

Cryphonectria parasitica tendrils on chestnut tree bark (Photo: Ministry of Agriculture and Regional Developm Archive, Ministry of Agriculture and Regional Development, Bugwood.org)

6/22/2014

Molecular Markers

B3 Summer Science Camp at Olympic High School

Dr. Jennifer Weller

Genetics and Markers

- Measure aspects of an organisms structure and function
 - How do genes and environment influence individual differences and fitness?
- What aspects should we measure?
 - Morphological (measurements of the body of the organism)
 - Behavioral
 - Molecular

Genetic markers

- Phenotype is the result of genotype
 - How much of a trait depends only on the genes?
 - How much do differences in genes drive differences in appearance?
 - How different are organisms in the same species from each other?
 - How different are organisms in difference genus' from each other?

HumanMPPGTARPGSRGCPIGTGGVLSSQIKVAHRP----EKINQFIEEIRQLDMDLEEHQGEMNQKYKEChimpMPPGTARPGSRGCPIGTGGVLSSQIKVAHRP----EKKNQFIEEIRQLDMDLEEHQGEMNQKYKEDogLPPGTARPGSRGGPIGTGGVLSSQIKVADRP---EKINQFSEEIRQLDMDLEEHQGEMNQKYKEMouseMPPTTARPGSRGGPLGTGGVLSSQIKVADRP---EKINQFSEEIRQLDMDLEEHQGEMNQKYKERatMPPATARPGSRGGPLGTGGVLSSQIKVADRP---EKINQFSEEIRQLDMDLEEHQGEMNQKYKE

Relatedness

- Whales to Hippos
- Even-toed, hoofed mammals are called artiodactyls. This is further broken down to
 - Camels + llamas
 - Cattle + deer
 - Pigs + peccaries
 - Hippopotamuses
- Cetaceans don't have toes ancestors had an even number of appendages.

What is a molecular marker?

• A piece of DNA on a chromosome

- May be part of or closely linked to a gene that makes a protein that affects cell survival
- May be part of controlling elements
- May be in the larger area of 'non-coding' DNA
- Markers have a known location
 - What is being marked?

Human genome 23 pairs of chromosomes 3 X 10⁹ base pairs of DNA Different families of repeated sequences Sex chromosomes (X and Y)

The Human Genome

Chromosome banding occurs at reproducible positions, so the bands are another level of marker.

Studies reveal that gene-rich and genepoor regions correspond to banding patterns within the genome. DNA can have very simple sequences, like CACACACACA, or sequences that are unique across a long stretch of sequence. The simple ones are present at much higher concentration than the unique ones, so the recombine ('reanneal') quickly after separation.

Composition of the human genome

Simple sequence repeats can expand quickly if in non-coding regions, and are a rich source of variation for individual identification purposes.

Simple Sequence Repeats (AAA, ATAT, ACGACG, AGGTAGGT, etc.) – repeating patterns in the middle of unique sequence. SSRs are common in the human genome Estimated 96,000 4 bp repeats in the human genome

Table 14 SSR content of the human genome							
Length of repeat unit	Average bases per Mb	Average number of SSR elements per Mb					
1	1,660	36.7					
2	5,046	43.1					
3	1,013	11.8					
4	3,383	32.5					
5	2,686	17.6					
6	1,376	15.2					
7	906	8.4					
8	1,139	11.1					
9	900	8.6					
10	1,576	8.6					
11	770	8.7					

SSRs were identified by using the computer program Tandem Repeat Finder with the following parameters: match score 2, mismatch score 3, indel 5, minimum alignment 50, maximum repeat length 500, minimum repeat length 1.

SSRs and Length Polymorphisms

Simple sequence repeats have a certain number of units of the repeat: (CA)₁₃ has 13 of the CA units in a row.

The number of units can vary if the polymerase stutters (loses its place).

Two individuals differ by the number of repeats:

3 repeats vs 5 repeats \rightarrow produces <u>length differences</u>.

Turning SSRs into markers

You can use a restriction enzyme that recognizes a sequence just outside the boundaries.

But it takes a lot of DNA and you will have a lot of other fragments cluttering up the gel

Turning SSRs into markers

You can use PCR with primer sequences that lie just outside the boundaries.

Primer 1

Primer 2

Primers match conserved sequence, lie just outside the repeated region and amplify across is, so most of the PCR product is the repeated region

How Do Primers Influence Amplified Fragment (Amplicon) Length?

	AATG							
▲								
ļ								
	AATG							

Fragment Size Estimation

Longer repeats are often from 'inactive' viral sequences.

Classes of interspersed repeat in the human genome Length Copy Fraction of number genome ORF1 ORF2 (pol) LINEs. Autonomous - AAA 6-8 kb 850,000 21% A8 SINES Non-autonomous -AAA 100-300 bp 1,500,000 13% (env) 980 pol Retrovirus-like Autonomous 6-11 kbelements 450,000 8% (gag) Non-autonomous 1.5-3 kb transposase DNA Autonomous 2-3 kbtransposon 300,000 3% fossils 80-3,000 bp-Non-autonomous