In the standard puzzle KenKen, the numbers in each heavily outlined set of squares, called cages, must combine (in any order) to produce the target number in the top corner of the cage using the mathematical operation indicated. A number can be repeated within a cage as long as it is not in the same row or column. The 6×6 KenKen® puzzle below has only one clue. Yet it has a unique solution. Use the digits 1 through 6 to solve the problem. Find the sum of the four corner numbers.

$9 \cdot 10^{5} \times$					

Related problems.

1. Now replace the number $9 \cdot 10^{5}$ with another number k so that the puzzle has exactly two solutions.
2. Find some other values of k for which we get a unique solution.
3. Find a number K such that replacing the clue $9 \cdot 10^{5} \times$ with the clue $K+$ also yields a unique solution.
4. Find a number K such that replacing the clue $9 \cdot 10^{5} \times$ with the clue $K+$ also yields a puzzle with exactly five solutions.
