
 APPLICATION NOTE

M16C/62
Using the M16C/62 Watchdog Timer

1.0 Abstract
The following article introduces and shows an example of how to set up and use the watchdog timer on the

M16C/62 microcontroller (MCU).

2.0 Introduction
The M16C/62 MCU has a built-in watchdog timer, which can be used for a variety of applications. For most

applications, it is used to recover MCU processing from a program that is out of control. In some cases, it can be

used to preserve processor or firmware status after an application runs out of control.

In this example application, we show you how to set up the watchdog timer, the watchdog interrupt vector, and

how the application uses the watchdog timer. This example was written for the MSV1632-Board with an oscillator

frequency Xin = 16 MHz.

3.0 Watchdog Timer Demo
This section discusses what the watchdog timer demo is and how it works. The key components of the program

are discussed in the next section; a program listing appears later in the article.

3.1 M16C/62 Watchdog Timer

The M16C/62 watchdog timer is a 15-bit counter using BCLK as the clock source. BCLK and the watchdog

prescaler control the length of time before the timer expires. This BCLK-prescaler combination can be used for a

wide range of watchdog timing requirements.

A hardware watchdog interrupt is generated after the timer expires and the program executes the watchdog

interrupt routine. To prevent the watchdog timer from expiring, the Watchdog Timer Start Register (WDTS) must

be written before the timer underflows. For example, if the watchdog timer is set up for 2s, the WDTS register

must be written to within 2s so that the timer does not expire.

For this demo, the timer was set up for 2.097s.

3.2 Watchdog Interrupt Routine

After the watchdog timer expires, a hardware interrupt is generated. An interrupt service routine must be in place

for the program to execute when this interrupt occurs. This interrupt routine can be used to store program

parameters or register status in RAM. As an added fail-safe feature for your application, it may be used to reset

the M16C/62 MCU (the M16C/62 has a built-in software reset).

In this demo, the 3 LEDs are turned on and the program loops inside the watchdog service routine. The only way

to exit from the routine is by pressing the reset switch, SW5.

REU05B0026-0100Z June 2003 Page 1 of 11

M16C/62
Using the M16C/62 Watchdog Timer

3.3 The Demo Application

The demo application uses two timers (Timer A0, A1), the AD converter using AN0, and I/O ports. Timer A0’s

output is used as the clock source of Timer A1. Timer A1 is preloaded with the ADC value of the R24

potentiometer and is then used to set up how fast the LED’s LED2–4 blink and the WDTS register is written to.

The I/O ports are used to turn on or off the LED’s LED2–4 and to read the status of the switches SW1–SW4.

By adjusting R24 from full clockwise (CW) position to full counterclockwise position (CCW), the period of when

WDTS is written varies also. The LEDs will be blinking fast at full CW and very slow (about 2.5s interval) at full

CCW. At full CCW, the time period of when WDTS is written is greater than 2.097s, which will then trigger a

watchdog interrupt. However, still at full CCW, if any of the switches is pressed within 2s, the watchdog timer is

restarted and thus, a watchdog timer interrupt is not generated.

4.0 Watchdog Timer Setup
A watchdog timer interrupts after a certain time has expired. As mentioned earlier, the M16C/62 watchdog timer

can be set up for various time periods by configuring the BCLK and watchdog prescaler. The timer period can be

calculated from the following equation. These parameters will be discussed later in this section. For more

detailed information, see the M16C/62 datasheet.

Watchdog Timer Period = (Prescaler x Timer Count) / BCLK

BCLK

Write to the watchdog timer
start register
(address 000E16)

RESET

Watchdog timer
interrupt request

Watchdog timer

Set to
“7FFF16”

1/128

1/16

“CM07 = 0”
“WDC7 = 1”

“CM07 = 0”
“WDC7 = 0”

“CM07 = 1”

HOLD

1/2

Prescaler

Figure 1 Block Diagram of Watchdog Timer

4.1 BCLK

The clock source of the timer is BCLK, which is the CPU clock for the M16C/62. The value of BCLK can be

modified by changing the oscillator circuits of the device or by changing setting in the clock control registers (see

“Clock Control” from the datasheet). BCLK can use Xin (f1), XCin (fc), or clock divider output (f2, f4, f8, f16, f32).

Modifying the BCLK will then modify the frequency the timer counts down and program operating speed.

For this demo, the clock divider output f8 was used as the BCLK. With an Xin frequency of 16 MHz, BCLK

frequency is 2 MHz.

REU05B0026-0100Z June 2003 Page 2 of 11

M16C/62
Using the M16C/62 Watchdog Timer

4.2 Prescaler

Besides BCLK, the other parameter that can adjust the timer is the watchdog prescaler. The prescaler further

divides BCLK for larger time periods. The prescaler that can be used differs depending on whether Xin or XCin is

used as the BCLK source. If Xin is used, the prescaler can be either div 16 or div 128. If XCin is used, the

prescaler is fixed to div 2.

For this demo, the prescaler used is div 128 since our BCLK source is Xin.

4.3 Timer Count

Besides BCLK and the prescaler, the other parameter is the timer count. This parameter, however, cannot be

modified. Regardless of what value is written to the WDTS register, the default value of 07FFFh is loaded into the

timer.

Watchdog timer control register

Symbol Address When reset
 WDC 000F16 000XXXXX2

FunctionBit symbol WR

b7 b6 b5 b4 b3 b2 b1 b0

High-order bit of watchdog timer

WDC7

Bit name

Prescaler select bit 0 : Divided by 16
1 : Divided by 128

Reserved bit

Reserved bit M ust always be set to “0”

Must always be set to “0”

00

Figure 2 Watchdog Timer Control and Start Registers

5.0 Reference

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

support_apl@renesas.com

Data Sheet

• M16C/62 datasheets, 62aeds.pdf

REU05B0026-0100Z June 2003 Page 3 of 11

M16C/62
Using the M16C/62 Watchdog Timer

User’s Manual

• M16C/62 User’s Manual, 62eum.pdf

• M16C/60 and M16C/20 C Language Programming Manual, 6020EC.pdf

• Application Note: Writing Interrupt Handlers in C for the M16C

• NC30 Ver. 4.0 User’s Manual, NC30UE.PDF

6.0 Software Code
The example program was written to run on the MSV1632-62 Board but could be modified to implement in a user

application. The program is written in C (Renesas’ NC30 Compiler).

/***
*
* File Name: main_wdt.c
*
* Content: This program demonstrates how to setup and use the watchdog
* function of an MCU when the firmware program malfunctions

*
* The watchdog is setup to generate an interrupt after 2.097s.
* To prevent the watchdog interrupt from occuring, either of the
* following conditions listed below must be true:
* 1. at least one of the switches (SW1 - SW4) is pressed every 2s; or,
* 2. R24 should NOT be in full CCW position. The position of R24 is
* read by the ADC and used to vary Timer 1 period. R24 full CW to
* full CCW corresponds to 8.23ms to 2.0986s. At a value of
* greater than 254, the WDI will occur.
*
*
* This program was written to run on the MSV1632-62 SKP Board.
*
* Copyright 2003 Renesas Technology Corporation, Inc.
* All rights reserved
*
*===
* $Log:$
===/

#include "sfr62.h"
#pragma INTERRUPT /B TimerA1_ISR

#define sw1 p8_2
#define sw2 p8_3
#define sw3 p8_4
#define sw4 p9_7

#define red_led p7_2
#define yellow_led p7_4
#define green_led p8_0

REU05B0026-0100Z June 2003 Page 4 of 11

M16C/62
Using the M16C/62 Watchdog Timer

void WD_Init (void); //routine that initializes watchdog operations
void WD_Loop_ISR(void); //routine when a watchdog interrupt is
 // generated (timer expires)

static int value;
static unsigned int out1;

/***
Name: main
Parameters:
Returns:
Description: Main program loop and initialization

***/
main() {

 WD_Init(); // initialize watchdog block

 pd7_2 = 0x1; // Change port 7 to all outputs (connected to LEDs)
 pd7_4 = 0x1;
 pd8_0 = 0x1;

 red_led = 0x1; // turn on LEDs
 green_led = 0x1;
 yellow_led = 0x1;

 // ********** USE A/D FOR READING POT. VALUE ***********
 // Set up A/D register for AN0
 // - AN0 selected, One shot mode, Software trigger, Frequency /4

 adcon0 = 0x00;
 adcon1 = 0x20; // Set up 8 bit conversion & Vref connected
 adcon2 = 0x01; // Set up sample and hold

 // ****** USE TIMERS FOR SETTING BLINK RATE ********
 // Timer A0 mode register
 // - Timer mode, no pulse output,not using Gate function,count source is
 // f32 (500KHz)

 ta0mr = 0x80;
 ta0ud = 0; // Set timer for down count
 ta0 = 0x1013; // Preload Timer A0 to overflow every
 // 10ms (ta0 = 10ms*500KHz)
 // 10ms x 255 (2.55s) > 2.097s watchdog setting
 // Timer A1 mode register
 // -event counter mode (Timer A0 overflow, count on falling edge)

REU05B0026-0100Z June 2003 Page 5 of 11

M16C/62
Using the M16C/62 Watchdog Timer

 ta1mr = 0x01;
 ta1tgh = 1;
 ta1tgl = 0;
 ta1ud = 0; // Set timer for down count
 ta1 = 0; // Preload Timer A1

 ta1ic = 0x05; // TA1 Interrupt enabled, Level 5

 ta0s = 1; // Start the timers
 ta1s = 1;

 asm("FSET I"); // Turn on interrupts

 // ************** PROGRAM LOOP ***********************
 while(1) {

 adst = 1; // Start A2D conversion
 while(adst == 1); // wait for A/D conversion start bit to return
 // to 0
 value = ad0; // read value from A/D register and preload
 // TimerA1,
 ta1 = value; // this value is used to vary the blink rate

 if(sw1 == 0 ||sw2 == 0||sw3 == 0||sw4 == 0){// check if any of the
 // switches is pressed
 green_led = 1;
 wdts = 0; // restart watchdog timer
 }
 }
}
 /***
Name: WD_Init
Parameters:
Returns:
Description: Initializes variables needed for watchdog operations.
 This demo is written for the MSV1632 Board running at Xin =
 16MHz. BCLK, which is the clock source of the watchdog
 block, is configured to run at 2MHz.

 With the setup shown here, the watchdog register must be
 written to within 2 seconds or a watchdog interrupt will occur.

***/

REU05B0026-0100Z June 2003 Page 6 of 11

M16C/62
Using the M16C/62 Watchdog Timer

void WD_Init(void){

 cm06 = 1; // BCLK = 2MHz (Xin div by 8, default)

 wdc7 = 1; // prescaler is div by 128
 // Watchdog Timer Period = 128 x 32768 / 2MHz
 // = 2.097s
 wdts = 0; // start watchdog timer by writing any value to
 // wdts register (value always reset to 0x7fff when
 // written to)
}

/***
Name: WD_Loop_ISR
Parameters:
Returns:
Description: When a watchdog interrupt occurs, the program gets stuck here
 so we know the watchdog timer expired. All LED's will be ON.

 For some applications, you can use this ISR to save some values
 in RAM or other processes for debug purposes.

***/
void WD_Loop_ISR (void){

 while (1){
 red_led = 1; // turn on all LEDs
 yellow_led = 1;
 green_led = 1;
 }
}

/***
Name: TimerA1_ISR
Parameters:
Returns:
Description: TIMER INTERRUPT ROUTINE - This routine turns on one LED at a
 time and shifts that LED left to right (D3 to D6). The LEDs are
 connected to the upper byte of P7 and we don't want to change the
 data on the lower byte.

 If none of the switches are pressed, the watchdog timer is restarted
 every time a Timer 1 interrupt occurs.If the period of Timer 1 exceeds
 2.097s (R24 potentiometer in almost full CCW), watchdog interrupt
 will occur.

***/

REU05B0026-0100Z June 2003 Page 7 of 11

M16C/62
Using the M16C/62 Watchdog Timer

void TimerA1_ISR(void) {

 static unsigned int out1;

 wdts = 0; // restart Watchdog Timer

 ++out1;
 if (out1 > 3)
 out1 = 0;
 switch (out1){
 case 1:
 red_led = 1;
 yellow_led = 0;
 green_led = 0;
 break;
 case 2:
 red_led = 0;
 yellow_led = 1;
 green_led = 0;
 break;
 case 3:
 red_led = 0;
 yellow_led = 0;
 green_led = 1;
 break;
 default:
 red_led = 0;
 yellow_led = 0;
 green_led = 0;
 }
 }

In order for this program to run properly, the Watchdog Timer and TimerA1 interrupt vector needs to point to the

service routines for those interrupts. The interrupt vector table information is included in the startup file

"sect30.inc". Insert the function label "TimerA1_ISR" and the function label " WD_Loop_ISR WD_Loop_ISR"

into the interrupt vector table locations as shown below.

;***
;
; sect30.inc : Customized section and macro definitions for the M30624
; (M16C/62) microcontroller using the NC30 compiler.
;
; Description : This file is specific to the M30624 microcontroller and adapted
; for use with the MSV1632 Starter Kit. UART1 interrupt
; vectors are used for the Starter Kit debugger.
;
;

REU05B0026-0100Z June 2003 Page 8 of 11

M16C/62
Using the M16C/62 Watchdog Timer

; Copyright 2003 Renesas Technology Corporation, Inc.
; All Rights Reserved.
;
;
;
; $Id:
;
;**

;---
; variable vector section
; For proper interrupt operation, replace "dummy_int" with the assembler
; label or absolute address of the interrupt service routine
;---
 .section vector ; variable vector table
 .org VECTOR_ADR

 .lword dummy_int ; BRK (vector 0)
 .org (VECTOR_ADR+16)
 .lword dummy_int ; int3(for user)(vector 4)
 .lword dummy_int ; timerB5(for user)(vector 5)
 .lword dummy_int ; timerB4(for user)(vector 6)
 .lword dummy_int ; timerB3(for user)(vector 7)
 .lword dummy_int ; si/o4 /int5(for user)(vector 8)
 .lword dummy_int ; si/o3 /int4(for user)(vector 9)
 .lword dummy_int ; Bus collision detection(for user)(v10)
 .lword dummy_int ; DMA0(for user)(vector 11)
 .lword dummy_int ; DMA1(for user)(vector 12)
 .lword dummy_int ; Key input interrupt(for user)(vect 14)
 .lword dummy_int ; A-D(for user)(vector 14)
 .lword dummy_int ; uart2 transmit(for user)(vector 15)
 .lword dummy_int ; uart2 receive(for user)(vector 16)
 .lword dummy_int ; uart0 transmit(for user)(vector 17)
 .lword dummy_int ; uart0 receive(for user)(vector 18)
 .lword 0ff900h ; uart1 transmit-used by ROM Monitor(vector 19)
 .lword 0ff900h ; uart1 receive-used by ROM Monitor(vector 20)

 .lword dummy_int ; timer A0(for user)(vector 21)
 .glb _TimerA1_ISR;
.lword _TimerA1_ISR; ; timer A1(for user)(vector 22)
 .lword dummy_int ; timer A2(for user)(vector 23)
 .lword dummy_int ; timer A3(for user)(vector 24)
 .lword dummy_int ; timer A4(for user)(vector 25)

 .lword dummy_int ; timer B0(for user)(vector 26)
 .lword dummy_int ; timer B1(for user)(vector 27)
 .lword dummy_int ; timer B2(for user)(vector 28)
 .lword dummy_int ; int0 (for user)(vector 29)
 .lword dummy_int ; int1 (for user)(vector 30)
 .lword dummy_int ; int2 (for user)(vector 31)

 .lword dummy_int ; vector 32 (for user or MR30)
 .lword dummy_int ; vector 33 (for user or MR30)
 .lword dummy_int ; vector 34 (for user or MR30)

REU05B0026-0100Z June 2003 Page 9 of 11

M16C/62
Using the M16C/62 Watchdog Timer

 .lword dummy_int ; vector 35 (for user or MR30)
 .lword dummy_int ; vector 36 (for user or MR30)
 .lword dummy_int ; vector 37 (for user or MR30)
 .lword dummy_int ; vector 38 (for user or MR30)
 .lword dummy_int ; vector 39 (for user or MR30)
 .lword dummy_int ; vector 40 (for user or MR30)
 .lword dummy_int ; vector 41 (for user or MR30)
 .lword dummy_int ; vector 42 (for user or MR30)
 .lword dummy_int ; vector 43 (for user or MR30)
 .lword dummy_int ; vector 44 (for user or MR30)
 .lword dummy_int ; vector 45 (for user or MR30)
 .lword dummy_int ; vector 46 (for user or MR30)
 .lword dummy_int ; vector 47 (for user or MR30)
 ;
;===
; fixed vector section
;---
 .section fvector ; fixed vector table
;===
; special page definition
;---
; Set-up special page vector table. Calls the macro "SPECIAL" to put
; the jump addresses of functions defined as special page into the
; special page vector table. Uncomment the line below that corresponds
; to the C function defined using the "#pragma SPECIAL" directive. See
; the M16C Software Manual and the NC30 manual for more information
; on special page vectors.
;---
; SPECIAL 255 ; example use
; SPECIAL 254
; SPECIAL 253
; :
; etc
; SPECIAL 24
; SPECIAL 23
; SPECIAL 22
; SPECIAL 21
; SPECIAL 20
; SPECIAL 19
; SPECIAL 18
;

REU05B0026-0100Z June 2003 Page 10 of 11

M16C/62
Using the M16C/62 Watchdog Timer

;===
; fixed vector section. The 7 or'ed values below (commented out) are for
; specifying the ID codes for serial I/O flash programming
; (highest 8 bits of the vectors). See data sheets for
; more information. Current setting = all zeros by default.
; The highest 8 bits of the reset vector is the parallel protection
; 'register'. Caution! Setting these codes could result in loss of
; all flash programming. See M30624 data sheets before operating
; on these values.
;---
 .org 0fffdch
UDI:
 .lword dummy_int ; | 0ff000000h
OVER_FLOW:
 .lword dummy_int ; | 0ff000000h
BRKI:
 .lword dummy_int
ADDRESS_MATCH:
 .lword dummy_int ; | 0ff000000h
SINGLE_STEP:
 .lword dummy_int ; | 0ff000000h
WDT:
 .glb _ WD_Loop_ISR WD_Loop_ISR;
.lword _ WD_Loop_ISR WD_Loop_ISR dummy_int ;
DBC:
 .lword dummy_int ; | 0ff000000h
NMI:
 .lword dummy_int ; | 0ff000000h
RESET:
 .lword start ; | 0ff000000h
;

REU05B0026-0100Z June 2003 Page 11 of 11

Keep safety first in your circuit designs!

• Renesas Technology Corporation puts the maximum effort into making semiconductor products

better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

• These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

• Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms,
or circuit application examples contained in these materials.

• All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

• When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

• Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake. Please
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor when considering the use of a product contained herein for any specific purposes, such as
apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

	Abstract
	Introduction
	Watchdog Timer Demo
	Watchdog Timer Setup
	Reference
	Software Code

