PCB Design Introduction and Demo

The WILLIAM STATES LEE COLLEGE of ENGINEERING

February 16th 2016 Presented by: Benjamin Rhoades

Agenda

- What is a <u>Printed Circuit Board (PCB)?</u>
- Why do Embedded Engineers need them?
- Basic Terminology Specific to PCBs
- Design Consideration / Constraints
 - Size
 - Cost
 - Power Requirements
- PCB Soldering Techniques
- Pitfalls in PCB Design
- Demo Time!
- Additional Resources (How to get a board made)
- References

What is a Printed Circuit Board (PCB)?

 A printed Circuit Board or PCB is simply a copper etched board that contains traces to varies components

Why Do Embedded Engineers Need a PCB?

 As an embedded engineer you will eventually be "embedded" your designed device into its final location.

- Examples include:
 - Bridge Monitoring
 - Cell Phone

Why Do Embedded Engineers Need a PCB?

Smaller Manufacturing makes for smaller devices

Why Do Embedded Engineers Need a PCB?

Making Items
Smaller!

Terminology (Layers)

 Many boards are multilayer board to accommodate all the components needed for the board to be compact and function in its intended environment

Terminology (Traces / Trace Width)

 Trace width and trace spacingg needs to be calculated depending on your current requirements and size constraints.

Terminology (Part Footprints)

 All THT and SMT parts have an accosted footprint with the device. Most manufactures / distributors will offer a large variety of package sizes for each part.

Terminology (Part Package Size)

 When designing a PCB with tight size constraints you will need to consider the different package size for your parts that you will be using

NOTE that the smaller the package size the harder it is to solder by hand (sometimes impossible)

SURFACE MOUNT PACKAGE SIZES

Package type	Size in inches	Size in mm		
0201	0.024" × 0.012"	0.6 mm × 0.3 mm		
0402	0.04" × 0.02"	1.0 mm × 0.5 mm		
0603	0.063" × 0.031"	1.6 mm × 0.8 mm		
0805	0.08" × 0.05"	2.0 mm × 1.25 mm		
1206	0.126" × 0.063"	3.2 mm × 1.6 mm		
1210	0.12" × 0.10"	3.2 mm × 2.6 mm		
2020	0.20" × 0.20"	5.08 mm × 5.08 mm		
2512	0.25" × 0.12"	6.35 mm × 3.0 mm		

Terminology (Through Hole, Surface Mount)

- There are two basic component types
 - Through Hole
 - Surface Mount
- Depending on your application you may use only SMT, only THT or a combo of the two

(Surface Mount Technology) (Through Hole Technology)

Terminology (Silkscreen & Soldermask)

 To make a board that can be assembled easily you need to have a silkscreen layer to indicate the placement of your parts

Soldermask expansion (a) and silkscreen (b)

Note having a naming convention for naming parts is crucial in a large PCB design

Terminology (Vias)

 Vias are used when you cannot make another trace and thus you need to use a via (we will be using one in the example board in our later demo)

Terminology (Headers / Connectors)

 For most applications you will need to interface your designed PCB with another PCB (called a Daughter Board) or some other peripheral device.

PCB Soldering Techniques (Hand Solder)

 Everyone should be familiar with this technique are you have just had a lab that required it. This is a common type of soldering for quick proof of concept builds that you want to make in house

PCB Soldering Techniques (Wave Soldering)

Lets see a demo of this technique

http://www.pcadfacil.com.br/2009-12-Blog/

PCB Soldering Techniques (Etching)

- A good technique for quick prototyping for proof of concept
- Downfalls is that you have to drill all holes and vias by hand
- Lets watch a quick video on this technique
 https://www.youtube.com/watch?v=N3DGbwVXyN8

Design Considerations (Size)

 The size of the PCB will depend on your end application (Will it be fully embedded?)

Design Constraint (Power)

- After you have designed a PCB you need to consider how you will power your end device.
- Will it be connected to "The Grid" aka infite power or will you be placing the device in a remote location (i.e. finite power source aka A battery)

Design Consideration (RF shielding)

For high frequency applications you will need to employ a technique called shielding (and co-planer waveguides shown here with the SMA connector)

Co-Planer Waveguides

Pitfalls in PCB Design (Units)

- Ensuring that you are in the correct units is imperative in PCB design.
- All manufacturers use different standards for their parts
- Note this will also be designated in the mechanical drawing of the datasheet of any part that you desire to use

Pitfalls in PCB Design (Part Ordering / Backorder)

 To build a board you need to make sure the parts are available (not on backorder)

Product Index > RF/IF and RFID > RF Transceivers > NRF51822-QFAB-R7

All prices are in AUD. Change Currence				
Digi-Key Part Number	1490-1032-1-ND	Price Break	Unit Price	Extended Price
Oliantity Available	Digi-Key Stock: 6,783	1	4.88000	4.88
	Can ship immediately	10	4.39300	43.93
Manufacturer	Nordic Semiconductor ASA	25	3.98640	99.66
Manufacturer Part Number	NRF51822-QFAB-R7	100	3.57970	357.97
		250	3.25428	813.57
Description	IC SOC 2.4GHZ 128K FLASH 48QFN	500	2.84752	1,423.76
Lead Free Status / RoHS Status	Lead free / RoHS Compliant			

Pitfalls in PCB Design (Custom Footprints)

Q: Can you spot the problem?

A: The default footprint does not fit the desired part... thus we must make a custom part!

Design Constraint (Serviceability)

 Will you need to ever service the PCB that you have designed. (This decision is usually left up to the end user or the customer)

A Commodore 64 Logic Board from the late 1980's

DEMO TIME!

Additional Resources

EEVBlog (Wild Aussie man but very good content!)
 Here are three good videos he has on PCB design and manufacturing:

Part # 1 Part # 2 Part # 3 His YouTube Channel

- A really good "Manual" on PCB design, terminology, and all around best practices... Here is the <u>Link</u>
- Here are some of the websites to the local manufactures that was discussed earlier in the presentation...
- <u>M&M Technologies</u> (Indian Trail, NC)
- **GMI Manufacturing** (Mooresville, NC)
- Micro Circuits Diversified (Salisbury, NC)

References

Pictures

- 1. http://bytesdaily.blogspot.com/2015/07/funny-friday.html
- 2. https://upload.wikimedia.org/wikipedia/commons/8/86/Photo-SMDcapacitors.jpg
- 3. http://store.curiousinventor.com/guides/Surface_Mount_Soldering
- 4. https://c2.staticflickr.com/6/5172/5477287563_00fe802818_b.jpg
- 5. http://www.e2save.com/content/Smartphones/inside-out-phones/img/screen-good-foundations-old.png
- 6. http://www.soyacincau.com/wp-content/uploads/2011/11/111130-samsung-galaxy-nexus-teardown.jpg
- 7. http://img.wonderhowto.com/img/00/66/63440148210407/0/from-backpack-transceiver-smartphone-visual-history-mobile-phone.w654.jpg
- 8. http://cdn.gsmarena.com/pics/14/08/samsung-galaxy-s5-mini-hands-on/big.jpg
- 9. http://hollandshielding.com/content/1500/1500_Large_clip_on_active_2.gif
- 10. http://www.comsol.com/model/image/15681/big.png
- 11. http://www.deepcoat.com/images/form-shield-big.jpg
- 12. http://www.pcb.electrosoft-engineering.com/04-articles-custom-system-design-and-pcb/01-printed-circuit-board-concepts/printed-circuit-board-pcb-concepts.html
- 13. http://www.robotroom.com/Laser-Sensor/Laser-Controlled-Circuit-On-Solderless-Breadboard.jpg
- 14. https://sites.google.com/site/doktormusic/swept-sounds-solder-side.jpg
- 15. http://www.instructables.com/files/deriv/FH0/02K7/HHMHZKUR/FH002K7HHMHZKUR.LARGE.jpg
- 16. http://chibi-sakura.org/images/smd_chart_v01.png
- 17. http://connectorterminal.en.ecplaza.net/14.jpg
- 18. http://gct.co/pcb-board-to-board/pcb-connector-overview/images%5Cpcb-connector-overview-2.png
- 19. https://bertsimonovich.files.wordpress.com/2013/04/image66.png
- 20. https://learn.sparkfun.com/tutorials/pcb-basics/whats-a-pcb
- 21. http://www.electronicsandyou.com/blog/wp-content/uploads/2013/06/Hand-Soldering.jpg
- 22. http://smallbotics.solarbotics.net/index_files/pcb%20etch5.jpg
- 23. http://1010.co.uk/images/pcb3.jpg
- 24. http://previews.123rf.com/images/audriusmerfeldas/audriusmerfeldas1506/audriusmerfeldas150600250/41904118-Abstract-photography-of-different-various-PCBs-Stock-Photo.jpg
- 25. http://www.hackmelbourne.org/wiki/media/doc:orders:digikey:addtocart.png
- 26. http://c8.alamy.com/comp/EJKGBM/pile-of-various-batteries-EJKGBM.jpg