Process Coordination
and Shared Data

Lecture 27

Embedded Systems



In These Notes ...

Sharing data safely

— When multiple threads/processes interact in a system, new
species of bugs arise

1. Compiler tries to save time by not reloading values which it
doesn’t realize may have changed

2. Switching between threads can lead to trying to operate upon
partially updated variables/data structures

— We must design the system to prevent or avoid them

Operating System support for Process Coordination
— Monitors

— When multiple thread/processes interact in a system, new species
of bugs arise

— We must design the system to prevent or avoid them
— Bugs and solutions

. 4
‘1 r: ITJZQC \ZMATES LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4



Volatile Data

Compilers assume that variables in memory do not change
spontaneously, and optimize based on that belief

— Don’t reload a variable from memory if you haven’t stored a value there
— Read variable from memory into register (faster access)
— Write back to memory at end of the procedure, or before a procedure call

This optimization can fail
— Example: reading from input port, polling for key press
« while (SW_0) ; will read from SW_0 once and reuse that value

« Will generate an infinite loop triggered by SW_0 being true

Variables for which it fails
— Memory-mapped peripheral register — register changes on its own
— Global variables modified by an ISR — ISR changes the variable

— Global variables in a multithreaded application — another thread or ISR
changes the variable

. 4
‘1 r: The WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems
e

UNC CHARLOTTE



The Volatile Directive

Need to tell compiler which variables may change outside of
their control

— Use volatile keyword to force compiler to reload these vars from
memory for each use
volatile unsigned int num_ints;

— Pointer to a volatile int
volatile int * var; // or
int volatile * var;

— Now each C source read of a variable (e.g. status register) will
result in a assembly language move instruction

— Good explanation in Nigel Jones’ “Volatile,” Embedded Systems
Programming July 2001

L 2
‘1 r: ITJZec \ZLLALI‘{IIAE\;IT%FATES LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4



CooEeration and Sharing Information

Program consists of one or more threads/processes

Any two threads/processes are either independent or
cooperating

Cooperation enables

— Improved performance by overlapping activities or working in
parallel

— Better program structure (easier to develop and debug)
— Easy sharing of information

Two methods to share information
— Shared memory
— Message passing

L 2
‘1 r: ITJZec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4



Shared Memorx

|s practical when communication cost is low

Low-end embedded systems have no memory protection
support
— Threads can access the data directly — e.g. global variables
— (Who needs seatbelts or airbags!)

UNIX and high-end embedded systems have memory protection
support
— Impossible to see other processes’ memory space by default
« E.g. virtual memory

— Establish a mapping between process’s address space to a named
memory object which can be shared across processes

— POSIX Threads (pthreads) APl is a standard for workstation
programming

. 4
‘1 r: The WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 6

UNC CHARLOTTE
~—



Message Passing

Most useful when communication cost is high
— Often used for distributed systems

Producer process generates message, consumer process
receives it

Each process must be able to name other process

Consumer is assumed to have an infinite receive queue
— Bounded queue complicates the programming

OS manages messages
Mailbox is a queue with only one entry

L 2
‘1 r: ITJZec \ZLLALI‘{IIAE\;IT%FATES LEE COLLEGE of ENGINEERING Embedded SyS tems
——



The Shared Data Problem

Often we want to split work between
ISR and the task code

Some variables must be shared to
transfer information

Problem results from task code using
shared data non-atomically

— An atomic part of a program is
non-interruptible

volatile unsigned int
tchi=0, tc=0;

#pragma INTERRUPT tc_isr

}

void tc_isr(void) {

tc++; if(ltc) tchi++;

unsigned long get_ticks(){

unsigned long temp;

. ) _ _ 1 temp = tchi;
— A critical section (group of instructions) 2 temp <<= 16;
in a program must be executed atomically 4 temp += tc;
for correct program behavior ’
_ 5 return temp;
get_ticks() returns a long, formed by }
concatenating variable tchi and _
register tc Step | temp tchi tc
— If an interrupt occurs in get_ticks, 1 0x00000123 | 0x0123 Oxffff
we may get old value oftchiand 15 19x01230000 | 0x0123 OXFFFF
new value of tc
3 0x01230000 | Ox0124 0x0000

L 2
‘1 r: ITJZec \ZLLALI‘{IIAE\;IT%FATES LEE COLLEGE of ENGINEERING Embedded SyS tems
——




Critical Sections Lead to Race Conditions

Critical section: A non-re-entrant piece of code that can only be executed
by one process at a time. Some synchronization mechanism is required
at the entry and exit of the critical section to ensure exclusive use.

Re-entrant Code: Code which can have multiple simultaneous, interleaved,
or nested invocations which will not interfere with each other. This is
important for parallel processing, recursive functions or subroutines, and

interrupt handling.
— If invocations must share data, the code is non-reentrant. (e.g. using global
variable, not restoring all relevant processor state (e.g. flags))
— If each invocation has its own data, the code is reentrant. (e.g. using own
stack frame and restoring all relevant processor state)

Race condition: Anomalous behavior due to unexpected critical
dependence on the relative timing of events. Result of increment
example depends on the relative timing of the read and write operations.

. 4
‘1 rl ITJZQC \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems 9
e



Long Integer

long int ct;
void f1() {
ct++;
}
void £2 () {
if (ct==0x10000)
/* .. */

}

What if f2() starts running after
the f1’s add.w (resultingin a
carry) but before the adcf.w?

Race condition due to non-atomic
operation
— Data structures
— Large variables

. 4
‘1 r: {H}Gz \ZMATES LEE COLLEGE of ENGINEERING Embedded SyS tems
e

; void £1 ()
add.w #0001H, ct
adcf.w _ct+2

rts

; void £2 ()
cmp.w #0,_ct
jnz unequal
cmp.w #1,_ct+2
jnz unequal
; equal
unequal:

; unequal




Is Queue Access Atomic for Serial Example?

Size field is modified by both ;» Enqueue

enqueue and dequeue s q->Size++;

functions mov.w -2[FB],A0Q s q
mov.w -2[FB],Al :q

Does compiler generate code mov.w 0024H[AO],0024H[Al]

which is atomic? add.w #0001H,0024H[A1]

This code is very inefficient — ; Dequeue

the compiler vendor wants you ; g->S1ze--;

to buy the licensed and mov.w -3[FB],AQ ;g

optimized version mov.w -3[FB],Al ;g

mov.w 0024H[AO0],0024H[A1]
sub.w #0001H,0024H[A1]

L 2
‘1 r: ITJZec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4



Solution 1 — Disable InterruEts

Disable interrupts during critical section

Problems

Renesas syntax ->
#define ENABLE_INTS

{_asm(" FSET 1");}

#define DISABLE_INTS
{_asm(" FCLR I'");}

You must determine where the
critical sections are, not the compiler
(it's not smart enough)

Disabling interrupts increases the

response time for other interrupts unsigned long get_ticks(){

unsigned long temp;

DISABLE_INTS,

temp = tchi;

temp <<= 16;

temp += tc;
ENABLE_INTS,;

return temp;

What if interrupts were already
disabled when we called get_ticks?

Need to restore the interrupt masking
to previous value

L 4
N\

&E\ZMATES LEE COLLEGE of ENGINEERING Embedded Systems



Are InterruEts Currentlx Enabled?

FLG’s | flag (bit 6) #define I_MASK (0x0040)
— Enables/disables interrupts #define GET_INT_STATUS(x) {_asm(" STC
— Section 1.4 of ESM FLG,$$[FB]",x); X &= I_MASK;}

Need to examine flag register, but #define ENABLE_INTS {_asm(" FSET I'");}
how? #define DISABLE_INTS {_asm(" FCLR I");}

— Not memory-mapped

— Can’t access with BTST unsigned Tong get_ticks(){

Solution : :
_ unsigned long temp, iflg;

— STC: Store from control register : )

(ESM, p. 123) GET_INT_STATUS(ifl1g);

— Use a macro (CLPM, p. 98) to copy DISABLE_INTS;

the flag bit into a variable iflg in our ~ temp = tchi;
code (we copy the whole register, temp <<= 16;
then mask out the other bits) — nifty temp += tC;
feature! if (iflg)

— Later use that variable iflg to ENABLE_INTS;
determine whether to re-enable return temp;

interrupts }

L 2
‘1 r: ITJZec \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems
——



Solution 2 — ReEeatedlx Read Data

Keep reading until the function unsigned long get_seconds() {
returns the same value unsigned long templ, temp2;

— Easy here because get_seconds
returns an easily compared

value (a long) temp2 = tchi;

temp2 <<= 16;

Problems which limit this approach temp2 += tc;

— tc might be changing every clock do {
cycle, so get_ticks would never templ = temp2;
return. Loop time must be short temp2 = tchi;
compared with interrupt temp2 <<= 16;
frequency temp2 += tc;

— What if we wanted to compare } while (templ != temp2);
two structures? Would need a return tempZ;

function (slower, more code) }
— Compiler may optimize out code

L 2
‘1 r: ITJZec \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems
——



A Gotcha! TC keeEs changing!

See Ganssle’s “Asynchronicity” unsigned long get_ticks(){

Solution: after disabling interrupts, unsigned long temp, iflg;
do the timer C ISR’s work if unsigned templ, temp2;
needed GET_INT_STATUS(iflg);

Examine Interrupt Request bit of DISABLE_INTS;
tcic (timer C interrupt control temp2 = tc;
register), which indicates templ = tchi;
overflow if (ir_tcic) {

Increment counter if it did overflow templ++;

temp2 = tc;
}
if (iflg)

ENABLE_INTS;
temp = templ;
temp <<= 16;
temp += temp?2;
return temp;
}
2

‘1 r: ITJZec \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4




Solution 3 — Use a Lock

Relies on kernel/scheduler for efficiency

Define a lock variable (global) for each resource to
be shared (variable (inc. data structure), I/O
device)

— Lock is O if resource is available
— Lock is 1 if resource is busy
Functions agree to check lock before accessing
resource
— if lock is 0, can use resource
— iflock is 1, need to try again later
« if preemptive kernel is used, call kernel to
reschedule this thread later
 for non-preemptive kernel, call kernel to yield
processor to other threads
Enable interrupts when possible to reduce interrupt
latency
Some processors have atomic read-modify-write
instructions, avoiding need to disable interrupts
when accessing lock variable

L 4
\‘ r The WILLIAM STATES LEE COLLEGE of ENGINEERING
N UNC CHARLOTTE

Embedded Systems

' 4
e

DISABLE_INTS

if (lock_var == 0) {
lock_var = 1;
ENABLE_INTS
access resource
DISABLE_INTS
lock_var = 0;
ENABLE_INTS

} else {
ENABLE_INTS

// try again
Tater

}

18-16



