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1 Introduction

This paper discusses several methods of representing numbers, and several

ways to understand these methods of representation.1 We begin with what

is called decimal representation, the ordinary method we use to represent

integers and fractions. Because the method of representation is an important

starting point in learning the arithmetic of integers and decimals, we shall

explore alternative methods of representation, that is, representation using

bases other than our usual base 10 ten. This is roughly akin to the idea that

one does not really understand one’s own language until we learn a second

language. Instead of trying to develop representation in an arbitrary base b,

we select a specific base for the sake of clarity. This is base 5 representation.

Also, we’ll spend some time learning Martian numeration, base 6. Later we

will discuss other representation including those for which the base b is not

a positive integer. We also explore the system of enumeration when b is a

rational number but not an integer, and then when b is a negative integer.

Finally, we’ll also see that it is even possible for b to be irrational.

2 Place Value Representation

The place value interpretation of 4273 is 4000 + 200 + 70 + 3, which is a sum

of multiples of powers of 10. The relevant powers of 10 are 103 = 1000, 102 =

100, 101 = 10, and 100 = 1. Each one has a coefficient or multiplier, 4, 2, 7,

and 3, respectively. Thus 4 · 103, 2 · 102, 7 · 101, and 3 · 100 are multiples of

powers of 10 and therefore 4273 is a sum of multiples of powers of 10.

Roger Howe has given the name place value numbers to these multiples of

powers of 10. I’ve been calling them atoms. So place value notation means

decimal notation in this case. Each of the addends in the expanded form of

a number will be called an atom. Thus for example 4 · 103 is an atom.

Once we learn how to do arithmetic with single place numbers, we can

use that knowledge along with the distribution property of multiplication over

addition, to do arithmetic with decimal numbers in general. This represents

a key virtue of place value: it enables arithmetic computation. The fact that

the basic arithmetic operations can be efficiently performed by effectively

teachable algorithms was the reason that the place value system, which was

only introduced into Europe in the late middle ages (around 1200), sup-

planted the well entrenched system of Roman numerals. Here is an example.

1Unauthorized reproduction/photocopying prohibited by law’ c©
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Find the product 23 · 41. First recognize each of these numbers as a place

value number, 23 = 20 + 3 and 41 = 40 + 1. Then

23 · 41 = (20 + 3) · (40 + 1)
1
= (20 + 3)40 + (20 + 3)1
2
= 20 · 40 + 3 · 40 + 20 · 1 + 3 · 1
3
= 2 · 10 · 4 · 10 + 3 · 4 · 10 + 2 · 10 · 1 + 3 · 1
4
= 8 · 102 + 12 · 10 + 2 · 10 + 3 · 100

5
= 8 · 102 + (10 + 2) · 10 + 2 · 10 + 3 · 100

6
= 9 · 102 + 1 · 102 + 2 · 10 + 3 · 100

7
= 9 · 102 + 4 · 10 + 3 · 100

8
= 943,

where, we have used the distribution property of multiplication over addition

in 1, 2 and 6; commutativity of multiplication and addition in 3 and 6; and

place value notation in 6,7, and 8. Of course we have also used the digit

multiplication table 4 and the digit addition table in 7.

Another objective here is to establish methods of translating between

decimal representations and base b representations. In other words, we are

given a number expresses as a sum of multiples of powers of 10 and wish to

rewrite the number as a sums of multiples of powers of b, where b is an

integer bigger than 1. For convenience, let us assume for sections 2, 3, and 4

that b = 5. The same procedures work no matter what the value of b is, but

fixing the value of b here makes discussion much easier. Of course there is

also the problem of translating from a base b representation into a decimal

representation, and this process is called interpretation.

The notation 21135 is interpreted as a sum of multiples of powers of

5, just as the decimal number 4273 was above. The subscript 5 must be

attached unless we are using base 10, because 10 is the default value of the

base. Thus 21135 = 2 ·53 + 1 ·52 + 1 ·51 + 3 ·50 = 250 + 25 + 5 + 3 = 283. The

process of finding the decimal (ie, base 10) value of a number from its base

5 representation is called interpreting. Thus we interpreted 21135 as 283.

The reverse process, that of finding the base 5 representation of an integer

expressed in decimal notation is harder and more interesting. There are two

methods, (a) repeated subtraction and (b) repeated division. Each method

has some advantages over the other.
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3 Repeated Subtraction

To see how to use repeated subtraction, first make a list of all the integer

powers of 5 that are not bigger than the number we are given. In the case

of 283, we need the powers 50 = 1, 51 = 5, 52 = 25, and 53 = 125. Next

repeatedly subtract the largest power of 5 that is less than or equal to the

current number (which changes during the process). So we have 283 =

125 + 158. At this point our current number becomes 158 and we repeat the

process. Then 283 = 125 + 158 = 125 + 125 + 33, and our current number

is 33. Repeating the process on 33 gives 33 = 25 + 8 and incorporating that

in the above gives 283 = 2 · 125 + 25 + 8 = 2 · 125 + 1 · 25 + 8. Continuing

this with 8 leads to 283 = 2 · 53 + 1 · 52 + 1 · 51 + 3 · 50, which is a sum

of multiples of powers of 5, just what we want. Thus 283 = 21135, just as

we saw above. Repeated subtraction has two advantages over the repeated

division method. First, it is closely related to the definition, hence it leads to

a better conceptualization. Second, it can be used in other situations when

repeated division cannot, as in the case of Fibonacci representation.

4 Repeated Division

The repeated division method requires that we repeatedly divide the given

integer by base 5 and record the remainder at each stage. First we divide 283

by 5 to get 283÷ 5 = 56.6. We can interpret this as 283 = 5 · 56 + 3, so the

quotient is 56 and the remainder is 3. Notice that the remainder can never

exceed 5 since in such a case the quotient would have been larger. Next

divide the quotient by 5 and record the new quotient and the remainder.

Thus 56 = 5 · 11 + 1. Repeat the process with the new quotient 11 = 5 · 2 + 1

and finally, 2 = 5 · 0 + 2. Next write the remainders in reverse order, 2, 1, 1,

and 3 to get 21135 as the base 5 representation of 283. You’ll see why the

order must be reversed in the following example.

Example 1. Repeated Division To see why 283 = 21135, we can

repeatedly replace each quotient with its value obtained during the division

process. Thus
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283 = 5 · 56 + 3

= 5(5 · 11 + 1) + 3

= 5(5(5 · 2 + 1) + 1) + 3

= 5(5 · 5 · 2 + 5 · 1 + 1) + 3

= 5 · 5 · 5 · 2 + 5 · 5 · 1 + 5 · 1 + 3

= 2 · 53 + 1 · 52 + 1 · 51 + 3 · 50

= 21135

The advantage of repeated division is that it is computationally more effi-

cient. Also, the method of justification can be applied in other situations

(synthetic division and Euclidean algorithm). When we get to the section on

fusing dots, you’ll see in yet another way why it makes sense to record the

remainders upon division by b.

5 Repeated Multiplication and Repeated Sub-

traction

In sections 3 and 4 we saw two methods (algorithms) for writing a given

integer in a base different from 10. Before we consider representing fractions,

let’s review the place value ideas in decimal notation. For example, 5.234 is,

as in the first part, a sum of multiples of powers of 10. This time, the

powers are (except one) negative exponents:

5.234 = 5 · 100 + 2 · 10−1 + 3 · 10−2 + 4 · 10−3.

Using this interpretation as a guide, we can interpret 0.1245 similarly, as a

sum of multiples of (negative) powers of 5. Thus

0.1245 = 1 · 5−1 + 2 · 5−2 + 4 · 5−3

=
1

5
+

2

25
+

4

125
=

25 + 10 + 4

125

=
39

125

As in the discussion of integers, there are two methods for dealing with

numbers in the range 0 < x < 1. They are called (a) repeated subtraction
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and (b) repeated multiplication. As before, each has advantages over the

other.

Example 2. Repeated Subtraction To use the method of repeated

subtraction on 39/125, first list the powers of 5 with negative integer expo-

nents:

5−1 = 1/5, 5−2 = 1/25, 5−3 = 1/125, . . . .

Find the largest of these powers of 5 and subtract it from the original number.

Thus 39/125 − 1/5 = 14/125. Therefore, 39/125 = 1/5 + 14/125. Now

repeat the process on the number 14/125. Note that 1/25 = 5/125. Thus,

14/125 − 1/25 = 8/125. Therefore, 14/125 = 1/25 + 9/125. Putting this

together with the arithmetic above, we have

39

125
=

1

5
+

1

25
+

1

25
+

4

125
.

Again dealing with the extra part, 4/125−1/125 = 3/125, etc . At this point

we can anticipate the final arithmetic:

39

125
=

1

5
+

1

25
+

1

25
+

1

125
+

1

125
+

1

125
+

1

125
= 1 · 5−1 + 2 · 5−2 + 4 · 5−3

= 0.1245

The method of repeated multiplication is much quicker and does not

require so much fraction arithmetic.

Example 3. Repeated Multiplication To find the base 5 representation

of 13/54, we repeatedly multiply by 5. Following each multiplication by 5,

split the result into its integer part and its fractional part:

39

125
· 5 =

39 · 5
25 · 5

=
39

25
= 1 +

14

25
.

Each integer part is a digit in the representation. Thus 39/125 = 0.1 . . .5.

Now repeat the process using the new fractional part, 14/25:

14

25
· 5 =

14

5
= 2 +

4

5
.

Thus 39/125 = 0.12 . . .5 . Repeating the process, 4
5
· 5 = 4 + 0. Since the

fractional part is 0, we are done (why?). Thus, 39
125

= 0.1245.

Of course, not all rational numbers have base 5 representations that ter-

minate (ie, end in all 0’s from some point on). But there is an easy way to tell,
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and a great notation to use when the representation does not terminate. Con-

sider the problem of finding the binary ( that is, base 2) representation of 1
3
.

Using repeated multiplication, we get 1
3
·2 = 0+ 2

3
. Then 2

3
·2 = 1+ 1

3
. Thus we

see the same fractional part 1
3

occurs again. The first two digits are 0 and 1,

so we have 1
3

= 0.01 . . .2, but we can see that the block 01 continues to recur.

The slick way to write this number 0.01010101 . . . is 0.012. When the repre-

sentation repeats in blocks, the number can be regarded as the sum of an infi-

nite geometric series. In this case it is 2−2+2−4+2−6+· · · . There is a formula

for finding the sum of the geometric series a+ ar+ ar2 + ar3 + · · · . It is a
1−r

,

and this holds whenever |r| < 1. Thus 2−2+2−4+2−6+· · · = 2−2

1−2−2 = 1/4
3/4

= 1
3
,

just as we knew.

6 Fusing Dots

Many thanks to Jim Tanton for the idea of exploding dots. We’re going to

explore several machines that enable us to represent positive integers and

some other real numbers is some odd ways. Initially, we’re given a two-way

infinite tape with empty squares, with a heavy line (a bar) at one place on

the tape: · · · . . .

To represent a number n, we put n dots in the square just to the left of the

bar, and let the machine go to work. This square, also called a box or a cell,

is called the unit box.

1. The 1↔ 5 machine. In this machine, whenever five dots occupy the

same square, they are erased (they ‘fuse’) and they are replaced with

one dot in the square to their left. Thus the five dots in :.: fuse to

become one dot in . . There will also be times when we need to

reverse the process in which case one dot in a square is replaced by 5

dots in the square to the right. We’ll call this process explosion. Thus
. explodes to become :.: .

(a) How can we use this machine to represent a positive integer, like

27? What happen when we put 27 dots in the unit box? The

answer is that we can assign to each box to the left of the bar a

value. The integer is the sum of the products of the values times

the number of dots in each box with the given value. For example,

:.

1525
· · · , has the value 25 + 0 + 2 = 27. We agree to

write this as 102 instead of putting dots in boxes. Here is another
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example. Go back to the example we saw above, but add a few

dots to the right of the bar.
:.:.
1/51525

· · · , has the value

25 + 0 + 2 + 3/5 = 27.6. See the exercises that follow. Problem 9

will help you understand base 5 representation.

(b) How can we use this model to add two numbers? Find the values

of the numbers represented as 2432 and 2341. Find the sum of

2341 and 2432 using the exploding dot model.

(c) How can we use this model to subtract two numbers? In particu-

lar, work out 2432− 2341.

(d) How can we use this model to multiply two numbers?

(e) How can we use this model to understand fractions? For example,

consider what happens when we explode a dot repeatedly. Thus
. becomes :.: . And this becomes :: :.: . So, we have 1 =

0.5 = 0.45 = 0.445 = 0.4445 = . . . = 0.4. In fact, this infinite

geometric series converges, as we know.

2. The 1↔ 2 machine. In this machine, whenever two dots occupy the

same square, they are fused together to be one dot in the square to

their left. Thus .. becomes . . In case we start with 7 dots,

we get the following string
..
...

.
. 7→ ..

....
7→

.....
7→ ....

7→
...

. Instead of

constructing a string of squares and dots, we call this representation

111. As an exercise, see what you get for 19 dots. Also, check to see if

the order in which the explosions take place affects the final distribution

of dots. Since each dot in a square is worth two dots in the square to

its right, we can assign values to each square to see what number is

represented. For example, the dot configuration
...

1248
, has

the value 8 + 2 + 1 = 11. Of course it is not a surprise to us that this

is just binary representation. Problem 8 is about the machine 1↔ 2 .

3. The 1↔ 10 machine. In this machine, whenever ten dots occupy the

same square, they fuse together as one dot in the square to their left.

Exercise. Use the 1↔ 10 machine to find the decimal representation

of 275.

Let’s examine subtraction with the 1↔ 10 machine. Consider the

problem 275 − 246. To accomplish this we first devise a notion of

7



Exotic Arithmetic, 2019 Fusing Dots, Antidots, and Black Holes

negation using antidots. We allow two types of symbols in squares,

dots · and antidots ◦. They annihilate each other. Thus, we have

.......
...

. .. .
+ ◦◦◦◦◦ ◦◦◦◦◦◦◦ . Can you finish the job? Next using the

same machine, examine what happens when a single dot in the units

position repeatedly explodes producing 10 new dots for each explosion.

Imagine what happens if this process is repeated infinitely many times.

4. The 2↔ 3 machine. In this machine, whenever three dots occupy the
same square, they fuse together to become two dots in the square to
their left. Let’s work out the notation for each of the numbers from 1
to 15.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R(n) 1 2 20 21 22 210 211 212 2100 2101 2102 2120 2121 2122 21010

Work your way up to the representation for 24. Notice that the number

of digits in the representation jumps as we move to 3, 6, 9 and 15.

Where is the next jump. Why? Is this machine a base-b representation

machine for some number b? If so, then
....
1bb2b3

would have

the value 2b3 + b2 + 1. Compute the value of the representation 2101

without help from the chart above.

Realizing that each pair of dots in a box is worth three in the next

box, we can derive the equations 2b = 3, 2b2 = 3b, 2b3 = 3b2, etc, all of

which give us b = 3/2.

(a) Find the representation of 123 for this machine.

(b) Find necessary and sufficient conditions on a digit string for it to

represent an integer.

5. The 1↔ x machine. In this machine, whenever x dots occupy the

same square, they fuse and they are replaced with one dot in the square

to their left. This leads to polynomial arithmetic. Let’s work out an

example of polynomial division using the 1↔ x machine.

(a) Represent 3x2 + 8x+ 4 in the 1↔ x machine.

(b) Represent x+ 2 in the 1↔ x machine.
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(c) Now find all instances of . .. in
..........

..... .

(d) Next try
. ◦ ◦◦◦◦◦◦ ÷ . ..

.

For each of the next two problems, 6 and 7, we have the same ‘fusion

scheme’:
.

+
.

=
.

. In other

words, when dots belong to adjacent boxes, they fuse to give a dot in

the next box over:
. .

=
.

Let’s call this the 1↔ 1, 1 machine. In the final representations, we

are not allowed to have more than one dot in a box.

6. In the first part, we also need a two-way infinite row of boxes. You’ll

see why we need both directions as we start to count. Of course, 1

is represented as usual,
.

The bold vertical segment

represents a special location, which for base b, we call a radix point.

Instead of using dots in boxes, its more convenient from here on to ex-

press integers as digit strings. So 2 is 2⇒ 1.11⇒ 10.01. The box/dot

diagram here is
..

⇒
. . .

⇒
. .

In words, one of the two dots in the first box exploded producing dots

in the two previous boxes. So 2 = 10.01. Then 3 = 11.01⇒ 100.01, 4 =

101.01. Now 5 is tricky: 5 = 4 + 1 = 101.01 + 1 = 102.01⇒ 101.12⇒
101.1111⇒ 110.0111⇒ 1000.1001. Then 6 = 1001.1001⇒ 1010.0001.

(a) Is this a base system in the usual sense. In particular, is there a

real number b for which

6 = b3 + b+ b−4?

(b) Find the representations of the next 5 integers, 7, 8, 9, 10, and 11.

7. Here’s the 1↔ 1, 1 machine with a black hole. It only takes left infinite

strings of boxes with two extra boxes to the right of the radix point,

one of which is a black hole:
∞

Here’s how this works.

Any dots in the box marked ∞ at the end disappear. Otherwise it

works just like the machine in question 6. So, 1 = 1, 2 = 2.00 ⇒
1.11 ⇒ 10.01 ⇒ 10.00 = 10, 3 = 2 + 1 = 10 + 1 = 11 = 100,

4 = 12.00 ⇒ 11.11 ⇒ 100.11 ⇒ 101.00. To find the representation
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of 5, start with the representation 4, and add one: 5 = 102.00 ⇒
101.11⇒ 110.01⇒ 1000.01⇒ 1000.00 = 1000.

(a) Find the representations of the next 5 integers, 7, 8, 9, 10, and 11.

(b) Is this a base system in the usual sense. For example, notice that

4 = 101 in the machine, so we might expect that there a number

b for which

4 = b2 + 1?

(c) Prove that no positive integer representation has a 1 in any posi-

tion to the right of the decimal.

8. See the worksheet problems.

9. Build the 1↔ 5 and 2↔ 5 machine representations for each of the

numbers A = 737 and B = 831.

(a) Add the two numbers in the 1↔ 5 framework and then find the

decimal value of the sum. Since A + B = 1568, you can check to

see if your answer is correct.

(b) Subtract the smaller from the larger in the 1↔ 5 framework.

Since B − A = 94, you can check to see if your answer is correct.

(c) Multiply the two numbers in the 1↔ 5 in the usual way by con-

structing the digit product and digit sum tables first as you might

for decimal arithmetic. Since A · B = 612447, you can check to

see if your answer is correct.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 10

2 2 3 4 10 11

3 3 4 10 11 12

4 4 10 11 12 13

× 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 11 13

3 0 3 11 14 22

4 0 4 13 22 31

(d) Add the two numbers in the 2↔ 5 framework.

(e) Subtract the smaller from the larger in the 2↔ 5 framework.

(f) Multiply the two numbers in the 2↔ 5 framework in the usual

way by constructing the digit product and digit sum tables first

as you might for decimal arithmetic.
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10. Next consider the machine 1↔ n in which the number of dots that get

fused together depends upon which box is being considered. In the units

box, it works like the 1↔ 2 machine, and in the next box to the left,

it works like the 1↔ 3 machine. For example, 0009→ 0041→ 0111,

which means that if we started with 9 dots in the units positions, four

fusions would occur leaving one dot in the units box and 4 in the

next box, after which there would be one fusion of 3 dots, leading to
.. .

which we write as 0111.

11. Find the representation of 1000 in the 1↔ n machine described above.

12. Find the representation of 7 ·7!+6 ·6!+5 ·5!+4 ·4!+3 ·3!+2 ·2!+1 ·1!

in the 1↔ n machine described above.

13. This was problem 25 on the 1999 AHSME. There are unique integers

a2, a3, a4, a5, a6, a7 such that

5

7
=
a2
2!

+
a3
3!

+
a4
4!

+
a5
5!

+
a6
6!

+
a7
7!
,

where 0 ≤ ai < i for i = 2, 3, . . . , 7. Find a2, a3, a4, a5, a6, and a7.

7 Place Value with Negative Bases

In this section we study the consequences of using a negative base for arith-

metic. As we did in the previous section, we’ll pick a sample base and stick

with it throughout. You’ll see easily how to modify the ideas when other

bases are used. We’ll pick negative 4 as our base. Here we allow ourselves

the digits 0, 1, 2, 3. Let us first interpret a number written in base −4. For

example take 113.3−4. We interpret this as a sum of multiples of powers of

−4: 1 · (−4)2 + 1 · (−4)1 + 3 · (−4)0 + 3 · (−4)−1 = 16− 4 + 2− 3/4 = 13.25.

Thus, we write 13.25 = 113.3−4. The methods for finding the base negative

four representation of a positive integer are interesting. Also of interest are

methods for finding the base −4 representation of rational numbers r satisfy-

ing 0 < r < 1. We can find the base −4 representation of 13.25 by combining

these two methods.

The machine we can use is denoted −1← 4 . Its called this because

when four dots accumulate in a box, they fuse, causing an anti-dot to be

formed in the next box to the left. Similarly when four antidots accumulate,
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they fuse to give a dot in the box to the left. This machine can be drawn as

follows:
..
.

+ . = ◦
and

◦◦◦ + ◦ = .

Example 1. Repeated Division To see why 477 = 21211−4, we can

repeatedly replace each quotient with its value obtained during the division

process. Its important to remember that the remainders cannot be negative

numbers. Thus

477 = −4 · −119 + 1

= −4(−4 · 30 + 1) + 1

= −4(−4(−4 · −7 + 2) + 1) + 1

= −4(−4(−4(−4 · 2) + 1 + 1) + 1

= −4(−4(−4(−4 · 2 + 1) + 2) + 1) + 1

= 2(−4)4 + 1(−4)3 + 2(−4)2 + 1(−4)1 + 1(−4)0

= 21211−4

Here’s how the fusing dot machine above would process the number 477.

First, there would be 119 fusions that would produce 119 antidots in the

second box and one dot in the right box. Then 29 fusions would take place,

producing 29 dots in the third box and 3 antidots in the second box. Then

7 fusions would take place to produce 7 antidots in the fourth box with

one dot left in the third box:
.◦◦◦.◦◦◦ ◦◦◦◦ The final fusion produces:

.◦◦◦.◦◦◦.
. So, can we say that the base −4 representation of

477 is 1− 31− 31? Of course not. We can use only positive digits. So what

can we do? Try adding some dot-antidot pairs.
.◦◦◦◦

..◦◦◦◦
..

. From

here its easy: .
......

. In other words, 21211−4.

The algorithms for finding the base −4 representation of fractions is even

more interesting. My AwesomeMath student Eliot Levmore, suggested the

following algorithm, related to repeated multiplication. To find the base −4

representation of 7/20, first note that our number is positive, so it looks like

1.abcd.... That means the .abcd... has value 7/20 − 1 = −13/20. Multiply

−13/20 by -4 to get 52/20 = 13/5 = 3−2/5, so the digit a is 3. Then multiply

−2/5 by −4 to get 8/5 which we can write as 2 − 2/5. Our representation

12



Exotic Arithmetic, 2019 Fusing Dots, Antidots, and Black Holes

is 1.32cd.... Now −2/5 · −4 = 8/5 again, and we can see that the digit 2

repeats. Thus 7/20 = 1.32−4. Can you prove that this is correct? Which

rational numbers less than 1 require a digit 1 in the unit’s position? Levmore

again provides the answer. To see what it is, ask yourself the question, What

is the largest rational number representable as 0.x1x2 . . .?

In algebra, you learn a method for converting a repeating decimal to a

ratio of two integers. We can do that here also. Let t = 1.32−4. Then

16t = 132.2 and 16t− t = 15t = 132.2−4−1.3−4 = 132.3 = 21/4÷15 = 7/20.

This algorithm is not perfect, however because the subtraction idea can lead

to digits larger than 3. Can you devise another method that avoids this

problem?

Here’s an idea. To find the base −4 representation of a fraction, we

repeatedly multiply by 16, and produce two digits at a time. This way we

can avoid the difficulties posed by the negative numbers.

The −1↔ 2 machine. This machine is defined by two equations,

. + . = ◦
and

◦ + ◦ = .

1. Find the −1↔ 2 machine representations for the integers from 1 to

10.

2. What number is represented by 110110101?

3. Is this a base b machine like the 2↔ 3 machine? If so, find b.

4. What is the representation of 63? Can you find an algorithm that works

for n without finding representations of all the numbers 1 through n−1?

5. What is the representation of 90?

6. Go back to the 1↔ 2 machine. Find the representation of 1/3.

7. Find the representation of 1/3 in base −2. That is find the represen-

tation in the −1↔ 2 machine.

13
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8 Problems
Binary numbering

1.

16 8 4 2 1 32 16 8 4 2 1

0 32

1 33

2 34

3 35

4 36

5 37

6 38

7 39

8 40

9 41

10 42

11 43

12 44

13 45

14 46

15 47

16 48

17 49

18 50

19 1 0 0 1 1 51

20 52

21 53

22 54

23 55

24 56

25 57

26 58

27 59

28 60

29 61

30 62

31 63

14
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Ternary numbering

2.

81 27 9 3 1 243 81 27 9 3 1

0 32

1 33

2 34

3 35

4 36

5 37

6 38

7 39

8 40

9 41

10 42

11 43

12 44

13 45

14 46

15 47

16 48

17 49

18 50

19 0 0 2 0 1 51

20 52

21 53

22 54

23 55

24 56

25 57

26 58

27 59

28 60

29 444

30 450

31 500

15
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Martian numbering

3.

1296 216 36 6 1 7776 1296 216 36 6 1

0 32

1 33

2 34

3 35

4 36

5 37

6 38

7 39

8 40

9 41

10 42

11 43

12 44

13 45

14 46

15 47

16 48

17 49

18 50

19 0 0 0 3 1 51

20 52

21 53

22 54

23 55

24 56

25 57

26 58

27 59

28 60

29 6000

30 7000

31 8000
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4. Recall that a base −4 representation of a number is a string of dig-

its {0, 1, 2, 3} representing a sum of multiples of powers of −4. For

example,

321.21−4 = 3(−4)2 + 2(−4)1 + 1(−4)0 + 2(−4)−1 + 1(−4)−2

= 3 · 16− 2 · 4 + 1 · 1− 2 · 1

4
+ 1 · 1

16

= 48− 8 + 1− 1

2
+

1

16

= 40 +
9

16
= 649/16.

(a) In the space provided, construct the addition and multiplications

tables for the base −4 digits.

+ 0 1 2 3

0

1

2

3

× 0 1 2 3

0

1

2

3

(b) List, in ascending order, the representations of the integers from

1 to 14.

(c) Note that 12−4 represents 1 · (−4)1 + 2 · (−4)0 = −2. List, in

descending order, the representations of the first 14 negative inte-

gers.

(d) How can one determine whether a number in the system is positive

or negative?

(e) Note that the sum of digits table, above, indicates that every carry

from addition involves two carry digits. Use this fact to explain

why the sum of two ‘positives’ is ‘positive’ and the sum of two

‘negatives’ is ‘negative’.

(f) Use the notion that the product of two positive integers may be

regarded as successive addition and use your explanation from (5)

to argue that the product of two ‘positives’ is ‘positive’ and a

‘positive’ times a ‘negative’ is ‘negative’.

Definition. If two symbols represent the integers that have a sum

of zero, then the two integers are called additive inverses of each

17
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other. Note that from questions (1) and (2) we have that 1−4 and

13−4 represent additive inverses since 1 + 13 = 0.

(g) Find a quick method to determine the additive inverse of a given

integer. Then use this method to work the subtraction problem

1132003−4 − 1202313−4.

(h) Interpret 123.32−4 as we did above for 321.21−4.

(i) Find the base −4 representation of 99

(j) Find the base −4 representation of 17.5

(k) Find the base −4 representation of 1/2, 1/4 and 1/16.

(l) Find the base −4 representation of 1/3

(m) Devise a method to determine if a given integer is a multiple of

5 based on its base −4 representation. Find a digit d that makes

23231123d−4 a multiple of 5.

(n) Carry out the arithmetic 2312.12−4 + 13202.31−4.

(o) Write the symbol that represents the additive inverse of the num-

ber 1202313−4.

(p) Using your answer from the previous question and the definition of

subtraction, rewrite and then solve the addition problem defined

by 1132003−4 − 1202313−4.

(q) Carry out the arithmetic 112.3−4 × 33.2−4.

5. How many positive integers have seven digits when expressed in base

2, five digits in base 3, four digits in base 5, and three digits in base

ten.

18
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Base 3/2 numbering

81/16 27/8 9/4 3/2 1 243/32 81/16 27/8 9/4 3/2 1

0 24

1 25

2 26

3 27

4 28

5 29

6 30

7 31

8 32

9 33

10 34

11 35

12 5/2

13 7/2

14 9/2

15 11/2

16 15/2

17 49/2

18 51/2

19 2 1 2 0 1 51/4

20 51/8

21 63/16

22 63/8

23 4/3
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Base −4 numbering

256 -64 16 -4 1 -1024 256 -64 16 -4 1

0 32

1 33

2 34

3 35

4 36

5 37

6 38

7 39

8 40

9 41

10 42

11 43

12 44

13 45

14 46

15 47

16 48

17 49

18 50

19 1 0 3 51

20 52

21 53

22 54

23 55

24 56

25 57

26 58

27 59

28 60

29 -444

30 -450

31 500
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9 Fibonacci, Factorial, and Balance-Pan Enu-

meration

Fibonacci Representation The Fibonacci numbers F1 = 1, F2 = 2, F3 =

3, F4 = 5 . . . are defined so that after the first two, every one is the sum

of the last two. In other words, F1 = 1, F2 = 2 and Fn+2 = Fn + Fn+1.

Thus the sequence is 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .. In the case of Fibonacci

representation, we need only two digits, 0 and 1. These represent the absence

or presence of the corresponding Fibonacci number. To represent a number

in Fibonacci representation, use the method of repeated subtraction.

Example 4. Fibonacci Representation The Fibonacci Machine.

· · ·

∞

. . .

Notice the ∞ symbol above the second cell to the right of the radix

point. Its the black hole! If a dot is left there at the end of a computation,

it disappears. You can ask later why that does not change the value of the

number represented.

To find the Fibonacci representation of 100, find the largest Fibonacci

number less than or equal to 100. Then subtract it and repeat the process.

Thus 100 = 89 + 11. Thus 100 = 89 + 11 = 89 + 8 + 3 = 1000010100f . Of

course, the 1’s tell us which Fibonacci numbers are added, and the 0’s tell us

to leave out the number: 1000010100f means 1F10 + 0F9 + 0F8 + 0F7 + 0F6 +

1F5 +0F4 +1F3 +0F2 +0F1. Notice that the representation 1000010100f has

at least one 0 between each pair of 1’s. Try to figure out why this is always

the case this before reading on. We’ll return to this representation later.

How can we do arithmetic with numbers represented this way? Addition is

not very hard. Let’s use the addition 87 + 31.

Example 5. Fibonacci Arithmetic In the notation we (slightly) abuse

the notation by using the coefficient 2 at times.

89 55 34 21 13 8 5 3 2 1

87 1 0 1 0 1 0 1 0 0

+31 1 0 1 0 0 1 0

1 0 2 0 2 0 1 1 0

1 0 2 0 2 1 0 0 0

1 0 2 1 1 0 0 0 0

1 1 1 0 1 0 0 0 0

118 1 0 0 1 0 1 0 0 0 0
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The addition process repeatedly makes use of the fact that the sum of two suc-

cessive Fibonacci numbers is the next one. In the representation, therefore,

you never need to have two successive 1’s. Another example might be helpful

here. How would you carry out 21 + 21? That is 1000000f + 1000000f =

2000000f = 1110000f = 10010000f = 34 + 8 = 42 Can you devise an algo-

rithm for multiplication?

Factorial Representation Here the idea is to represent each number as

a sum of multiples of factorials. The basic building blocks are the numbers

1 = 1!, 2 = 2!, 6 = 3!, 24, 120, 720, . . .. The coefficients allowed for n! are

the numbers from 1 up to n. Of course, using n + 1 as a coefficient for n!

would not be needed since (n + 1)n! = (n + 1)!. The table below lists the

representations of the first twelve positive integers. How can we find the

factorial base for a positive integer N? The answer is by repeated division.

First, divide by two and write the remainder in the rightmost position. Of

course the remainder is either 1 or 0 depending on the parity of the N . Next

divide the quotient by three, and again write down the remainder. Continue

this process until the quotient is zero.

Example 6. Repeated Division To find the Factorial representation of

N = 127 first divide by 2. The first remainder is 1, and the quotient is 63.

Dividing 63 by three yields a quotient of 21 and a remainder of 0. Then

dividing 21 by four yields quotient 5 with remainder 1. Finally, divide by

five to get a quotient of 1 and a remainder of 0. Thus 127 = 10101!. That

is, 127 = 5! + 3! + 1!.

Arithmetic in factorial notation is not very hard. Let’s pursue addition.

Example 7. Factorial Arithmetic Consider the problem 65 + 21, which

in factorial notation is 2221! + 311! since 65 = 2 · 4! + 2 · 3! + 2 · 2! + 1 · 1!

while 21 = 3 · 3! + 1 · 2! + 1 · 1!. So

2 · 4! + 2 · 3! + 2 · 2! + 1 · 1!

+ 3 · 3! + 1 · 2! + 1 · 1!

2 · 4! + 5 · 3! + 3 · 2! + 2 · 1!

But 5 · 3! = (4 + 1) · 3! = 4 · 3! + 3! = 4! + 3!. So the sum is just

3 · 4! + 2 · 3! + 2! = 3210!.

10 Prime Notation

Here is perhaps the most interesting of the four methods of enumeration.

We are all well aware of the uniqueness of prime factorization of positive

integers. If we agree to write all the primes in every factorization, making
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use of the fact that p0 = 1, we get a representation of positive integers.

1 = 20, 2 = 21, 3 = 3120, 4 = 22, 5 = 513020, and 6 = 3121. Now write the

list of exponents in the same order as above: 1 = 0p, 2 = 1p, 3 = 10p, 4 =

2p, 5 = 100p, and 6 = 11p. In this system, multiplication is especially easy.

For example, 12101p × 21001p = 33102p. Can you figure how we did this?

23
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11 More Problems

1. Each column in the table provides the representation of the numbers

from 1 to 12 for a certain system of enumeration. Of course, the en-

tries in column A are decimal representations. Study the pattern, and

determine the method of representation. Then replace the ?’s with the

appropriate representations.

A B C D E F

1 0 1 1 1 1

2 1 10 10 2 110

3 10 100 11 10 111

4 2 101 20 11 100

5 100 1000 21 12 101

6 11 1001 100 20 11010

7 1000 1010 101 21 11011

8 3 10000 110 22 11000

9 20 10001 111 100 11001

10 101 10010 120 101 11110

11 10000 10100 121 102 11111

12 12 10101 200 110 11100

13 ? ? ? ? ?

14 ? ? ? ? ?

15 ? ? ? ? ?

16 ? ? ? ? ?

17 ? ? ? ? ?

18 ? ? ? ? ?

2. Problem 28 of the 2010 MATHCOUNTS, National Sprint Round, states

the following. Infinitely many empty boxes (also called cells or squares),

each capable of holding four balls are lined up from right to left. At

each step we place a ball in the rightmost box that still has room for

it and at the same time, we empty all the boxes to the right of it. How

many balls are in the boxes after 2010 steps.

3. Let x, y, and z be positive integer numbers such that x < y < z and

3x + 3y + 3z = 21897. Find x+ y + z.
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Fibonacci numbering

144 89 55 34 21 13 8 5 3 2 1

1

2

3

4

5

6

7

8

9

10

11

21

24

29

41

51

71

83

92

100

120

150

200

210

232

Explain why the largest number in this table is 232.
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An irrational base!

φ5 φ4 φ3 φ2 φ 1 φ−1 φ−2 φ−3 φ−4 φ−5

1

2

3 1 0 0 0 1

4

5

6

7

8

9

10

11

What is the largest number that could be represented in this table?

4. The rational number one-seventh can be written as a repeating base

ten decimal as 0.142857. The same rational number can be written as

a repeating ‘decimal’ in base nine. What is the sum, in base nine, of

the first hundred digits to the right of the ‘decimal’ point? (The right

word here is ‘radix’)

5. Flippable Numbers. A flippable number n is a base-b number

for which there is a base-b digit f , such that f · n = n, where n is

the reverse of n. For example 9 · 1089 = 9801, so 1089 is a decimal

flippable number with flip digit 9. In this problem we are finding four-

digit flippable numbers and attempting to understand their structure.

In each part, find the four digit number(s), then compute their decimal

equivalent and find the factorization into primes. For example, solve in

base 3 abcd · 2 = dcba. Of course the base 3 digits a, b, c, d need not be

distinct. Answer 10123 = 27 + 3 + 2 = 32 = 25. Of course dcba3 = 26.

(a) In base 4 solve abcd · 3 = dcba.
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(b) In base 5 solve abcd · 2 = dcba.

(c) In base 5 solve abcd · 4 = dcba.

(d) In base 6 solve abcd · 2 = dcba.

(e) In base 6 solve abcd · 5 = dcba.

(f) In base 7 solve abcd · 6 = dcba.

(g) In base 7 solve abcd · 3 = dcba.

(h) In base 8 solve abcd · 2 = dcba.

(i) In base 8 solve abcd · 3 = dcba.

(j) In base 8 solve abcd · 5 = dcba.

(k) In base 8 solve abcd · 7 = dcba.

(l) In base 9 solve abcd · 2 = dcba.

(m) In base 9 solve abcd · 4 = dcba.

(n) In base 9 solve abcd · 8 = dcba.

(o) In base 10 solve abcd · 4 = dcba.

(p) In base 10 solve abcd · 9 = dcba.

(q) In base 11 solve abcd · 2 = dcba.

(r) In base 11 solve abcd · 3 = dcba.

(s) In base 11 solve abcd · 5 = dcba.

(t) In base 11 solve abcd · 7 = dcba.

(u) In base 11 solve abcd · 10 = dcba.

(v) In base 12 solve abcd · 2 = dcba.

(w) In base 12 solve abcd · 3 = dcba.

(x) In base 12 solve abcd · 5 = dcba.

(y) In base 12 solve abcd · 11 = dcba.

(z) In base 13 solve abcd · 5 = dcba.

(aa) In base 13 solve abcd · 6 = dcba.

(ab) In base 13 solve abcd · 12 = dcba.

(bb) In base 14 solve abcd · 2 = dcba.

(cc) In base 14 solve abcd · 4 = dcba.

(dd) In base 14 solve abcd · 6 = dcba.
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(ee) In base 14 solve abcd · 13 = dcba.

(ff) In base 15 solve abcd · 2 = dcba.

(gg) In base 15 solve abcd · 3 = dcba.

(hh) In base 15 solve abcd · 4 = dcba.

(ii) In base 15 solve abcd · 7 = dcba.

(jj) In base 15 solve abcd · 14 = dcba.

(kk) In base 16 solve abcd · 3 = dcba.

(ll) In base 16 solve abcd · 7 = dcba.

(mm) In base 16 solve abcd · 15 = dcba.
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