1. Find the following indefinite integrals:

(a) \(\int (4x^3 + 1) \, dx \)

(b) \(\int (5e^x + \frac{6}{x}) \, dx \)

(c) \(\int (x^{-2} - \frac{1}{\sqrt{x}}) \, dx \)

(d) \(\int \frac{x}{4x^2 - 9} \, dx \)

(e) \(\int xe^{2x+2} \, dx \)

(f) \(\int \frac{(\ln x)^3}{x} \, dx \)
2. Find the following definite integrals:

(a) \(\int_{0}^{2} (3x^2 + 6x + 7) \, dx \)

(b) \(\int_{0}^{1} x^2 e^{2x^3 + 1} \, dx \)

(c) \(\int_{1}^{3} \frac{x^2}{x^3 + 1} \, dx \)

3. Suppose that the daily fixed cost of a company is $400 and that its daily marginal cost function is \(C'(x) = -0.25x + 40, \quad 0 \leq x \leq 160 \), where \(C'(x) \) is measured in dollars/unit and \(x \) denotes the number of units produced. Find the cost function of the company.

4. Find the area of the region bounded by the graphs of the functions \(f(x) = e^{2x} \) and \(g(x) = x \) and the vertical lines \(x = -1 \) and \(x = 2 \).
5. Find the area of the region completely enclosed by the graphs of the given functions \(f = x + 2 \) and \(g = x^2 - 4 \).

6. The temperature (in °F) in Charlotte over a 12-hr period on a certain August day was given by

\[
T = 75 + 0.25t\sqrt{144 - t^2}, \quad (0 \leq t \leq 12),
\]

where \(t \) is measured in hours, with \(t = 0 \) corresponding to 9 a.m. Determine the average temperature on that day over the 12-hr period from 9 a.m. to 9 p.m.