
Exotic Arithmetic II, Summer 2020 The Arithmetic of Remainders

1 Introduction

This essay introduces some new sets of numbers. Up to now, the only sets of
numbers (algebraic systems) we know is the set Z of integers with the two operations
+ and × and the system R of real numbers with the same two operations. Of
course the operations satisfy lots of properties like commutativity, associativity, and
distribution of × over + (ie. a(b + c) = ab + ac. Both the systems Z and R are
infinite. Our new systems are finite! There is one for each positive integer greater
than 1. If n is such a positive integer, the notation for the new system is Zn. For
convenience and simplicity, we are going to select just two values n = 6 and n = 7
to study in depth.

2 Solving Linear Equations

The main objective of this discussion is to learn more about solving linear and
quadratic equations. The reader is no doubt familiar with techniques for solving
these equations over the real numbers. However, in much the same way as learning
Latin, French, or Spanish gives the language learner a better appreciation of English,
so the careful examination of solution techniques in finite number systems adds depth
to the mathematics students’ understanding of equation solving. But why Z6 and
Z7?

The answer is that Z7 behaves very much like the real numbers: every non-zero
element has an inverse. In fact Z7 is a field. But Z6 has pairs of so-called zero
divisors, that is, non-zero numbers whose product is zero. For example, in Z6, the
product 2 · 3 = 0 because 2 · 3 is a multiple of 6. We’ll begin by building the + and
× tables for Z7. Then we examining linear equations.

Before reading on, flip over to page 7 where the addition and multiplication
tables for Z6 and Z7 are given. How did we build these tables? Its really easy: x⊕y
is the remainder you get after dividing x + y by 6 (or 7), and similarly, x� y is the
remainder you get after dividing x · y by 6 (or 7). For example, to find 3� 4 in Z7,
divide 12 by 7 to get a remainder of 5, so 3� 4 = 5 in Z7.

Our aim is to learn a method for solving equations of the form

ax + b = c

in both Z6 and Z7. We do this by looking very carefully at how we would solve this
in the real number system. We start with Z7. To be specific, consider

2x + 3 = 4.
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In the real number system, we would subtract 3 from both sides. In other words,
we’d add the negative (ie, additive inverse) of 3 to both sides. Look at the addition
table for Z7 to see that 4 is the negative of 3 (3 + 4 = 0, right?). So we have
(2x + 3) + 4 = 4 + 4 or (2x + 3) + 4 = 1. Now since addition is associative, we have
2x + (3 + 4) = 1, but since 3 + 4 = 0, our equation reduces to 2x + 0 = 1.

Since a + 0 = a for all a (0 is the additive identity), we can write 2x = 1.
Now what. In the real system we would multiply by the multiplicative inverse of 2,
sometimes written 1

2
. Look at the multiplication table of Z7 to find the multiplicative

inverse of 2. Recall that a number e in a mathematical system is a multiplicative
identity if e · x = x · e = x for all number x. So 1 is a multiplicative identity for Z7.
The multiplicative inverse of a number u is a number v such that uv = 1. So what
is the multiplicative inverse of 2? Check out the row of 2 in the table and notice
that 2·4 = 1. So 4 is the inverse of 2. Now multiply on the left by 4 to get

4 · 2x = 4 · 1.

Use the associativity of · to get (4 · 2)x = 4. That is 1 · x = 4. Finally, 1 · x = x,
so we have our solution x = 4. Of course, since Z7 is finite we could simply list the
values of 2x + 3 as a function of x to see if and when the value 4 pops up.

x 2x + 3
0 3
1 5
2 0
3 2
4 4
5 6
6 1

You can see from this that the range of the linear function f (x) = 2x + 3 is the
entire set of Z7. This is the case for the real number system when the slope m of
the line f (x) = mx + b is not zero.

Moving on to Z6, we will try to solve

2x + 3 = 4

in the same way we did in Z7.
First ‘subtract’ 3 (note that in Z6, 3 = −3) from both sides:

(2x + 3) + 3 = 4 + 3

and use associativity to get
2x + 0 = 1
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and finally
2x = 1.

Notice that 3 is its own additive inverse. Why?
Now look for the inverse of the number 2 (we use the word inverse here and

elsewhere to mean multiplicative inverse because we have the word negative to use
for the additive inverse of a number). In other words, look for a number we can
multiply by 2 to get the multiplicative identity 1. Whoops, there isn’t one. The
reason is that the row of 2 in the times table of Z6 does not have a 1. So 2 has no
inverse. the equation 2x = 1 has no solutions. Since 2x = 1 is equivalent to our
original equation, it follows that

2x + 3 = 4

has no solutions.
What is the range of f (x) = 2x+ 3 in Z6? Look at the tables to see that 2x+ 3

can be any of the number in the set {1, 3, 5}.
Now we turn to solving quadratics.

3 Solving Quadratic Equations

As we did for linear equations, we will look carefully at the solution techniques we
use in equations defined over real numbers to see the extent to which they can be
used in Z7 and Z6. The general quadratic equation in one variable is

ax2 + bx + c = 0.

There are two common techniques, factoring and using the quadratic formula. But
we don’t even know if the quadratic formula holds in Z7 so we will have to think
deeply about why it is true in the system R.

Factoring

Consider x2 − 4x + 3 = 0. In R we write x2 − 4x + 3 = (x− 3) (x− 1) without
much thinking. Can we do this in Z7? Let’s see. Try to find the reason for each
step below:

(x− 3) (x− 1) = (x− 3)x + (x− 3) (−1)

= x2 − 3x + x (−1) + (−3) (−1)

= x2 + 4x + 6x + 4 · 6(−1 = 6 in Z7)

= x2 − 3x + 6x + 3(−1 = 6 in Z7)

= x2 + 3x + 3

= x2 − 4x + 3.
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So it seems the factoring technique might work. Now given a factorable quadratic,
how do we solve the corresponding equation? Of course, you know that we set each
of the factors x− 3 and x− 1 equal to zero. We can do this because R satisfies the
zero product property.

That is to say, if the product of two numbers is zero, then one of the two numbers
must actually be zero. Put another way, the product of two non-zero numbers is
non-zero. Thus, x2 − 4x + 3 = 0 has two solutions in Z7, x = 3 and x = 1.

Completing the square in R

Often we resort to using the quadratic formula to solve quadratic equations when
factoring isn’t possible. To understand why the quadratic formula works, we must
think about how to derive it. Recall that we derived the quadratic formula using a
technique called completing the square. We will use this on x2 − 4x + 3 = 0 in R to
illustrate. First, note that

x2 − 4x + 4 = (x− 2)2 .

We can add 1 to both sides of x2− 4x+ 3 = 0 to get x2− 4x+ 4 = 1 and then write
(x− 2)2 = 1. Take the square root of both sides to get x − 2 = ±1 and solve the
two equations x− 2 = 1 and x− 2 = −1 to get x = 3 and x = 1.

Let us look carefully at the derivation of the quadratic formula in R. Divide by

the non-zero coefficient a to get x2 +
b

a
x +

c

a
= 0. Subtract

c

a
and then add the

square of
b

2a
to both sides to get x2 +

b

a
x +

b2

4a2
= − c

a
+

b2

4a2
. Since the left side is

a perfect square, we can write(
x +

b

2a

)2

= − c

a
+

b2

4a2
.

This leads to

x +
b

2a
= ±

√
b2

4a2
− c

a
· 4a

4a

and finally

x = − b

2a
±
√

b2 − 4ac

4a2

=
−b±

√
b2 − 4ac

2a
.
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The quadratic formula in Z7

Can we do this in Z7?
Start with ax2 + bx+ c = 0, where a 6= 0. Since each non-zero number in Z7 has

an inverse, we can write
x2 + a−1bx + a−1c = 0

and
x2 + a−1bx = −

(
a−1c

)
Can we add a number to x2 + a−1bx to make it a perfect square as we did above?
The number we added above to the left side is (a−1b/2)2. So we get for the left side
x2 + a−1bx + (a−1b/2)2. Try squaring x + a−1b/2 and you’ll see that it works. So
now the right side is

−
(
a−1c

)
+

(
1

2
a−1b

)2

= −a−1c +
1

2
a−1b

(
1

2
a−1b

)
= −a−1c + 4a−1b

(
4a−1b

)
= −a−1c + 2a−1a−1bb

= −a−1caa−1 + 2a−1a−1bb

= −a−1a−1ac + 2a−1a−1bb

=
(
2b2 − ac

)
a−2

=
(
4 · 2b2 − 4 · ac

)
4−1a−2

=
(
1b2 − 4ac

)
(2a)−2 .

Notice that we have made use of several interesting properties in Z7; for example
2 · 4 = 1 and 4−1 = 2. What we have is a situation with which we are quite
familiar, namely that under some circumstances we can take the square root (and
get a number in our number system). Thus

(x + a−1b/2)2 =
(
x + 4a−1b

)2
=
(
b2 − 4ac

)
(2a−1)2

and

x + 4a−1b = ±
[(
b2 − 4ac

)
(2a)−2] 1

2 .
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Therefore, distributing the square root across the product,

x = −4a−1b±
√

(b2 − 4ac)

2a

= −(2−1a−1b)±
√

(b2 − 4ac)

2a

=
−b
2a
±
√

(b2 − 4ac)

2a

=
−b±

√
b2 − 4ac

2a

Ah ha! same formula.
Which of the quadratic equations x2 + x + 1 = 0, x2 + x + 2 = 0, x2 + x + 3 =

0, x2 + x + 4 = 0, x2 + x + 5 = 0 and x2 + x + 6 = 0 have solutions in Z7? Use the
quadratic formula to solve them.The table below may help

x x2 + x
0 0
1 2
2 6
3 5
4 6
5 2
6 0

In order that x2+x+k = 0 we must have x2+x = 7−k. For example, x2+x+4 = 0
if x2 + x = 7− 4 = 3, but 3 does not belong to the range of x2 + x.

Thus, x2 + x + 1 = 0 has two solutions, x = 2, x = 4; x2 + x + 2 = 0 has one
solutions x = 3; x2 + x + 3 = 0 has no solution; x2 + x + 4 = 0 has no solution;
x2 + x + 5 = 0 has two solutions, x = 1, x = 5; and x2 + x + 6 = 0 has no solution.

Solving quadratic equations in Z6

Can we do all this in Z6? The answer here is no and the reason is similar to what
we saw in the case of linear equations.

Again, we ask what members of our system have square roots. Since 12 = 1, 22 =
4, 32 = 3, 42 = 4, 52 = 1, we see that 3 has a unique square root, 1 and 4 have two
square roots and 2 and 5 do not have square roots.

Consider the quadratic 3x2 + c = 0 in Z6. The list below has each of the
equations, where c ∈ Z6 and the solutions. For c = 1, 3x2 + 1 = 0 has no solution.
For c = 2, 3x2 + 2 = 0 has no solution. For c = 3, 3x2 + 3 = 0 has three solutions
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x = 5, x = 3, x = 1. For c = 4, 3x2 + 4 = 0, has no solutions. For c = 5, 3x2 + 5
also has no solutions. Finally for c = 0, 3x2 = 0 has three solutions, x = 0, x = 2,
and x = 4.

The main trouble here is that Z6 does not satisfy the Zero Product Property.
To see this, look at the times table for Z6. Find a pair of nonzero numbers whose
product is zero. There are two such pairs, {2, 3} and {3, 4}. Now suppose we want
to solve (x − 2)(x − 3) = 0. With the Zero Product property, we would just say
x− 2 = 0 so x = 2 and x− 3 = 0 so x = 3. But notice that x = 5 also satisfies the
equation: (5− 2)(5− 3) = 3 · 2 = 0. Notice that also x = 0 satisfies the equation.

7



Exotic Arithmetic II, Summer 2020 The Arithmetic of Remainders

The digit tables for Z6 and Z7

Below you’ll find the addition and multiplication tables for Z6 and Z7. Notice
that in the tables for Z7 we have dropped the cell notation even though the objects
are cells. Its that at this point there is no compelling reason to emphasize that
notation.

Addition and multiplication in Z6

⊕ [0] [1] [2] [3] [4] [5]

[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]

� [0] [1] [2] [3] [4] [5]

[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]

Addition and multiplication in Z7

⊕ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

� 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1
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Problems.

1. Construct the addition and multiplication tables for the digits of Z11 in the

space provided.

⊕ 0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

� 0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10
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2. Use the tables above to solve the equation 3x− 4 = 9 showing each step and
stating how you get from each step to the next one.

3. Use the grid below to sketch the graph of y = 3x − 4. Notice that the origin
has been labeled.

. . . . . . . . . . .. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

(0, 0)

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .
.. . . . . . . . . . .

4. Which of the numbers in Z11 have square roots?

5. Which of the following quadratics equations are solvable over Z11? Find solu-
tions to all that are solvable. Show your reasoning.

(a) 2x2 + 3x + 4 = 0.

(b) 2x2 − 3x + 4 = 0.

(c) 3x2 − 4x + 2 = 0.

(d) 4x2 + 2x− 3 = 0.

6. Notice that 112 is a multiple of 7. Notice next that 1162, 11662, 116662, . . .
are also multiples of 7. Likewise 1512, 15512, 155512, . . . are also multiples of
7. Does every multiple of 7 behave this way?
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