
 APPLICATION NOTE

M16C/62
Using the M16C/62 UART for SPI1 Communication

1.0 Abstract
This article presents an example that uses a UART on an M30624 MCU as an SPI-compatible master device.

SPI (Serial Peripheral Interface) is a synchronous communications format used by many peripheral devices.

Although multiple slave devices may be connected to a single SPI master, for clarity, the circuit in this example

has only one slave device.

As in any application, please ensure that you have an adequate understanding of the external device before

connecting it to the M16C/62’s I/O pins.

2.0 Introduction
The Renesas M30624 has three independent UARTs, each of which provides full duplex, serial communication

with external devices, including other MCUs. “USART” would be more appropriate because communication may

be synchronous or asynchronous. Each mode supports several data formats. Format settings in asynchronous

mode include 7, 8, or 9 bits per character; even, odd, or no parity; and 1 or 2 stop bits. In synchronous mode,

transfers are always 8 bits per character with selectable msb- or lsb-first and clock polarity settings. A UART in

synchronous mode may serve as the master SPI device in a single-master configuration, depending on the

requirements of the slave device(s).

More information about synchronous mode operation of the UART may be found in section 2.4,

“Clock-Synchronous Serial I/O,” of revision C.4 of “M16C/62 Group: User’s Manual.

3.0 Contents
The M16C/62 UART was designed to be flexible and easy to use. The SPI protocol is a superset of its

synchronous mode features. Thus, there are some limitations on its compatibility.

3.1 SPI Formats

A basic SPI interconnection consists of four wires:

• SDI, serial data input

• SDO, serial data output

• SCK, serial clock

• SS´, slave select (active low)

REU05B0019-0100Z June 2003 Page 1 of 11

1 SPI is a trademark of Motorola, Inc.

M16C/62
Using the M16C/62 UART for SPI Communication

The directions of SDI and SDO are relative to the master device. The master generates SCK and a separate SS´

to each slave. SS´ is an active-low enable. Because SCK may idle high or low and the transmitters may be

clocked by its rising or falling edges, the four possibilities for the data-to-clock relationship are shown in . Figure 1

Figure 1 SPI Clocking Formats (msb-first data shown)

SS’

D7 D6 D5 D4 D3 D2 D1 D0SDI/SD

SCK

CPOL=0
CPHA=0

CPOL=1
CPHA=1

CPOL=0
CPHA=1

CPOL=1
CPHA=0

0

1

2

3

Mode

The data may be transferred lsb-first, instead of msb-first. CPOL and CPHA refer to settings for the clock polarity

and clock phase, respectively, as described in the SPI protocol. Some manufacturers of peripheral ICs use a

shorthand “(CPOL,CPHA)” notation, as in “(0,0)”, while others refer to supporting a particular “SPI Mode,” as in

“SPI Mode 0.”

3.2 An M16C/62 MCU as an SPI Master

The basic SPI interconnection described above is implemented as follows:

• RXDi serves directly as SDI.

• TXDi serves directly as SDO.

• SCLKi serves directly as SCK.

• An output port serves as SS´.

where i = 0, 1, or 2, depending on the UART selected. The example circuit in this article uses UART2 for

communication and P73 as SS´. P73 must be toggled by software for proper operation.

Bit 7 of UiC0, UFORM, selects lsb-first (0) or msb-first (1) transfers. The polarity of SCLKi is selectable via bit 6

of UiC0, CKPOL; note, however, the sense of CKPOL is inverted from that of the protocol’s CPOL. The clock

phase cannot be altered and is always 1. Thus, CKPOL=0 selects (1,1) or SPI Mode 3, while CKPOL=1 selects

(0,1) or SPI Mode 1.

REU05B0019-0100Z June 2003 Page 2 of 11

M16C/62
Using the M16C/62 UART for SPI Communication

3.3 25C160 EEPROM

The 25C160 is a 2Kx8 EEPROM with an SPI interface. Several manufacturers offer this EEPROM, including

Atmel (AT25160 (-2.7)), Fairchild (NM25C160), Microchip (25AA160/25C160/25LC160), ST Microelectronics

(M95160 (-W, -S)), and Xicor (X25160). A 25C160 by Microchip was used in developing the example in this

article.

Communication is half-duplex only, msb-first data, and SPI Mode 0 or 3. The chip contains a small state machine

and a status/control register. There are six instructions for controlling the state machine: set or reset the write

enable latch in the status register; read or write the status register; and read from or write to the memory array.

Reads from the array may begin at any address and be of any number of consecutive bytes. Writes to the array

may begin at any address but must be of 16 bytes or less, all of which must reside in the same memory “page”

(that is, address bits 11-4 do not change).

Each operation begins with the MCU driving the CS´ pin low and then transmitting the one-byte instruction. The

MCU transmits a second byte if writing to the status register or receives a byte if reading from it, or transmits two

bytes of address if accessing the array. If writing to the array, the data are transmitted, or, if reading from the

array, the desired number of bytes is received. Each operation ends with CS´ driven high. Following a write to

the array or to the status register, the Write-In-Progress bit of the status register is 1 while the write operation is

being performed.

More details about the device are available from the respective manufacturer.

3.4 Implementation

For this example, the interconnection of MCU and EEPROM is shown in . Omitted are such details as

power supplies, Xin crystal, reset generation, and so forth. The 2.4KΩ pull-up resistor is required since P70 is an

open-drain driver; it would not be needed if UART0 or UART1 were used instead of UART2. No pull-up is

required on P71 since it is an input in this circuit.

Figure 2

Figure 2 Circuit Fragment

25C160
P70/TXD

P73/CHIP_SELE
P72/CLK

M30624

P71/RXD

+5V

Vc
HOLD’

Vs

S
S
SCK
CS

WP

+5V

2.4K

REU05B0019-0100Z June 2003 Page 3 of 11

M16C/62
Using the M16C/62 UART for SPI Communication

Development of this example used an MSV1632 Starter Kit with an M30624 MCU operating at 5 volts and 16

MHz. The interaction between the program and the EEPROM is entirely request/response, so the UART is

polled instead of interrupt- or DMA-driven. Although the program could be made slightly more efficient by

reading the EEPROM’s status byte at the end of each interaction instead of calling EE_read_status(), the small

delays between routines allow the EEPROM’s timing requirements to be met transparently.

Despite having SPI Mode 3 in common, the handshaking between the M16C/62 UART and the 25C160

EEPROM is not as seamless as its datasheet might imply: At the end of each interaction, the SCK input must be

driven low when CS´ transitions high. When the UART is idle, CKPOL (bit 6 of register U2C0) gives direct control

of the CLK2 output. As mentioned above, CKPOL selects compatibility between SPI Modes 1 and 3, so it must

be returned to the proper setting after each direct-control use

Caution: When using CKPOL for direct control of the CLK pin, disable the UART’s transmitter and receiver

before altering CKPOL to avoid unpredictable behavior. Also, check that the direct control of CLK will not

adversely affect the operation of devices connected to this pin.

When the UART is in synchronous mode, reception is simultaneous with transmission, and the CLK output is

active only while transmitting. To receive a character, then, a character must be transmitted, even if it will be

ignored by the slave device(s). The program sends hex FF, which is not in the 25C160’s command set, as this

throw-away “dummy” character.

Note: Each M16C/62 UART supports Continuous Receive Mode in which the CLK output is triggered by reading the
receive buffer as well as by writing the transmit buffer; because Continuous Receive Mode is not required for
SPI-compatible operation, it is not used in this example.

3.5 Operation

Figure 3 shows an oscilloscope capture of the M30624 reading the 25C160’s status register: The M30624 sent

the command 0x05 and the 25C160 returned 0x72. The four traces show, from the top, P73 (CHIP_SELECT),

P72/CLK2, P70/TXD2, and P71/RXD2. The relationship of TXD2 and RXD2 to CLK2 verifies SPI Mode 3

compatibility. The rising edges of TXD2 are slightly curved because P70 is an open-drain output with an external

pull-up resistor, but the rise time is fast enough to meet the setup time of the 25C160. Although RXD2 shows a

small spike when the 25C160 begins driving, near the center of the trace, its value is stable well before the rising

edge of CLK2. At the right-hand side of the trace, the result of controlling CLK2 via CKPOL is seen.

REU05B0019-0100Z June 2003 Page 4 of 11

M16C/62
Using the M16C/62 UART for SPI Communication

Figure 3 Oscilloscope Capture of an MCU-EEPROM Interaction

4.0 Conclusion
The M16C/62 microcontroller may be used as an SPI-compatible master device for communicating with slave

peripheral devices. In synchronous mode, the MCU’s UARTs support SPI Modes 1 and 3. As in any multichip

application, the designer must satisfy the handshaking and timing requirements of the peripheral devices. The

versatility of the M16C/62 assists in these interfacing tasks.

5.0 Reference

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

support_apl@renesas.com

Data Sheets

• M16C/62 datasheets, 62aeds.pdf

REU05B0019-0100Z June 2003 Page 5 of 11

M16C/62
Using the M16C/62 UART for SPI Communication

6.0 Software Code

The example program was written to run on the MSV1632 Starter Kit but could be modified to implement in a

user application. The program is written in C (the NC30 Compiler), with assembler used for the code executing

out of RAM.

//**
//
// Name: spi.c
//
// Description: M16C/62 SPI interface example
//
// This program uses UART2 in clock-synchronous mode to
// communicate with an SPI peripheral, a 25C160 2Kx8 EEPROM
// from Xicor or Microchip. UART2 is polled in this program.
// The EEPROM is wired as follows:
// pin 1 CS' P73
// 2 SO P70/TXD2
// 3 WP' Vcc
// 4 Vss Vss
// 5 SI P71/RXD2
// 6 SCK P72/CLK2
// 7 HOLD' Vcc
// 8 Vcc Vcc
//
// After initialization, this program
// 1) performs several access tests
// 2) reads the entire contents of the EEPROM into RAM
// 3) alters a portion of the RAM buffer's contents
// 4) writes a portion of the altered values to the EEPROM
// 5) re-reads the EEPROM into RAM (buffer should show no
// changes)
//
// Author: Kevin Clem
//
// Copyright 2003 Renesas Technology Corporation, Inc.
//
// All rights reserved
//
//==
// $Log:$
//**

#include "sfr62.h"
#include "25C160.h"

#define CHIP_SELECT p7_3

char RAM_array[EEPROM_SIZE];

REU05B0019-0100Z June 2003 Page 6 of 11

M16C/62
Using the M16C/62 UART for SPI Communication

//---
// UART support routines
//

void uart_tx(register char c)
{
 while(!ti_u2c1); // wait for tx buffer to be empty
 u2tbl = c; // write the character to tx buffer
}

char uart_rx(void)
{
 uart_tx(0xFF); // dummy tx to force a rx
 while(!ri_u2c1); // wait for rx buffer to be full
 return(u2rbl); // return the character from rx buffer
}

void uart_enable_rx(void)
{
 while(!ti_u2c1); // wait for tx buffer to empty
 while(!txept_u2c0); // wait for tx register to empty
 re_u2c1 = 1; // enable rx
}

void uart_begin(register char cmd)
{
 CHIP_SELECT = 0; // enable EEPROM
 te_u2c1 = 1; // enable tx
 uart_tx(cmd); // send the command
}
void uart_end(void)
{
 while(!ti_u2c1); // wait for tx buffer to empty
 while(!txept_u2c0); // wait for tx register to empty
 re_u2c1 = 0; // disable rx
 te_u2c1 = 0; // disable tx
 ckpol_u2c0 = 1; // drive CLK2 low
 CHIP_SELECT = 1; // bring CS' high
 ckpol_u2c0 = 0; // let CLK2 idle high
}

//---
// EEPROM support routines
//

char EE_read_status(void) // read status register
{

REU05B0019-0100Z June 2003 Page 7 of 11

M16C/62
Using the M16C/62 UART for SPI Communication

 char status;

 uart_begin(RDSR);
 uart_enable_rx();
 status = uart_rx();
 uart_end();
 return(status);
}

void EE_write_status(char new_status) // write to status reg (clears WEL)
{
 uart_begin(WRSR);
 uart_tx(new_status);
 uart_end();
}

void EE_write_enable(void) // set WEL
{
 uart_begin(WREN);
 uart_end();
}

void EE_write_disable(void) // clear WEL
{
 uart_begin(WRDI);
 uart_end();
}

char EE_read(unsigned int addr, unsigned int count)
{
 if(addr >= EEPROM_SIZE || count == 0 || count > EEPROM_SIZE)
 return(1);

 uart_begin(READ);
 uart_tx(addr >> 8); // send address MSB
 uart_tx(addr & 0xFF); // and LSB
 uart_enable_rx();

}

REU05B0019-0100Z June 2003 Page 8 of 11

M16C/62
Using the M16C/62 UART for SPI Communication

do {
 if((addr & 0x000F) == 0) {
 uart_end();
 while(EE_read_status() & 0x01); // check WIP
 EE_write_enable(); // set WEL
 uart_begin(WRITE);
 uart_tx(addr >> 8); // send address MSB
 uart_tx(addr & 0xFF); // and LSB
 }
 uart_tx(RAM_array[addr]);
 } while(--count > 0 && ++addr < EEPROM_SIZE);
 uart_end();
 while(EE_read_status() & 0x01); // check WIP
 return(0);
}

//---
// initialization & main routines
//

void initialize(void)
{
 // system clock initialization
 prc0 = 1; // unprotect cm1&0
 cm0 = 0x18; // div-by-1 mode
 prc0 = 0; // protect all

 // GPIOs
 pur2 = pur1 = pur0 = 0xFF; // enable pull-ups on all ports
 p7 = 0xFF; // P73(CHIP_SELECT) & P72/CLK2 are high
 pd7 = 0x0D; // P73, P72/CLK2, P70/TXD2 are outputs

 // configure UART2 to be compatible with SPI Mode 3
 u2smr2 = 0x00; // not I2C mode
 u2smr = 0x00; // ditto
 u2mr = 0x01; // internal clock, synchronous mode
 u2c0 = 0x90; // msb first, CKPOL=0, no CTS/RTS, clock is f1
 u2c1 = 0x00; // no data reverse, rx & tx disabled
 u2brg = 0x05; // 16 MHz / 3 MHz - 1 (round up)
}

void far main(void)
{
 int i;

 initialize(); // initialize system clock, ports, & UART2

 i = EE_read_status(); // indeterminate, i = 'bx111_xxx0

 EE_write_enable(); // set WEL
 i = EE_read_status(); // indeterminate, i = 'bx111_xx10

 EE_write_status(0xFF); // clears WEL
 while((i = EE_read_status()) & 0x01); // check WIP; at exit, i = 0xFC

REU05B0019-0100Z June 2003 Page 9 of 11

M16C/62
Using the M16C/62 UART for SPI Communication

 EE_write_enable(); // set WEL
 i = EE_read_status(); // i = 0xFE

 EE_write_status(0x00); // clears WEL
 while((i = EE_read_status()) & 0x01); // check WIP; at exit, i = 0x70

 EE_write_enable(); // set WEL
 i = EE_read_status(); // i = 0x72

 EE_write_disable(); // clears WEL
 i = EE_read_status(); // i = 0x70

 EE_read(0, EEPROM_SIZE); // copy EEPROM into RAM_array
 i = EE_read_status(); // i = 0x70

 for(i = 3; i < 39; ++i) // alter RAM buffer
 RAM_array[i] ^= ('a' - 'A');

 EE_write_enable(); // set WEL
 i = EE_read_status(); // i = 0x72

 EE_write(5, 19); // copy portion of RAM_array to EEPROM
 while((i = EE_read_status()) & 0x01); // check WIP; at exit, i = 0x70

 EE_read(0, EEPROM_SIZE); // copy EEPROM into RAM_array

 while(1); // all done
}
Required header file “25C160.h”:

// Definitions for 25C160 EEPROM

#define EEPROM_SIZE 2048 // in bytes

// Instruction set
#define WRSR 0x01 // Write the status register
#define WRITE 0x02 // Write data to memory array
#define READ 0x03 // Read data from memory array
#define WRDI 0x04 // Reset the Write Enable Latch (disable writes)
#define RDSR 0x05 // Read the status register
#define WREN 0x06 // Set the Write Enable Latch (enable writes)

// 76543210 Status Register Bit Definitions
// ||||||||
// |||||||+- WIP (RD only): Write In Process (1=write in progress)
// ||||||+-- WEL (RD only): Write Enable Latch (see below)
// ||||||
// |||||+--- BP0 (R/W): Block BP1 BP0 | write-protected addresses
// ||||+---- BP1 (R/W): Protection 0 0 | none
// |||| 0 1 | upper 1/4 (0x600 - 0x7FF)
// |+++----- unused 1 0 | upper 1/2 (0x400 - 0x7FF)
// | 1 1 | all (0x000 - 0x7FF)
// |

REU05B0019-0100Z June 2003 Page 10 of 11

M16C/62
Using the M16C/62 UART for SPI Communication

// +-------- WPEN (R/W): Write Protect Enable (see below)
//
//
// WP' | Protected Unprotected Status
// WPEN (pin) WEL | blocks blocks Register
// ---- ----- --- + --------- ----------- ---------
// X X 0 | Protected Protected Protected
// 0 X 1 | Protected Writable Writable
// 1 Low 1 | Protected Writable Protected
// X High 1 | Protected Writable Writable
//
// Notes:
// 1) WEL is cleared at power-up and on successful completion of WRDI,
// WRSR, or WRITE commands.
// 2) CS' must be set high for writes to occur.
// 3) SCK must be low when CS' goes high.

REU05B0019-0100Z June 2003 Page 11 of 11

Keep safety first in your circuit designs!

• Renesas Technology Corporation puts the maximum effort into making semiconductor products

better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

• These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

• Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms,
or circuit application examples contained in these materials.

• All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

• When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

• Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake. Please
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor when considering the use of a product contained herein for any specific purposes, such as
apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

	Abstract
	Introduction
	Contents
	Conclusion
	Reference
	Software Code

