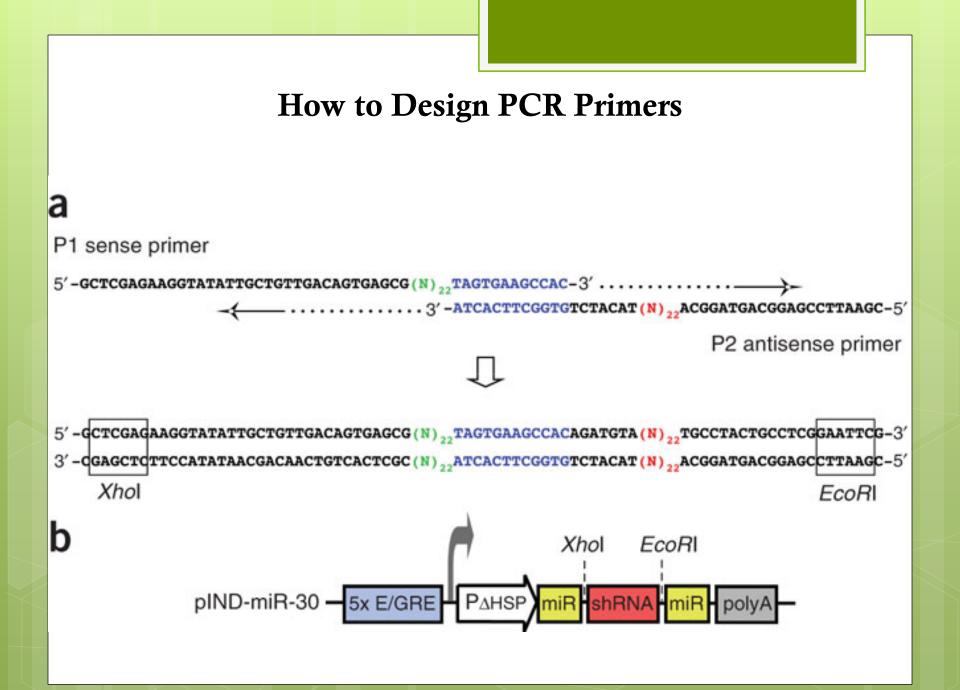
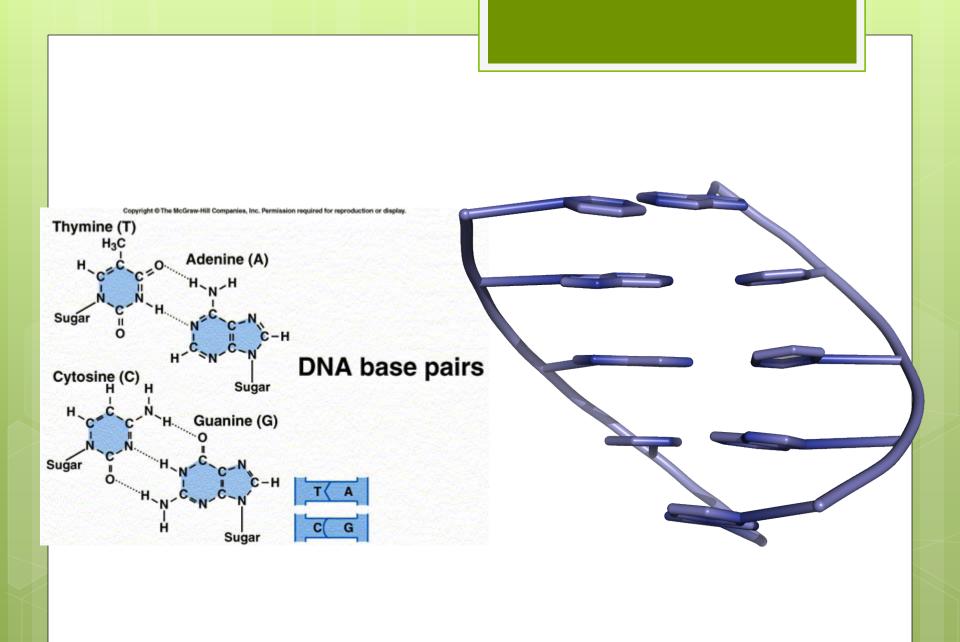


Cryphonectria parasitica tendrils on chestnut tree bark (Photo: Ministry of Agriculture and Regional Developm Archive, Ministry of Agriculture and Regional Development, Bugwood.org)

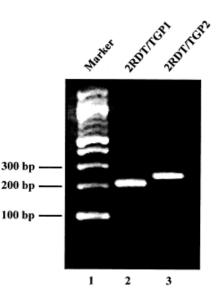


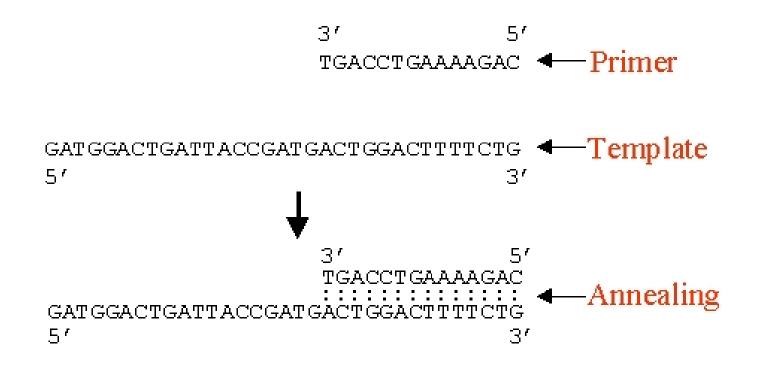

6/22/2014

How/Why to Design PCR Primers

B3 Summer Science Camp at Olympic High School

Dr. Jennifer Weller

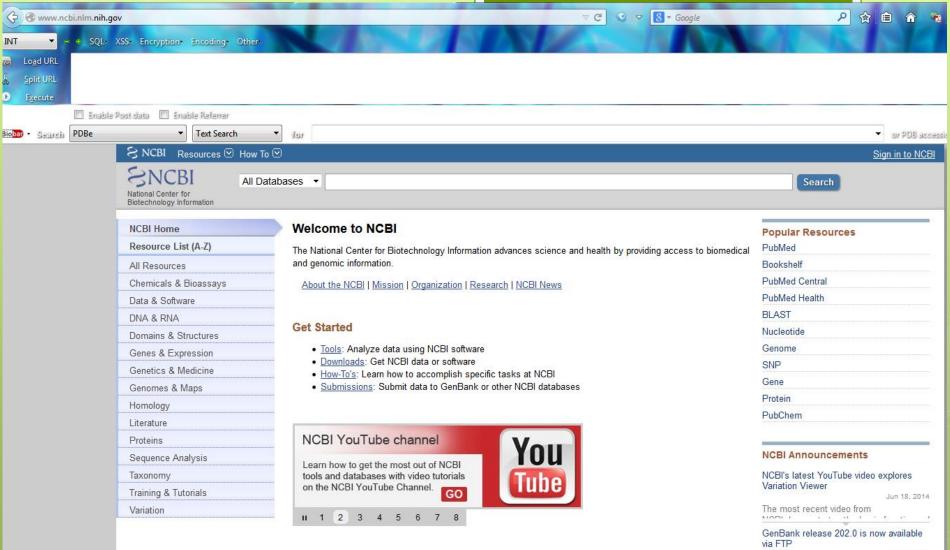



When we design the chloroplast primers – what are we trying to do?

------<u>ttactititica</u>titiccct CAATATCT CÃA TATCTTTACTTTTTTCAGAATCCTATTTTTGTTCTTATACCCATGCAATAGAGAGCGAGTGGGAAAAGGGA-GGTTACTTTTTTCATTTTTCCTTTTTCCCT CAATATCT<u>TTACTTTTTTCA</u>GAATCCT<u>ATTTTT</u>GTTCTTATACCCATGCAATAGAGAGCGAGTGGGAAAAGGGAAGG<u>TTACTTTTTTCA</u>TTTT<u>C</u>CCT TÂATGCTCCQ<mark>CAATTCTACCAGAAATACTCTAAGAATTTGTTAA<u>ATTCTACCAGAAATACTCTAAGAATTTGTTAA</u>GAGTAAATTCTTTGAACTGATTC</mark> TÂCACCCTGTGTACATTCTATG<u>CTATAGGAATTC</u>TA<u>CTATAGGAATTC</u>GATAAGAATTGAGTTGTTGTTGTTATGGTAAGTTAACATGCTTCG<u>-</u>TTATTAAAC TĂCACCCTGTGTACATTCTATG<u>CTATAGGAATTC</u>TA<u>CTATAGGAATTC</u>GATAAGAATTGAGTTGTTGTTATGGTAAGTTAACATGCTTCG<u>-</u>TTATTAAAC TĂCACCCTGTGTACATTCTATG<u>CTATAGGAATTC</u>TA<u>CTATAGGAATTC</u>GATAAGAATTGAGTTGTTGTTATGGTAAGTTAACATGCTTCG_TTATTAAAC tacaccctgtgtacattctatgctataggaattc-----ataagaattgagttgttgttgttattgtaagtcaacatgcttcgattattaaac CTATGGCACAGCAATCCTGTTTCGAGACCAAGCGAAACAGAATTCTTTTTTTCTCTCTTGTTCCTTGTCCAAGGGAAAGCTATATGGTATTCAAGGC CTATGGCACAGCAATCCTGTTTCGCTTGGTCTCGAAACAGAATTCTTTTTTTCTCTTTGTTCCTTGTTCTTGTAAGGGTAAGCTATATGGTATTCAAGGC 3 CTATGGCACAGCAATCCTGTTTCG<u>CTTGGTCT</u>CGAAACAGAATTCTTTTTTCTCTTTGTTCCTTGTCTATAGGGTAAGCTATATGGTATTCAAGGC

One sequence is 32 bases shorter than the other.

- A. General Rules for PCR Primer Design
- B. Tools to help you design PCR Primers
- C. Checking how good your primers really are.



Primers determine whether PCR produces the product you want Strand separation (denaturation) DNA. Targed sequence. ing strand. hotton \$ 94.95 TC steand Primer binding (annealing) averse primer. **Specificity** forward primer New DNA synthesis (extension) DNA polyme may 1st cycle Exponential amplification 2nd cycle = 8 copies 3^{r1} cycle 16 copies 35th cycle. 2³⁶ copies !

What type of PCR are you doing?

Usually a single gene or part of a gene is the target, but sometimes more than one gene is desired.

- Single-gene amplification?
- > Multiple-site amplification?
- Design depends on what information you have when you start:
 - Single DNA sequence?
 - > Multiple DNA sequences?
 - Database record (GenBank)?

Jun 17, 2014

Release 202.0 (6/12/2014) has

RefSeq model sequences can now be

constructed from genomic and transcript sequences

Jun 13, 2014

More

🕙 www.ncbi.nlm.nih.gov/nuco	ccore/AY586342	2.1 V C V S - Go	ogle	<u>ک</u> ک	1 🔒 🏠 🐁
and the second second		Encoding Other			
Lo <u>a</u> d URL Split URL Execute	Encryphon-				
Enable Post da	lata 🔳 Enab	la Rafarrar			
• Searcin PDBe	-	Text Search 🔹 jour			 or PDB accessio
	NCBI Res	sources 🛛 How To 🛇			Sign in to NCBI
Nu	ucleotide	Nucleotide 👻		Search	
		Limits Advanced			Help
Dis	splay Setting	<u>is:</u> ⊙ GenBank	Send: ⊘		
				Change region shown	
Ca	astanea	a dentata NADH dehydrogenase subunit F (ndhF) gene, partial cds;			
	hloropla				
	enBank: AY5			Customize view	•
FAS	STA Graph	nics PopSet			
				Analyze this sequence	
<u>G0</u>	<u>o to:</u> 🕑			Run BLAST	
		AY586342 2354 bp DNA linear PLN 03-APR-2007 Castanea dentata NADH dehydrogenase subunit F (ndhF) gene, partial		Pick Primers	
DEI	FINITION	cds; chloroplast.		Highlight Sequence Features	
		AY586342		Find in this Sequence	
	ERSION EYWORDS	AY586342.1 GI:51472248			
		chloroplast Castanea dentata (American chestnut)		Related information	
		<u>Castanea dentata</u> Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;		Related Sequences	
		Spermatophyta; Magnoliophyta; eudicotyledons; Gunneridae;		PopSet	
REI		Pentapetalae; rosids; fabids; Fagales; Fagaceae; Castanea. 1 (bases 1 to 2354)		Protein	
		Lang, P., Dane, F., Kubisiak, T.L. and Huang, H.		PubMed	
3		Molecular evidence for an Asian origin and a unique westward migration of species in the genus Castanea via Europe to North America		Taxonomy	
i.		Mol. Phylogenet. Evol. 43 (1), 49-59 (2007)		Recent activity	
REI		17098448 2 (bases 1 to 2354)			Turn Off Clear
1	AUTHORS	Lang, P. and Dane, F.		Castanea dentata NADH de	
	JOURNAL	Phylogeny of Castanea based on chloroplast sequence data Unpublished		subunit F (ndhF) gene, parti	
REI	FERENCE	3 (bases 1 to 2354)		Q Castanea dentata chloroplas	st (156) Nucleotide
	AUTHORS	Lang, P. and Dane, F. Direct Submission		Q Castanea dentata (422)	
i		Submitted (29-MAR-2004) Department of Horticulture, Auburn			Nucleotide
FE2	TURES	University, 101 Funchess Hall, Auburn, AL 36849, USA Location/Qualifiers 12354		Q Tomato (168650)	Nucleotide
	source	12354 /organism="Castanea dentata"		Isothermal amplification met	
		/organelle="plastid:chloroplast"		next-generation sequencing	PMC

Primer and PCR product length rules

Primer length determines the specificity

- > Too short binds many places \rightarrow non-specific amplification
- > Too long likely to have internal structure and binds to itself Optimal primer length $T_m(\mathcal{C}) = 64.9 + \frac{41(G + C - 16.4)}{L}$
 - > 18-24 bp for single-gene products
 - > 30-35 bp for multiple gene products
- Optimal product (amplicon) size
 - > 300-1000 bp for most purposes (> 3000bp takes special conditions)

Parameters are values for variables, like the temperature.

T_m is the temperature at which 50% of the DNA duplex dissociates to become single stranded

Determined by primer length, base composition, and concentration of the primer, template (input DNA) and salt (monovalent cation means Na⁺)

Optimal melting temperature

- ➢ Generally reactions are aimed at 52°C- 65°C
- Higher T_m (75°C-- 80°C) is recommended for amplifying high GC content targets.

Matching Primer T_m - you need two primers

- If their T_m s are too different you will get single-sided PCR and a poor yield.
- > Desirable T_m difference < 5°C between the primer pair

Avoiding multiple products when you DON'T want them.

Cross matches (homology)

- If some regions of genes are very similar in sequence and your primers bind there, you will get products from all matching regions.
- Primers containing highly repetitive sequence are very likely to generate multiple products.

Checking for cross-matching

Use a pattern matching program, like BLAST, with the sequence of your PCR primers as the query and the NCBI nr (non-redundant) sequence database as the target – it will return all matches and you can see if you have a problem.

General rules for primer design

-- GC content; repeats and runs

Primer G/C content

- > Optimal G/C content: 45-55%
- Common G/C content range: 40-60%

Runs (single base stretches)

- Long runs increases mis-priming (non-specific annealing) potential
- > The maximum acceptable number of runs is 4 bp

Repeats (consecutive di-nucleotide)

- > Repeats increases mis-priming potential
- The maximum acceptable number of repeats is 4 dinucleotide

General rules fo<mark>r primer design</mark> -- Primer secondary structures

Hairpins

- Formed via intra-molecular interactions
- Negatively affect primer-template binding, leading to poor or no amplification
- Acceptable ∆G (free energy required to break the structure): >-2 kcal/mol for 3'end hairpin; >-3 kcal/mol for internal hairpin;

Self-Dimer (homodimer)

- Formed by inter-molecular interactions between the two same primers
- Acceptable ∆G: >-5 kcal/mol for 3'end self-dimer; >-6 kcal/mol for internal self-dimer;
 Self-Dimer

Cross-Dimer (heterodimer)

- Formed by inter-molecular interactions between the sense and antisense primers
- Acceptable ∆G: >-5 kcal/mol for 3'end cross-dimer;
 >-6 kcal/mol for internal cross-dimer;

Hairpin

```
Oligo, 3 bp (Loop=4), delta G = -0.1 kc/m

5' GGGAAA

111

3' TATCTAGGACCTTA

Oligo, 2 bp (Loop=3), delta G = 2.1 kc/m

5' GGGAA

11 | A

3' TATCTAGGACCTTA
```

General rules for primer design

-- GC clamp and max 3' end stability

GC clamp

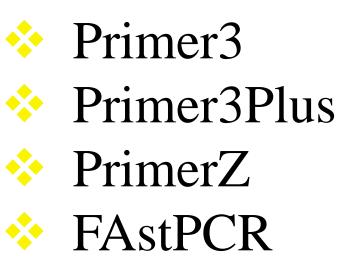
- Refers to the presence of G or C within the last 4 bases from the 3' end of primers
- Essential for preventing mis-priming and enhancing specific primer-template binding
- > Avoid >3 G's or C's near the 3' end
- Max 3'end stability
 - > Refers to the maximum ΔG of the 5 bases from the 3'end of primers.
 - While higher 3'end stability improves priming efficiency, too higher stability could negatively affect specificity because of 3'-terminal partial hybridization induced non-specific extension.
 - > Avoid $\Delta G < -9$.

General rules for primer design

-- Annealing temperatures and other considerations

T_a (Annealing temperature) vs. T_m

- > T_a is determined by the T_m of both primers and amplicons: optimal $T_a=0.3 \times T_m$ (primer)+0.7 $\times T_m$ (product)-25
- > General rule: T_a is 5°C lower than T_m
- ▶ Higher T_a enhances specific amplification but may lower yields
- Crucial in detecting polymorphisms


Primer location on template

- Dictated by the purpose of the experiment
- ▶ For detection purpose, section towards 3' end may be preferred.

When using composite primers

- Initial calculations and considerations should emphasize on the templatespecific part of the primers
- Consider nested PCR

Resources for General Purpose PCR Primer Design

General Purpose PCR Primer Design Tool–Primer3

Name	Primer3 an online tool for PCR primer design
Туре	Web-based software
Key Functions	Design PCR primers and hybridization probes.
Publication Info	Methods Mol Biol 2000
Times Cited	823
Pros	The original and most widely used PCR primer design program; uses sequence as input; a huge number of options for customizing primer design;
Cons	busy interface;
Note	In OBRC; the program has been widely adopted by many primer design software.
YiBu's Rating	4 out of 5

Web Site:

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi

More Info:

http://www.hsls.pitt.edu/guides/genetics/obrc/dna/pcr_oligos/URL1043858198/info

General Purpose PCR Primer Design Tool-Primer3Plus

Name	Primer3Plus, an enhanced web interface to Primer3
Туре	Web-based software
Key Functions	Design PCR primers for a given DNA sequence.
Publication Info	NAR 2007
Times Cited	N/A
Pros	Uses sequences or sequence file as input; a huge number of configuration options; automates specific tasks such as designing primers for cloning or step- wise sequencing; primers can be sent to an order form; clean, intuitive and well organized interface;
Cons Note YiBu's Rating	in OBRC. It is an updated, task-oriented web-interface to the original Primer3. 4.5 out of 5

Web Site:

http://www.bioinformatics.nl/primer3plus

More Info:

http://www.hsls.pitt.edu/guides/genetics/obrc/dna/pcr_oligos/URL1191263055/info

General Purpose PCR Primer Design Tool–PrimerZ

Name	PrimerZ streamlined primer design for promoters, exons and				
	human/mouse SNPs				
Туре	Web-based software				
Key Functions	Design PCR primers for promoters, exons, and human/mouse SNPs				
Publication Info	Nucleic Acid Research 2007				
Times Cited	0 (too new)				
Pros	Uses gene name, Ensembl ID, rs# as input; settings for amplicon region and				
	length, as well as PCR product sizes; allow batch rsSNP processing; frequently				
	updated; offers many advance design settings; interactive results output				
Cons	reported successful rate over 70%; only for human and mouse				
Note	built on Primer3; in OBRC.				
YiBu's Rating	4.5 out of 5				

Web Site:

http://genepipe.ngc.sinica.edu.tw/primerz/beginDesign.do

More Info:

http://www.hsls.pitt.edu/guides/genetics/obrc/dna/pcr_oligos/URL1190992855/info

Resources for PCR Primer Specificity Analysis – NCBI BLAST

S BLAST Basic Local Alignment Search Tool						
Home Recent Res	ults Saved Strategies Help					
▶ NCBI/ BLAST/ blastn suite: B	LASTN programs search nucleotide databases using a nucleotide query. <u>more</u>	Reset page Bookmark				
Enter Query Se	equence					
Enter accession n	umber, gi, or FASTA sequence 🤢 <u>Clear</u> Query subrange 🤢					
>mouse <u>GAPDH</u> 6F T <u>GC ACC ACC ACC</u>						
Or, upload file	Browse 0					
Job Title	mouse GAPDH 6F primer Enter a descriptive title for your BLAST search (2)					
Choose Searc Database Entrez Query Optional	OHuman genomic + transcript					
Program Selec	Enter an Entrez query to limit search @					
Optimize for	 Highly similar sequences (megablast) More dissimilar sequences (discontiguous megablast) Somewhat similar sequences (blastn) Choose a BLAST algorithm 					
BLAST	Search database Mouse G+T using Megablast (Optimize for highly similar sequences	s)				

Resources for PCR Primer Mapping – UCSC In-Silico PCR

Home	Genomes	Blat	Tables	Gene Sorter	Session	FAQ	Help		
UCSC In-Silico PCR									
[Genome: Mouse			Assembly: Jul. 2007		_	Forward Primer: TGCACCACCAaCTGCTT	Reverse Primer: GGATGCAGGGATGATG	submit
	Max Product	Size: 500	000	Min	Perfect Ma	tch: 18	Min	Good Match: 18	Flip Reverse Primer:
About	In-Silico PO	CR							

In-Silico PCR searches a sequence database with a pair of PCR primers, using an indexing strategy for fast performance.

Configuration Options

Genome and Assembly - The sequence database to search.
Forward Primer - Must be at least 15 bases in length.
Reverse Primer - On the opposite strand from the forward primer. Minimum length of 15 bases.
Max Product Size - Maximum size of amplified region.
Min Perfect Match - Number of bases that match exactly on 3' end of primers. Minimum match size is 15.
Min Good Match - Number of bases on 3' end of primers where at least 2 out of 3 bases match.
Flip Reverse Primer - Invert the sequence order of the reverse primer and complement it.

Output

When successful, the search returns a sequence output file in fasta format containing all sequence in the database that lie between and include the primer pair. The fasta header describes the region in the database and the primers. The fasta body is capitalized in areas where the primer sequence matches the database sequence and in lower-case elsewhere. Here is an example:

```
>chr22:31000551+31001000 TAACAGATTGATGATGCATGAAATGGG CCCATGAGTGGCTCCTAAAGCAGCTGC
TtACAGATTGATGATGCATGAAATGGGgggtggccaggggtggggggggg
gactgcagagaaaggcagggctggttcataacaagctttgtgcgtcccaa
tatgacagctgaagttttccagggggctgatggtgagccagtgagggtaag
tacacagaacatcctagagaaaccctcattccttaaagattaaaaataaa
```

http://genome.ucsc.edu/cgi-bin/hgPcr?db=mm9