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Abstract. We present a prediction model to detect delayed gradua-
tion cases based on student network analysis. In the U.S. only 60% of
undergraduate students finish their bachelors’ degrees in 6 years [1]. We
present many features based on student networks and activity records. To
our knowledge, our feature design, which includes conventional academic
performance features, student network features, and fix-point features,
is one of the most comprehensive ones. We achieved the F-1 score of 0.85
and AUCROC of 0.86.
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1 Introduction

One of major strategic challenges that the U.S. higher education faces is timely
completion of degree for college students [2]. Recent data from the National Cen-
ter for Education Statistics shows that the majority (60%) of full-time under-
graduate students take 6 years to earn a bachelor’s degree [1]. As a result, higher
education is under increasing pressure to demonstrate institutional effectiveness
across a range of complicated factors [3]. According to [4], for instance, the U.S.
government emphasizes the need of producing successful Science, Technology,
Engineering, and Mathematics (STEM) graduates in a timely manner.

We propose a novel network analytic approach to predict at-risk students
who fail to complete their degrees on time. Our approach is distinct from others
due to the following two features: (1) We predict at-risk students early after
5-th semester; (2) In addition to classical academic features such as GPA and
earned credits, we use various data from students’ (extracurricular) activities
to calculate student network features. We also define another type of features
based on the same data, called fix-point features in our paper (see Fig. 1(a)).
Throughout the analysis process, we have some interesting observations. At-
risk students tend to have many weak connections, rather than a selected small
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(a) The overall work-flow of our method (b) A student network example

Fig. 1. (a) The overall work-flow of our presented framework. (b) Edge-colored student
network after filtering out weak (i.e., edge weight <90th percentile) connections. Note
that many at-risk students inside the dotted red circle do not have strong connections
with successful students. (Color figure online)

number of strong connections so their network features (such as degree centrality,
ego-network density and so forth) are distinctly different from that of successful
students. In the future, we plan to intervene by strategically selecting at-risk
students to consolidate their connections with successful students and to enhance
their network features. We answer the following research questions in this paper:

1. Does including students’ network features help predict at-risk students?
2. Does including students’ network features help predict at-risk students in an

earlier stage?
3. To what extent are the student network connections of successful students

different from those of at-risks students over time?
4. Who are active participants of student communities & who are peripheral

participants? How differently do successful and at-risk students behave in
communities?

2 Related Work

During the past five years there has been an increase in research for improv-
ing learning and educational environments by leveraging analytics and the vast
amount of data collected about the interaction of students with learning manage-
ment systems (LMS). Course Signals [5–8] is an example of a learning analytic
tool that not only classifies and identifies students at-risk but also provides
interventions to improve student learning based on the analyzed data. This
system processes student data from the Blackboard LMS to provide an early
warning for students at-risk. Latest trends in learning analytics and knowledge
(LAK) also shows a move towards sense-making from broad and general pre-
dictive models [9,10]. The LAK community is expanding and including broader
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interdisciplinary research to scale up “from big data to meaningful data” [11].
Typical models to better understand student performance and risk are based
on classical academic features such as GPA, course withdraw rate, high school
GPA, standardized test scores, and so forth [5–8,12,13]. However, models of
retention and risk/success analysis often neglect to lead to actionable knowl-
edge [14] whereas some approaches have more focus on analytics that generate
actionable knowledge rather than predictions of GPAs, assignment grades, etc.

There are also reports on how to incorporate network analysis to better
understand student behavior and interactions [13,15–21]. Conventional network
analytic research has generally focused on the deliberate behavior of each indi-
vidual or groups but neglected the interlinked information between or among
individuals or groups [22]. These network models are based on students’ LMS or
social media logs, e.g., who responds to whom in LMS tools or who likes whom in
social media. The purpose of the network analyses includes identifying student
groups and social networking behaviors that lead to risk or success [15,18]. For
example, Romero [13] investigated interaction patterns among students in their
LMS tools and created an unsupervised clustering method to detect course fail-
ures. In [18], they analyzed participation patterns in online discussions in order to
reveal student clusters with leaders and peripherals. Authors of [21] presented
that students’ social involvement accumulated through academic activities is
positively related to their academic performance. In [23], it was shown that stu-
dents’ co-enrollment networks follow power-law degree distributions and they
predict course grades with simple network features whereas we predict a longer-
term success with more comprehensive network features. The related works have
clearly laid out the functionality of social network analysis and provided guid-
ance for our study.

Our approach is distinct in two aspects: (i) We construct student networks
using student records other than interactions recorded in the LMS or social
media logs, and (ii) Our success measure is on-time graduation whereas some
existing models focus only on course success and GPA.

3 Our Dataset

We collected data from a 13-year period and limited our analysis to undergrad-
uate students who spent 8 or more semesters in our school and have selected
computer science as their major at some point in their academic career. We
chose on-time graduation as the measure of success, and built predictive models
to identify students being at-risk of not graduating in six years. After excluding
on-going students who enrolled in the past six years, the total number of students
in our analysis is 2,552 where approximately 30% are at risk. We did not use self-
reported data such as social media data and LMS logs. The benefit of not using
LMS data is that not all Professors use the LMS in the same way so the analysis
for all students in a major will not have consistent data. We collected student
background information such as demographics and tests taken before admission;
academic information such as major, courses taken, transferred courses, and
advisers; extracurricular activities and participation in student organizations.
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4 Proposed Prediction Method

We design and extract three types of features: academic features, student net-
work features, and fix-point features. The first type is already widely used in the
field of learning analytics, but to our knowledge, there are few works using the
second and third types. Our main contributions lie in the feature engineering
based on student networks and academic activities.

4.1 Academic Features

Academic features such as grade-point average (GPA) are very effective to iden-
tify at-risk students and had been used very widely in many works [5–8,12,13].
We adopted features related to personal information (age, citizenship, gender,
primary ethnicity, etc.), high-school record (school rank, percentile, etc.), and
academic progress (GPA, success rate in earning credits, the number of course
withdraws, etc.).

4.2 Student Network Features

How to Build Student Network. We build a weighted student network in
each semester. Edge weight value between two students represents the cumulative
intensity of the connection by the time point we draw the network. Because it is
cumulative, their intensity will increase as time goes by. We calculate the edge
weight, denoted as w(x, y, t) hereinafter, between two students x and y at a
certain semester t as follows:

w(x, y, t) = exp
( ∑

i

rescale(normalize(wi(x, y, t)))
)
,

w1(x, y, t) =
∑
t′≤t

C(x, t′) ∩ C(y, t′)
C(x, t′) ∪ C(y, t′)

, w2(x, y, t) =
∑
t′≤t

same activity(x, y, t′),

w3(x, y, t) =
∑
t′≤t

same advisor(x, y, t′), w4(x, y, t) = same dept(x, y),

w5(x, y, t) = same major(x, y), w6(x, y, t) = same age high school(x, y),

(1)

where C(x, t) is a set of courses taken by student x at semester t, wi(x, y, t) in
the left-hand side means a cumulative value by t between two students x and y,
and same(x, y) or same(x, y, t) in the right-hand side is an indicator function
that returns 1 if two students x and y have the same (i) activity, (ii) advisor, (iii)
department, (iv) major, or (v) high school with the same age and otherwise 0.
Note that we do not consider time for high school record. Others do depend on
time. For instance, w1(x, y, t), inspired from the Jaccard index1, is to calculate
the sum of the common course ratio between x and y until t. After normaliza-
tion, wi ranges in [0, 1] and after re-scaling, the mean of wi at t becomes 0.5.

1 The Jaccard index is a popular node similarity metric in networks based on the
number of common neighbors divided by the sum of all neighbors.
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Some weights have larger scales than others and may dominate the final weight
value without the normalization and re-scaling. We prevent it by standardiz-
ing edge weights. In our definitions, thus, each wi becomes equally important2.
Activity describes most student-focused extracurricular clubs, sports, and pro-
grams at the college. The exponential function makes strong (i.e., large final
weight) connections stronger. Therefore, a student network at t may consist of
many edges that have relatively small weights and a small number of edges that
have large weights. We draw a student network for each semester t and there are
more than 40 networks created from 13 years of student records. In Fig. 1(b), we
draw a student network using three edge colors: orange (among successful) and
blue (among at-risks) between the same classes and dark green between differ-
ent classes. Note that many at-risk students do not maintain strong connections
with other successful students.

Basic Network Features. In network analysis, centrality comprises meth-
ods to measure the relative importance of nodes (i.e., students in our case).
There exist many different centrality concepts such as degree centrality, close-
ness centrality [24], clustering coefficient [25,26], betweenness centrality [27,28],
PageRank [29], and so forth. Among many, we select centrality measures that
have enough discriminatory information to identify at-risk students after some
statistical analyses, such as t-test and histograms. For almost all centrality con-
cepts, there exist both unweighted and weighted versions. All centrality metrics
used in this paper are weighted, unless otherwise stated.

Community-Based Features. Community detection is a long-standing
research topic in network analysis. Sometimes it is used as a subroutine to
solve other problems similar to our case [30–33]. We use overlapping commu-
nity detection methods because one student can join multiple communities. We
choose SLPA [34] as our base community detection method, considering its accu-
racy and popularity. After finding many overlapping communities in each Nt,
we calculate the following features:

1. Let Com(x) = {Com1, Com2, · · · } be a set of communities that student x
belongs to. Finally, we do MIN/MAX/AVG aggregations over the communi-
ties in Com(x) for each type of network features(x).

2. In each Nt, a giant component means the biggest community. In many cases,
the giant component is one of the most influential student groups and we
check if a student is its member. After that, we calculate the ratio of such
cases over time. The ratio of 1 for a student means that the student is a stable
member of the giant components for his or her entire academic period.

2 This is a very important fact about our network dentition. We do not focus on only
courses but also many other aspects of academic life.
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Ego-Network-Based Features. Ego-network(also called node-centric net-
work) means an induced sub-network by one node and its neighbors [35]. From
each node’s (student’s) ego-network, we extract its ego-network density and clus-
tering coefficient [25,26] as network features. The density is formally defined as
follows:

Density(x, t) =
2

∑
(a,b)∈Ego(x,t) w(a, b, t)

|Nei(x, t)| · (|Nei(x, t)| − 1)
, (2)

where Ego(., t) returns an edge set of one’s ego-network in Nt and Nei(., t)
means a set of one’s neighbors in Nt.

4.3 Fix-Point Features

Given a function f(·), a fix-point x means x = f(x). fix-point calculation is used
in various domains. One representative example is the stationary distribution
of Markov chain, i.e., π = πP, where P is transition matrix. In [29,36–41],
authors defined a mutually recursive complex system of variables and their fix-
point values are used to understand vertices. Defining a complex variable system
requires domain dependent knowledge. We first introduce domain knowledge we
gain from our educational experience and available data:

1. We think that courses/activities/undergraduate advisors simultaneously
taken by many students share common characteristics. Suppose that course
A and course B have many overlapping students in a semester. Those two
courses may have some common characteristics.

2. A student’s characteristic can be described by courses/activities/advisors that
she/he had taken [42–44]. In the network features, we analyzed the interac-
tions among students. Our fix-point features describe students from their
course/activity/advisor records without considering other students.

Based on those intuitions, we define several variables that are mutually recursive
as follows:

val(ci, t) =
∑

cj

#stu(ci, cj , t)∑
ck

#stu(ck, cj , t)
val(cj , t),

val(ai, t) =
∑

aj

#stu(ai, aj , t)∑
ak

#stu(ak, aj , t)
val(aj , t),

val(vi, t) =
∑

vj

#stu(vi, vj , t)∑
vk

#stu(vk, vj , t)
val(vj , t),

val(si, t) =
∑

cj

take(cj , si, t)
1

#stu(cj , t)
val(cj , t)

+
∑

aj

take(aj , si, t)
1

#stu(aj , t)
val(aj , t)

+
∑

adj

take(vj , si, t)
1

#stu(vj , t)
val(vj , t),

where ci, ai, vi, and si represent course, activity, adviser, and student, respec-
tively. #stu(x, y, t) returns the number of students who took two courses, activ-
ities, or advisers x and y together at semester t and take(x, s, t) ∈ {0, 1} is an
indicator variable to denote if course, activity, or adviser x is taken by student
s at semester t. Thus, val(x, t) means an influence value each entity x has at
semester t. As we construct a network Nt in each semester, these variables are
defined for each semester too. We ignore department, major, degree information
because they are too broad to be used in the variable definition.



376 N. Nur et al.

If two courses, activities, or advisers have largely overlapping students, their
values will be very similar because of the coefficient based on normalization. A
student value is an aggregation of all the course/activity/advisor values so it will
be solely decided by the courses/activities/advisers taken by the student (See
Algorithm 1). It is an iterative method to update values. We check the conver-
gence only for the student variables because they are what we are interested in.
The converged student values are used as additional features. The proof of its
convergence is removed in this paper due to space reasons.

4.4 Experiments

The time point of the data is Spring 2004 and the time point is Fall 2016. All
students who graduated on or before Spring 2013 are in the train set and others
are in the test set. The ratio of train:test is 77:23. We perform the grid search
with 10-fold cross validation to find the best model. Many classifiers (including
SVM, Random Forest, Decision Tree, AdaBoost, RBM, Bagging, Multi-Layer
Perceptron, etc.) are tested. In the training set, two classes are slightly imbal-
anced, i.e., 63% successful and 37% at-risk, so we apply under/oversampling
techniques [45] to make them balanced. In general, Random Forest works very
well and all of the reported values were produced by it.

Input: Student network Nt = (V,E), Course and Activity Records
Output: val(si, t) for each student

1 Initialize val(x, t) = 1
n where n is the total number of courses, activities, advisers, or

students depending on the type of x.
2 while until the convergence of val(si, t) do
3 Update val(ci, t); Update val(ai, t); Update val(vi, t); Update val(si, t)
4 return val(si, t)

Algorithm 1: Fix-point calculation algorithm for our complex variable system

Table 1. Prediction results

F-1

Overall

AUCROC Recall of

At-risk

Recall of

Successful

F-1 of

Successful

All students

Academic Features 0.78 0.76 0.56 0.67 0.78

Network Features (w1 only) 0.76 0.72 0.62 0.77 0.83

Network Features (w2 only) 0.73 0.66 0.51 0.70 0.81

Network Features (w3 only) 0.74 0.70 0.61 0.75 0.81

Network Features (w) 0.81 0.8 0.64 0.85 0.87

Academic + Network Features 0.84 0.86 0.69 0.87 0.89

Academic + Network + fix-point

Features

0.85 0.86 0.70 0.90 0.89

Early phase students

Academic Features 0.8 0.75 0.5 0.89 0.8

Network Features (w1 only) 0.8 0.71 0.54 0.85 0.86

Network Features (w2 only) 0.75 0.66 0.51 0.84 0.82

Network Features (w3 only) 0.76 0.68 0.55 0.87 0.83

Network Features (w) 0.8 0.77 0.55 0.79 0.79

Academic + Network Features 0.84 0.85 0.56 0.86 0.9

Academic + Network + fix-point

Features

0.85 0.85 0.58 0.88 0.9
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Prediction Results. We calculated our network features in various types of
student networks whose edge weights are calculated with wi only or with the
combined weight w marked with “(wi only)” or “(w)” as shown in Table 1,
respectively. Note that some wi is omitted in the table due to their performance
inferior to others. Network features based on the combined weight w shows
the best performance among them. Using only the academic features, we could
recall 56% and 50% of at-risk students among all and early phase students. After
adding network features, we could achieve the recall of 69% and 56% for the at-
risk student class and after using all available features, they are improved to
70% and 58%. For other measures such as F-1 and AUCROC, our predictive
model including all academic, network, and fix-point features outperform others
in non-trivial margins. These results strongly teach us answers on our research
questions 1 and 2. That is, network features improve the overall prediction and
in particular, during earlier periods.

Network Analysis. The degree centrality of a student in Nt is the sum of the
edge weights to neighbors. At the beginning, we expected that successful stu-
dents have more friends, thereby higher degree values. However, our observations
disprove the hypothesis. In Table 2, we show degrees in various perspectives. We
calculate average values for the top 50% and bottom 50% students in terms of
avg degree(·) in each prediction class. Their average values are quite different,
i.e., 2522.4 for successful v.s. 5258.1 for at-risk students (with p-value < 0.01).

Table 2. Average centrality,average community-based features and of two student
classes. For space reasons, we list selected values. P-values are smaller than 0.01 only
except the cases marked in boldface.

Successful

(entire period)

At-risk (entire

period)

Successful (at 5th

sem.)

At-risk (at 5th

sem.)

Degree All 2522.4 5258.1 3106.5 2856.6

Top 50% 4487.3 10143.0 5575.5 5392.7

Bottom 50% 557.4 373.1 634.8 311.7

Page Rank All 0.00075 0.00202 0.00072 0.00193

Top 50% 0.00118 0.00365 0.0011 0.00346

Bottom 50% 0.00031 0.00038 0.00032 0.00038

Eigen. All 0.0068 0.02212 0.0058 0.02323

Betw. All 0.00079 0.00456 0.0006 0.00391

Close. All 0.4357 0.4281 0.4372 0.4214

Min Degree All 553.3 498.8 568.8 423.1

Min Eigen. All 0.5348 0.5145 0.5419 0.4719

Giant. All 0.0674 0.087 0.0665 0.0929

Top 50% 0.1268 0.1606 0.122 0.1713

Bottom 50% 0.0074 0.0131 0.0077 0.0137

Fix Point All 0.000601 0.000722 0.001303 0.001793

Top 50% 0.00115 0.00178 0.002344 0.00541

Bottom 50% 2.144450e-81 1.561194e-81 2.511162e-131 1.818025e-131
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Some at-risk students are exposed to more interactions than the majority of
successful students. This can be interpreted in multiple ways, e.g., some at-risk
students have too many student activities. At the same time, the bottom 50%
at-risk students have much lower degrees than the bottom 50% successful stu-
dents, i.e. 557.4 v.s. 373.1 (with p-value <0.01). This means that there also
exist many at-risk students who do not interact with other students as much.

In the top 50% and bottom 50% cases of early phase students, successful
students have higher average values than at-risk students but their significance
level is low (p-value >0.01). However, successful students’ average degree at 5th
semester is larger than that of the entire period, i.e., 3106.5 v.s. 2522.4. This is
possible when successful students (i) quickly stabilize their connections during
their early academic periods and (ii) do not make many new connections in their
late academic periods. However, at risk students need to take some courses many
times in order to pass the course, and this shows up in our network as having
many more connections because they take the same course more times than the
successful student. At 5th semester, the average degree of the top 50% at-risk
students is 5392.7 but it is improved to 10143 when considering their entire
academic periods. This means that they interacted with many new students
even in their late academic periods for student activities, courses, and advisers.
Interestingly the bottom 50% of the at-risk students’ average degree does not
change significantly over time, i.e., 311.7 at 5th semester v.s. 373.1 during entire
academic periods. They are consistently isolated from others. All these findings
support research question 3, that successful and at-risk student show different
behavior over time. For other network features, we also hypothesized before
calculating them that successful students have better values. However, our results
show counter-evidences in some features. Because some at-risk students (e.g.,
the top 50% at-risk students in the previous degree centrality analysis) keep
making new connections (rather than staying in a community), they are bridges
over communities and as a result, their PageRank, betweenness, and eigenvector
centrality values will be higher than other successful students. In the bottom
50% case, we could not observe significant differences.

We also tested many other centrality metrics such as closeness centrality [24],
leverage centrality [46], clustering coefficient [25], and so on. For some of them,
we did not observe significant differences between the two student classes. In
Table 2, the higher average values of community features for successful students
implies they play more important roles in communities than at-risk students.
This is also well matched with the at-risk students’ high betweenness centrality
results which means that they are bridges over communities rather than core
members. Moreover, they are more likely to be members of the giant components
than successful students since they interact with many communities and thus end
up with peripheral positions in the communities. Interestingly, for the bottom
50% at-risk cases, their average degree centrality is lower than that of the bottom
50% successful students but their average percentage of the membership to giant
components is higher. This implies that those at-risk students may visit many
communities but do not make many connections in the communities.
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The ego-network density and clustering coefficient are complementary to each
other. Ego-network density can be high if some edge weights are large. For clus-
tering coefficient, however, some large edge weights cannot solely lead to the
clustering coefficient of 1. Only when ego-network is a complete network, its clus-
tering coefficient becomes 1. Because of this property, we expected larger clus-
tering coefficients from successful than at-risk students. Successful students’ ego-
networks tend to be more complete than that of at-risk students. Ego-network
density will be small if one does not maintain long-term connections in vari-
ous activities. Thus, we hypothesized that successful students may have dense
ego-networks. In all cases, successful students have better ego-network density
than at-risk students, i.e., 3.634 vs. 3.073 and 3.707 vs. 2.706. This observation
is well aligned with all the previous analyses because the ego-network density
results also imply that successful students and their neighbors maintain strong
connections. These evidences provide support for our research question 3 and 4.

Our result also shows that at-risk students have higher fix-point values in
general. We think that it is because of the same reason that at-risk students
make many short-term connections with others. In early phase, the pattern is
unique (supporting research question 3). In the degree centrality, for instance,
successful students’ degree values are higher than that of at-risk students in
the early period. However, for fix-point values at-risk students already show
higher values. This means that we can catch students exposed to too many early
connections. In all cases, p-values are smaller than 0.01.

5 Key Observations, Future Work and Conclusions

We start by building a network that represents the connections between students
and a mutually recursive variable system using data collected by the university to
solve a problem in higher education. The network is constructed using the data
stored in the University student management system and does not rely on access
to social media data or consistent use of LMS data. Our prediction of success
or risk achieves F-1 = 0.85 and AUCROC = 0.86. Our student network analysis
teaches us two very important insights, that is (i) At-risk students establish dis-
orderly connections while successful students keep strengthening their existing
connections, (ii) Successful students have high GPA neighbors and their ties are
strong. The density of successful students’ ego-networks are stable regardless of
time period. Our degree centrality results say that some at-risk students keep
making new connections and their ego-networks do not become dense or com-
plete. Our community-based features also support that successful students are
core community members where at-risks students reside in periphery.

We think that this network model of students can identify effective inter-
vention points at an early stage for at-risk students. It might be their natural
characteristics to make connections in such a way. But by helping them maintain
long-term and stable connections, we believe that at-risk students can improve
their success probabilities. Moreover, considering aspects of gender, race, ethnic-
ity, generational social class, student body demographics, geographic location of
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institution, and socio-economic status of students, are also large factors when
determining how long it takes a student to graduate. We are in process of col-
lecting these data and also the data from our LMS logs. We think that it is
essential to consider those factors when setting up intervention plans and creat-
ing compact student networks.
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