updates, however, require some heavy-duty
computations on the raw data measurements acquired by the
sensor that need to be carried out by the cloud computing
server. Therefore, in order for a status update to reach the
monitor, the following series of events need to occur. First, the
scheduler decides on when to acquire a new data measurement
by the sensor, and send (upload) it to the server by the
transmitter. The server then undertakes the computations and
feeds back the end result to the monitor in the form of an
update. Hence, the goal is to design a scheduling policy such
that these updates reach the monitor in a timely manner. A
depiction of the system model considered is shown in Fig. 1.
Hereafter, we will refer to data sent to the server by uploads,
and data received from the server by updates.

Uploads are time-stamped so that when updates eventually
reach the monitor, the system knows when their corresponding
measurements were acquired. We use an AoI metric to assess
the timeliness of updates at the monitor. This is defined as

a(t) = t− u(t), (1)

where u(t) is the time stamp of the latest update that has
reached the monitor.

To minimize the AoI, measurements are uploaded to the
cloud server right away after being acquired by the sensor.
We assume that upload transmission times are negligible.
However, each measurement consumes a computational time

Yi−1

Ti

Xi,1 Xi,2 Xi,3

Qi

time

AoI

. . .

. . .

Wi

Yi = Xi,3

Fig. 2. AoI evolution example in the ith epoch. Red lines denote preemptions
and the green line denotes completed service. In this example Ni = 3.

at the cloud server denoted as the service time. Service times
of different measurements are independent and identically
distributed (i.i.d.) according to the distribution of a random
variable X . Depending on the application or the task being
considered, the server may incur a constant delay before the
actual computation starts. Let us denote such time by c ∈ R+,
which is the largest constant such that

X ≥ c a.s. (2)

This is without loss of generality since X ≥ 0 a.s.1 Motivated
by freshness, the scheduler is capable of preempting the
current upload in service if its service time surpasses a certain
cutoff time. Thus, an update will reach the monitor only if its
service ends within the cutoff time. Following a preemption,
a new measurement is taken and uploaded immediately. Fol-
lowing an update delivery, however, the scheduler may wait
for some idle time before uploading a new measurement.

We denote by the ith epoch the time in between the
reception of the (i− 1)th and the ith updates. The ith epoch
starts with age Yi−1 and ends with age Yi.2 A waiting period of
Wi time units occurs at the start of the epoch, through which
the server is idle. After that, the first measurement in the epoch
is acquired and uploaded to the server. Note that, depending on
the preemption policy, there can be multiple uploads during a
single epoch. We denote by Ni the number of uploads during
the ith epoch, with Ni ≥ 1, and Ni−1 denoting the number of
preemptions. Let Xi,j denote the service time of the jth upload
during the ith epoch, 1 ≤ j ≤ Ni. Note that Xi,j’s are i.i.d
∼ X . Now observe that only the Xi,Ni

service time period
concludes with an update sent back to the monitor, and all
other service time periods end with a preemption. Therefore,
the ith epoch ends with age

Yi = Xi,Ni . (3)

We denote by Ti the server’s busy period in the ith epoch,
defined as

Ti , Xi,1 +Xi,2 + · · ·+Xi,Ni . (4)

1One might consider the constant c a necessary overhead to initiate service
at the cloud server for each measurement.

2We assume that the first epoch starts with some given age Y0 at time 0.



Lastly, let Li denote the ith epoch length given by

Li = Wi + Ti. (5)

In Fig. 2, we show an example sample path of how the AoI
may evolve during the ith epoch. From the figure, the area
under the AoI curve during the ith epoch, Qi, is given by

Qi = Yi−1Li +
1

2
L2
i . (6)

We are interested in minimizing the long term average AoI.
It is clear that such quantity depends on the choices of the
cutoff and waiting times that the scheduler makes. Let γi,j
denote the cutoff time after which the jth upload in the ith
epoch is preempted. In other words, given γi,j , the scheduler
preempts the jth upload in the ith epoch if Xi,j grows above
γi,j time units. Clearly,

γi,j ≥ c (7)

must hold ∀i, j in view of (2). The set {γi,j} now constitutes
a cutoff policy, while the set {Wi} denotes a waiting policy.
Let π denote a scheduling policy {Wi, γi,j}. The goal is to
solve the following problem:

min
π

lim sup
n→∞

∑n
i=1 E [Qi]∑n
i=1 E [Li]

, (8)

where E [·] is the expectation operator.

III. STATIONARY DETERMINISTIC POLICIES

Observe that the optimal policy π∗ that solves problem (8)
may be such that the waiting and cutoff times of the ith epoch
depend on the history of events, e.g., AoI evolution, number
of preemptions, service time realizations, before, and during,
the ith epoch. To alleviate the difficulty of tracking all such
history, and motivated by the fact that service times are i.i.d.,
we focus on policies that are characterized by the following
two main features: 1) the waiting time Wi in the ith epoch is
given by a deterministic function of the starting AoI Yi−1,

Wi , w (Yi−1) , (9)

for some function w : R+ → R+; and 2) the cutoff times
{γi,j} in the ith epoch are given by deterministic functions of
the instantaneous AoI,

γi,j , γj (ai,j) , (10)

for some function γj : R+ → [c,∞], ∀j, with ai,j denoting
the AoI just before the jth upload occurs in the ith epoch.

Let Πs denote the set of policies that abide by the above
structure. Note that any π ∈ Πs induces stationary distribu-
tions Qi ∼ Q and Li ∼ L for all epochs. Therefore, under
Πs, problem (8) reduces to

min
π∈Πs

E [Q]

E [L]
. (11)

Problem (11) is an optimization problem over a single epoch.
In the sequel, we drop the index i for convenience. We now
have the following lemma:

Lemma 1 In the optimal solution of problem (11), all cutoff
functions are equivalent. That is,

γj (aj) ≡ γ (aj) , ∀j, (12)

for some γ : R+ → [c,∞].

Proof: Let the optimal cutoff function γ1(·) be given. Note
that the system is idle before the first upload. Thus, γ1(a1)
represents the optimal cutoff time for the AoI to evolve starting
from an idle state at age a1. Now assume that the first upload
is preempted after γ1(a1), whence the age becomes a2 = a1 +
γ1(a1). Observe that the system becomes instantly idle right
before the second upload occurs. Since service times are i.i.d.,
therefore γ2(a2) should also represent the optimal cutoff time
for the AoI to evolve starting from an idle state at age a2. This
shows that γ2(a2) = γ1(a2) must hold, otherwise γ1(·) would
not be optimal. Similar arguments follow for γj(·), j ≥ 3.
Therefore, all cutoff functions are equivalent. �

In the sequel, we further focus on the case in which the
cutoff function γ(·) is a constant. That is, with a slight abuse
of notation,

γ (aj) = γ, ∀j, (13)

for some γ ≥ c. We call this the γ-cutoff policy. Considering
such policy is motivated by the fact that service times are i.i.d.;
it also sets a fixed maximum value of γ on the starting AoI
of each epoch.

Now let the following quantities be (re)defined for the epoch
in consideration: Y is the starting AoI; W = w

(
Y
)

is the
waiting time after it starts; T is the server’s busy period;
Xj is the jth upload service time; N is the total number
of uploads; and Y is the ending AoI. Observe that under a
γ-cutoff policy, given N = n, X1 = · · · = Xn−1 = γ and
Xn = Y ≤ γ a.s. Also observe that the function w(·) is
now restricted to the domain [0, γ], and that Y and Y are
i.i.d ∼ Y . To evaluate the distribution of the age Y , let us
define p , P (X ≤ γ), where P (·) is the probability measure.
Therefore the probability distribution function (PDF) of Y is
given by

fY (y) =

{
fX(y)
p , c ≤ y ≤ γ

0, otherwise
, (14)

where fX(·) denotes the PDF of the service time X .3

We note that problem (11) is structurally different from the
setting considered in [3]. There, an epoch could only consist
of one packet in service until it finishes, and hence the AoI at
the end of the epoch relates to that packet’s acquisition time.
In our setting, owing to the preemption capability, there can be
multiple uploads in a single epoch, and hence the AoI at the
end of the epoch does not necessarily relate to the first upload
time. The optimal waiting policy derived in [3], therefore, does
not apply in our setting.

3We focus on continuous random variables, and assume that γ and the
distribution of X are such that p > 0.



Solving problem (11) is tantamount to characterizing the
optimal waiting function w∗ (·) and the optimal cutoff time
γ∗. In the next sections, we do so sequentially as follows: we
first characterize w∗ (·) for a fixed value of γ, and then we
determine γ∗ for specific service time distributions.

IV. THRESHOLD WAITING POLICY

In this section, we evaluate the optimal waiting policy
for fixed cutoff time γ. The main result is that the optimal
waiting policy exhibits a threshold structure, in which a new
upload occurs only if the AoI grows above a certain threshold
that depends on the service time distribution and the fixed
cutoff time. Toward showing that, we need to evaluate some
expressions first. We start with

P (N = n) = (1− p)n−1p, n ≥ 1, (15)

i.e., N is a geometric random variable with parameter p. It
is useful to note that E [N ] = 1

p and E
[
N2
]

= 2−p
p2 . Using

iterated expectations, we now have

E [T ] =

∞∑
n=1

P (N = n)E [X1 +X2 + · · ·+Xn]

=

∞∑
n=1

P (N = n) ((n− 1)γ + E [Y ])

=

(
1

p
− 1

)
γ + E [Y ] . (16)

Thus, the expected epoch length is given by

E [L] = E
[
w
(
Y
)]

+ E [T ] , (17)

with E [T ] given by (16). Proceeding similarly, we have

E
[
T 2
]

=

∞∑
n=1

P (N = n)E
[
(X1 +X2 + · · ·+Xn)

2
]

=

∞∑
n=1

P (N = n)
(
(n− 1)2γ2 + 2(n− 1)γE [Y ] + E

[
Y 2
])

=

(
2− p
p2
− 2

p
+ 1

)
γ2 + 2

(
1

p
− 1

)
γE [Y ] + E

[
Y 2
]
.

(18)

We now have

E [Q] =E
[
Y
(
w
(
Y
)

+ T
)]

+
1

2
E
[(
w
(
Y
)

+ T
)2]

=E
[
Y w

(
Y
)]

+ E
[
Y
]
E [T ] +

1

2
E
[
w2
(
Y
)]

+ E
[
w
(
Y
)]

E [T ] +
1

2
E
[
T 2
]
, (19)

with E [T ] and E
[
T 2
]

given by (16) and (18), respectively,
and the second equality follows by independence of Y and T .

To find the optimal w∗(·), we need to solve the following
functional optimization problem:

min
w(·)

E [Q]

E [L]

s.t. w(t) ≥ 0, c ≤ t ≤ γ. (20)

To solve the above problem, we follow Dinkelbach’s approach
[30] and introduce the following auxiliary problem for some
fixed parameter λ ≥ 0:

g(λ) , min
w(·)

E [Q]− λE [L]

s.t. w(t) ≥ 0, c ≤ t ≤ γ. (21)

One can show that g(λ) is decreasing in λ, and that the optimal
solution of problem (20) is given by λ∗ that solves g(λ∗) = 0
[30]. By monotonicity of g(·), λ∗ can be found by, e.g., a
bisection search. Focusing on problem (21), we introduce the
following Lagrangian [31]:

L = E [Q]− λE [L]−
∫ γ

c

w(τ)η(τ)dτ, (22)

where η(·) is a Lagrange multiplier. Substituting (17) and (19)
above, and after some rearrangements we get

L =

∫ γ

c

(
(τ + E [T ]− λ)w(τ) +

1

2
w2(τ)

)
fY (τ)dτ

+ E
[
Y
]
E [T ] +

1

2
E
[
T 2
]
− λE [T ]−

∫ γ

c

w(τ)η(τ)dτ.

(23)

Now taking the (functional) derivative of L with respect to
w(t), c ≤ t ≤ γ, and equating to 0 we have

(t+ E [T ]− λ+ w∗(t)) fY (t)− η(t) = 0. (24)

Rearranging the above, we get that

w∗(t) = λ− E [T ]− t+
η(t)

fY (t)
. (25)

We note that there are different methods through which one
can conclude that the optimal waiting policy satisfies (25).
These are discussed in Appendix D for completeness. Now
using complementary slackness [31], (25) further gives

w∗(t) = [λ− E [T ]− t]+ , c ≤ t ≤ γ, (26)

where [·]+ , max(·, 0). This makes the AoI right after the
waiting period, when the first measurement in the epoch gets
uploaded, equal to

t+ w∗(t) = max{t, λ− E [T ]}, (27)

which comes directly from the fact that w∗(t) > 0 if and
only if (iff) λ − E [T ] > t. Observe that the value of t, the
realization of Y , represents the AoI at the beginning of the
epoch. Hence, one could interpret the optimal waiting policy
as a threshold policy, in which the first measurement in the
epoch gets uploaded only if the AoI grows above λ− E [T ].

To have an operational significance, however, the threshold
λ− E [T ] must be positive. The next lemma verifies that this
is indeed the case. The proof is in Appendix A.

Lemma 2 The optimal solution of problem (20), λ∗, satisfies
λ∗ > E [T ].

Observe that while Lemma 2 shows that the threshold



c

λ− E[T ]

λ− E[T ]− c

w∗(t)

tγ1 γ2

Fig. 3. The optimal waiting policy versus time. We show two example choices
of γ in red. For γ1, we always wait before uploading a new measurement
following an update, while for γ2 it depends on the value of t. Lemma 4
shows that the situation of γ1 cannot be optimal.

is positive, a zero-wait policy can still be optimal if the
threshold’s value is no larger than c. The next lemma quantifies
this relationship. The proof is in Appendix B.

Lemma 3 A zero-wait policy, in which w∗(t) = 0, ∀t ∈ [c, γ],
is optimal for problem (20) iff

1
2

(
1
p − 1

)
γ2 + 1

2E
[
Y 2
](

1
p − 1

)
γ + E [Y ]

≤ c. (28)

The optimal AoI under a zero-wait policy is directly given
by substituting w∗(t) = 0, ∀t in (17) and (19) to get

λ∗zw =
E [Q]

E [L]

=
E
[
Y
]
E [T ] + 1

2E
[
T 2
]

E [T ]

= E [Y ] +
1
2E
[
T 2
]

E [T ]
, (29)

where the subscript zw stands for zero-wait.
Now that we established a necessary and sufficient condition

for the optimality of a zero-wait policy in Lemma 3, we
proceed by investigating the case in which the inequality
condition in (28) does not hold. First, an immediate corollary
follows in this case.

Corollary 1 The optimal solution of problem (20), λ∗, satis-
fies λ∗ > E [T ] + c iff (28) does not hold.

Now observe that for γ < λ∗−E [T ], one would always wait
before uploading a new measurement following an update, and
that for γ ≥ λ∗ − E [T ], it depends on the realization of Y
(the value of t) as indicated in (26). We illustrate this behavior
in Fig. 3, and settle this issue in the next lemma by showing
that the situation of γ1 in Fig. 3 cannot be optimal.4 We note
that the result of the lemma holds regardless of whether (28)
holds or not. The proof is in Appendix C.

4We note that Fig. 3 is only explanatory and that in reality the choice of
γ also affects the values of λ∗ and E [T ].

Lemma 4 The optimal solution of problem (20), λ∗, satisfies
γ ≥ λ∗ − E [T ].

In summary, to find the optimal AoI for fixed γ one should
start by examining (28). If it holds, then λ∗ = λ∗zw in (29).
Else, using Corollary 1 and Lemma 4, one has the following
bounds on the optimal AoI:

E [T ] + c < λ∗ ≤ E [T ] + γ, (30)

which facilitates evaluating λ∗ that solves g(λ∗) = 0 using a
bisection search in the interval (E [T ] + c,E [T ] + γ].

Now it remains to choose the best γ that minimizes λ∗. We
discuss this in the next section.

V. OPTIMAL γ-CUTOFF POLICY

It is not direct to get a closed-form expression of the optimal
λ∗ in terms of γ for general service time distributions. In
fact, even for specific distributions this can also be a difficult
task. In this section, our goal is to provide some insight on
how the service time distribution can affect the choice of the
optimal cutoff γ∗. To avoid confusion, let the optimal AoI as a
function of the cutoff value, derived in Section IV, be denoted
by λ∗ (γ), and define λ∗∗ , λ∗ (γ∗). Our approach will be as
follows: we will first fix γ ≥ c and evaluate λ∗ (γ) as discussed
toward the end of Section IV; and then we will evaluate γ∗

that minimizes λ∗ (γ), i.e., achieves λ∗∗, numerically.
We will consider an exponential service time distribution

with c = 0 along with its shifted version with c > 0. Clearly,
the zero-wait policy is not optimal for distributions with c = 0,
as inferred from the inequality (28). In this case, λ∗ (γ) can be
evaluated by a bisection search using the bounds in (30). On
the other hand, for c > 0, λ∗ (γ) is given in closed-form by
λ∗zw in (29) for values of γ that satisfy (28), and is evaluated
by a bisection search using the bounds in (30) otherwise. As
we will see, in some situations evaluating γ∗ will be a direct
consequence of evaluating the bounds in (30).

A. Standard Exponential

Let X ∼ exp(1).5 Since c = 0, we aim at evaluating the
bounds in (30). Toward that, one can directly compute the
following quantities:

p =1− e−γ , (31)

E [Y ] =
1− (1 + γ) e−γ

1− e−γ
. (32)

This directly gives E [T ] = 1, and hence

1 < λ∗ (γ) ≤ 1 + γ, (33)

upon which one can see that γ∗ is infinitesimal. As mentioned
before, this is one instance where evaluating the bounds in (30)
directly gives γ∗. Therefore, in this case, λ∗∗ can be made
arbitrarily close to 1 by choosing γ∗ arbitrarily close to 0.

5One can always choose a time unit such that the service rate is unity.



B. Shifted Exponential

We now focus on the shifted version of the above, in which

fX(x) = e−(x−c), x ≥ c > 0. (34)

Based on this, for γ ≥ c, one can directly compute

p =1− e−(γ−c), (35)

E [Y ] =
1 + c− (1 + γ) e−(γ−c)

1− e−(γ−c) , (36)

E
[
Y 2
]

=
2 + 2c+ c2 −

(
2 + 2γ + γ2

)
e−(γ−c)

1− e−(γ−c) . (37)

Upon substituting all the above in (28) and simplifying, we
get that the zero-wait policy is optimal iff

1− 1

2
c2 ≤ (1 + γ − c) e−(γ−c). (38)

Observe that the above is satisfied for all values of γ ≥ c if
c ≥
√

2. Next, note that (1 + γ − c) e−(γ−c) is decreasing in
γ, and has a maximum value of 1 when γ = c. This shows
that there exists a unique γ̄(c) > c that satisfies the above
inequality with equality if c <

√
2. Thus, the inequality is

satisfied for c <
√

2 iff γ ≤ γ̄(c). Based on the above, the
zero-wait policy is optimal in the following cases: 1) c ≥

√
2,

or 2) c <
√

2 and γ ≤ γ̄(c). On the other hand the zero-wait
policy is not optimal if c <

√
2 and γ > γ̄(c).

In Fig. 4, we plot the optimal cutoff γ∗ and the correspond-
ing AoI λ∗ versus c. We also show γ̄(c) on the figure to
indicate whether zero-wait is optimal for c <

√
2. We see

from the figure that the zero-wait policy is not optimal for
all values of c <

√
2 since γ∗ > γ̄(c); it is only optimal for

c ≥
√

2. Note that γ̄(c) is not defined (and not needed) for
c ≥
√

2, and is therefore not shown on the figure.
In Fig. 5, we compare the optimal policy derived in this

paper to other benchmarks. The first is the vanilla version of
status updating, denoted no cutoff & zero-wait, in which an
upload is never preempted, and a new upload takes place once
an update is received. The second is also a zero-wait policy
yet with optimizing the cutoff value, denoted optimal cutoff &
zero-wait. The third is that of [3], denoted no cutoff & optimal
wait, in which the waiting time is optimized and uploads are
never preempted. We see that our policy beats all benchmarks,
especially for small values of c. Another interesting note is
that for for c / 0.25, optimizing the cutoff turns out to be
better, age-wise, than optimizing the waiting time. Indeed, the
optimal cutoff & zero-wait policy beats the no cutoff & optimal
wait policy of [3] for c / 0.25.

VI. CONCLUSION

A cloud computing status updating system has been con-
sidered, in which computations are carried out on raw data
measurements uploaded to a cloud server, and then returned
in the form of updates to a monitor. Using an AoI metric, it
has been shown that preemption of late updates, whose service
times exceed a certain cutoff time, and replacing them by
fresher measurements can enhance the overall AoI. Further, it

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1

2

3

4

5

6

7

8

Fig. 4. Optimal AoI and cutoff values versus c for exponential service
times. The vertical line denotes the critical value of c =

√
2, after which the

zero-wait policy is optimal.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 5. Comparing the optimal policy to other bench marks versus c for
exponential service times.

has been shown that it is optimal to upload a new measurement
to the server following an update only if the AoI grows above a
certain threshold. Implications of such preemption and waiting
policies have been discussed for exponential service time
distributions, along with comparison with other benchmarks.

APPENDIX

A. Proof of Lemma 2

We show this by contradiction. Assume that λ∗ ≤ E [T ].
Then this would necessarily mean that w∗(t) = 0, ∀t, and
hence (cf. (29))

λ∗ =
E
[
Y
]
E [T ] + 1

2E
[
T 2
]

E [T ]

= E [T ]−
(

1

p
− 1

)
γ +

1
2E
[
T 2
]

E [T ]
, (39)

where (39) follows by (16). Now for λ∗ to be no larger than
E [T ], it must hold that

1
2E
[
T 2
]

E [T ]
≤
(

1

p
− 1

)
γ. (40)



Using (16) and (18), the above is tantamount to having

1

2

(
2− p
p2
− 2

p
+ 1

)
γ2 +

(
1

p
− 1

)
γE [Y ] +

1

2
E
[
Y 2
]

≤
(

1

p
− 1

)2

γ2 +

(
1

p
− 1

)
γE [Y ] , (41)

which, upon some direct algebraic rearrangements, is equiva-
lent to having

1

2

(
1

p
− 1

)
γ2 +

1

2
E
[
Y 2
]
≤ 0, (42)

which is a clear contradiction.

B. Proof of Lemma 3
In view of (26), a zero-wait policy is optimal iff λ∗ ≤

E [T ] + c. Proceeding as in Appendix A, this is tantamount to
adding c to the right hand side (RHS) of (40), or equivalently
adding cE [T ] to the RHSs of (41) and (42). Thus, a zero-wait
policy is optimal iff

1
2

(
1
p − 1

)
γ2 + 1

2E
[
Y 2
]

E [T ]
≤ c. (43)

Substituting (16) above directly gives (28).

C. Proof of Lemma 4
First, if (28) holds, then by Corollary 1 λ∗ ≤ E [T ] + c ≤

E [T ] + γ.
We now show the result of the lemma when (28) does not

hold. We show this by contradiction. Assume that γ < λ∗ −
E [T ]. Under that assumption, it holds by (26) that

w∗(t) = λ− E [T ]− t, c ≤ t ≤ γ, (44)

i.e., w∗(t) > 0, ∀t ∈ [c, γ]. Therefore,

E
[
w
(
Y
)]

=

∫ γ

c

(λ− E [T ]− τ) fY (τ)dτ

=λ− E [T ]− E
[
Y
]
. (45)

Our goal now is to evaluate the value of λ∗ by solving
g(λ∗) = 0, and show that it cannot be larger than E [T ] +
γ, thereby reaching a contradiction. Toward that, we start by
using the above to evaluate

E [L] = E
[
w
(
Y
)]

+ E [T ] = λ− E
[
Y
]
. (46)

Since E [L] ≥ 0, it must hold that the optimal λ∗ satisfies

λ∗ ≥ E
[
Y
]
. (47)

This simple observation will prove to be useful later on.
Next, we have

E
[
Y w

(
Y
)]

=

∫ γ

c

τ (λ− E [T ]− τ)
fY (τ)

p
dτ

= (λ− E [T ])E
[
Y
]
− E

[
Y

2
]
, (48)

and

E
[
w2
(
Y
)]

=

∫ γ

c

(λ− E [T ]− τ)
2 fY (τ)

p
dτ

= (λ− E [T ])
2 − 2 (λ− E [T ])E

[
Y
]

+ E
[
Y

2
]
.

(49)

Substituting (45), (48) and (49) in (19) we get

E [Q] = (λ− E [T ])E
[
Y
]
− E

[
Y

2
]

+ E
[
Y
]
E [T ]

+
1

2
(λ− E [T ])

2 − (λ− E [T ])E
[
Y
]

+
1

2
E
[
Y

2
]

+
(
λ− E [T ]− E

[
Y
])

E [T ] +
1

2
E
[
T 2
]

=− 1

2
E
[
Y

2
]

+
1

2
(λ− E [T ])

2

+ (λ− E [T ])E [T ] +
1

2
E
[
T 2
]

=
1

2
λ2 +

1

2
E
[
T 2
]
− 1

2
(E [T ])

2 − 1

2
E
[
Y

2
]
. (50)

The above can be further simplified by noting that using (16)
and (18) we have

E
[
T 2
]
− (E [T ])

2

=

(
2

p
− 1

)(
1

p
− 1

)
γ2 + 2

(
1

p
− 1

)
γE
[
Y
]

+ E
[
Y

2
]

−
(

1

p
− 1

)2

γ2 − 2

(
1

p
− 1

)
γE
[
Y
]
−
(
E
[
Y
])2

=
1

p

(
1

p
− 1

)
γ2 + E

[
Y

2
]
−
(
E
[
Y
])2

=
1− p
p2

γ2 + E
[
Y

2
]
−
(
E
[
Y
])2

, (51)

which, upon substituting in (50) finally gives

E [Q] =
1

2
λ2 +

1− p
2p2

γ2 − 1

2

(
E
[
Y
])2

. (52)

Now using (46) and (52) we have

g(λ) =E [Q]− λE [L]

=− 1

2
λ2 +

1− p
2p2

γ2 − 1

2

(
E
[
Y
])2

+ λE
[
Y
]
. (53)

Thus, solving g(λ∗) = 0 is equivalent to solving

(λ∗)
2 − 2E

[
Y
]
λ∗ +

(
E
[
Y
])2 − 1− p

p2
γ2 = 0. (54)

The above equation has two solutions, but only one of them
is valid due to the inequality in (47). This is given by

λ∗ = E
[
Y
]

+

√
1− p
p

γ. (55)

It now remains to check whether γ < λ∗ − E [T ] holds.
Using (16), we have

λ∗ − E [T ] =

√
1− p
p

γ − 1− p
p

γ, (56)

which is clearly no larger than γ since the quantity√
1−p−(1−p)

p is no larger than 1 for all values of p. This gives
a contradiction and concludes the proof.



D. Different Methods for Deriving (25)

The method included in the main text to derive (25) involves
a calculus of variations approach mainly through leverag-
ing the Euler-Lagrange equation and equating the functional
derivative to 0 [32]. In this appendix we discuss two alternate
methods to derive (25).

The first method, and quite the simplest one, is by complet-
ing the square in the Lagrangian in (23). Specifically, (23) can
be rewritten equivalently as

L =

∫ γ

c

1

2

(
w(τ) + τ + E [T ]− λ− η(τ)

fY (τ)

)2

fY (τ)dτ

−
∫ γ

c

1

2

(
τ + E [T ]− λ− η(τ)

fY (τ)

)2

fY (τ)dτ

+ E
[
Y
]
E [T ] +

1

2
E
[
T 2
]
− λE [T ] , (57)

which is minimized iff the first integrand is set to 0 ∀τ , which
exactly gives (25).

The second method is by using the result in [32, Ch. 7
Th. 1] to conclude that L (w) is minimized at w∗ only if

∂

∂α
L (w∗ + αh)

∣∣∣∣
α=0

= 0, (58)

for any h(·) : R+ → R+. Taking h(τ) , δ(τ − t), for some
t ∈ [c, γ], where δ(·) is the Dirac delta function, we get that
for fixed α

L(w + αh)=

∫ γ

c

(
(τ + E [T ]− λ)w(τ) +

1

2
w2(τ)

)
fY (τ)dτ

+ α (t+ E [T ]− λ) fY (t)

∫ γ

c

δ(τ − t)dτ

+
1

2

∫ γ

c

(w(τ) + αδ(τ − t))2
fY (τ)dτ

+ E
[
Y
]
E [T ] +

1

2
E
[
T 2
]
− λE [T ]

−
∫ γ

c

w(τ)η(τ)dτ − αη(t)

∫ γ

c

δ(τ − t)dτ.

(59)

Therefore, upon using
∫ γ
c
δ(τ − t)dτ = 1, we have

∂L (w + αh)

∂α
= (t+ E [T ]− λ) fY (t)− η(t)

+

∫ γ

c

(w(τ) + αδ(τ − t)) δ(τ − t)fY (τ)dτ.

(60)

Setting α = 0 in the above and using (58), (25) is directly
reached after rearranging.

REFERENCES

[1] S. K. Kaul, R. D. Yates, and M. Gruteser. Real-time status: How often
should one update? In Proc. IEEE Infocom, March 2012.

[2] C. Kam, S. Kompella, and A. Ephremides. Age of information under
random updates. In Proc. IEEE ISIT, July 2013.

[3] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff.
Update or wait: How to keep your data fresh. IEEE Trans. Inf. Theory,
63(11):7492–7508, November 2017.

[4] R. Talak, S. Karaman, and E. Modiano. Optimizing information
freshness in wireless networks under general interference constraints.
In Proc. MobiHoc, June 2018.

[5] B. Zhou and W. Saad. Optimal sampling and updating for minimizing
age of information in the internet of things. In Proc. IEEE Globecom,
December 2018.

[6] M. Zhang, A. Arafa, J. Huang, and H. V. Poor. How to price fresh data.
In Proc. WiOpt, June 2019.

[7] M. Bastopcu and S. Ulukus. Minimizing age of information with soft
updates. J. Commun. Netw., 21(3):233–243, June 2019.

[8] B. Buyukates, A. Soysal, and S. Ulukus. Age of information in multihop
multicast networks. J. Commun. Netw., 21(3):256–267, June 2019.

[9] X. Wu, J. Yang, and J. Wu. Optimal status update for age of information
minimization with an energy harvesting source. IEEE Trans. Green
Commun. Netw., 2(1):193–204, March 2018.

[10] A. Arafa, J. Yang, S. Ulukus, and H. V. Poor. Age-minimal transmission
for energy harvesting sensors with finite batteries: Online policies. IEEE
Trans. Inf. Theory. To appear. Available Online: arXiv:1806.07271.

[11] B. T. Bacinoglu, Y. Sun, E. Uysal-Biyikoglu, and V. Mutlu. Achieving
the age-energy tradeoff with a finite-battery energy harvesting source.
In Proc. IEEE ISIT, June 2018.

[12] T. Z. Ornee and Y. Sun. Sampling for remote estimation through queues:
Age of information and beyond. In Proc. WiOpt, June 2019.

[13] R. D. Yates, E. Najm, E. Soljanin, and J. Zhong. Timely updates over
an erasure channel. In Proc. IEEE ISIT, June 2017.

[14] A. Arafa, K. Banawan, K. Seddik, and H. V. Poor. On timely channel
coding with hybrid ARQ. In Proc. IEEE Globecom, December 2019.
Available Online: arXiv:1905.03238.

[15] S. K. Kaul, R. D. Yates, and M. Gruteser. Status updates through queues.
In Proc. CISS, March 2012.

[16] M. Costa, M. Codreanu, and A. Ephremides. On the age of information
in status update systems with packet management. IEEE Trans. Inf.
Theory, 62(4):1897–1910, April 2016.

[17] K. Chen and L. Huang. Age-of-information in the presence of error. In
Proc. IEEE ISIT, June 2016.

[18] R. D. Yates and S. K. Kaul. The age of information: Real-time status
updating by multiple sources. IEEE Trans. Inf. Theory, 65(3):1807–
1827, March 2019.

[19] E. Najm and E. Telatar. Status updates in a multi-stream M/G/1/1
preemptive queue. In Proc. IEEE Infocom, April 2018.

[20] A. Soysal and S. Ulukus. Age of information in G/G/1/1 systems: Age
expressions, bounds, special cases, and optimization. Available Online:
arXiv:1905.13743.

[21] S. Farazi, A. G. Klein, and D. R. Brown III. Age of information in
energy harvesting status update systems: When to preempt in service?
In Proc. IEEE ISIT, June 2018.

[22] V. Kavitha abd E. Altman and I. Saha. Controlling packet drops to
improve freshness of information. Available Online: arXiv:1807.09325.

[23] B. Wang, S. Feng, and J. Yang. When to preempt? age of information
minimization under link capacity constraint. J. Commun. Netw., 2019.
To appear.

[24] C. Xu, H. H. Yang, X. Wang, and T. Q. S. Quek. On peak age of
information in data preprocessing enabled IoT networks. In Proc. IEEE
WCNC, April 2019.

[25] Q. Kuang, J. Gong, X. Chen, and X. Ma. Age-of-information for
computation-intensive messages in mobile edge computing. Available
Online: arXiv:1901.01854.

[26] J. Gong, Q. Kuang, X. Chen, and X. Ma. Reducing age-of-information
for computation-intensive messages via packet replacement. Available
Online: arXiv:1901.04654.

[27] P. Zou, O. Ozel, and S. Subramaniam. Trading off computa-
tion with transmission in status update systems. Available Online:
arXiv:1907.00928.

[28] X. Song, X. Qin, Y. Tao, B. Liu, and P. Zhang. Age based task
scheduling and computation offloading in mobile-edge computing sys-
tems. Available Online: arXiv:1905.11570.

[29] R. D. Yates, M. Tavan, Y. Hu, and D. Raychaudhuri. Timely cloud
gaming. In Proc. IEEE Infocom, May 2017.

[30] W. Dinkelbach. On nonlinear fractional programming. Management
Science, 13(7):492–498, 1967.

[31] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[32] D. G. Luenberger. Optimization by Vector Space Methods. John Wiley
& Sons, 1997.


