Summer Institute for Engineering and Technology Education

�subject�Computer Systems Engineering� - Teacher Module �keywords�1�

�title�Computer Controlled Robot�

CONCEPT

To demonstrate how the computers can be programmed to control mechanical or electrical devices.

OBJECTIVES

Learn how an IBM PC/compatible computer communicates.

Understand the syntax and rules of programming.

Demonstrate how the syntax of different languages varies and compare the advantages and disadvantages of these languages.

Demonstrate how computers can be used to perform repetitive work with the help of simple program loops.

SCIENCE PROCESS SKILLS:

Observing

Identifying

Comparing and contrasting

AAAS SCIENCE  BENCHMARK:

8C  Energy Sources and Uses

3A  Technology and Science

3B  Design and Systems

SCIENCE EDUCATION CONTENT  STANDARDS(NRC):

Grades 5 - 8

Communications

Grades 9 - 12

Identify disciplines in Computer Technology

Communications

STATE SCIENCE CURRICULUM FRAMEWORKS:

1.1.11,  1.1.14,  2.1.7,  2.1.8,  2.1.9,  3.1.21

Materials List:

IBM PC/ Compatible computer

Printed Circuit board with high current drivers, octal tri-state D flip-flop, male connector.

Breadboard with 12 LED’s (to test the program)

Software List:

QBasic (DOS Version)

Assembler

C compiler

The Job 

To write a small program in BASIC, C and assembler to control a robot through the parallel port of a computer. The experiment uses the bread board with LED’s( Light Emitting Diodes) to be used in place of the robot’s legs.  The circuitry required to transfer data from the parallel port to the robot will be provided to you. Your job will be to generate a program which will test the circuit that will be used to control the robot.

Solution

How does the computer communicate ? Does it have a language of its own ? 

The answer is Yes. A computer communicates in a language of its own. BASIC,  C, C++, FORTRAN, COBOL, and assembler are some of the languages the computer uses to communicate. In this experiment, we will look at BASIC, C, and assembler. There are three different ways in which the computers interact with the circuitry around them: through direct and indirect memory access, through input/output (I/O) ports, and with signals called interrupts.

The microprocessor uses memory by reading or writing values at memory locations that are identified with numeric addresses. 

Input/Output ports are the microprocessor’s general means of communicating with any computer circuitry other than memory. Like memory locations, I/O ports are identified by a number, and data can be read from or written to any port. I/O port assignment is unique to the design of any particular computer. Generally, all members of the IBM PC family use the same port specifications.

Interrupts are the means by which the circuitry outside the microprocessor reports that something (such as a keystroke) has happened and requests that some action be taken. Interrupts are essential to the microprocessor’s interaction with the hardware around it.

Which one of the different ways described above should be used to output commands to control the robot ?

Input/Output Ports should be used because the robot is an external device and we are sending commands to the robot. There are no interrupts in our case because the robot does not send back any instructions to the computer.

How does the computer uses I/O Ports ?

The microprocessor communicates with and controls many parts of the computer through the use of Input and Output (I/O) ports. The I/O Ports are doorways through which information passes as it travels to or from an I/O device, such as a keyboard or a printer.

Each port is identified by a port number which can range from 00\h to FFFF\h. The \h means the number is expressed in hexadecimal notation. The CPU (Central Processing Unit) identifies a particular port by the port’s number. To access a port, the CPU first sends a signal on the system bus to notify all I/O devices that the address on the bus is that of a port. The CPU then sends the port address. The device with the matching port address responds. The port number addresses a memory location that is associated with an I/O device, but is not part of main memory. To access an I/O port, you use the instructions IN and OUT which are reserved for I/O port access. The port addresses for the parallel printer port are from 378\h to 37B\h.

Programming the Parallel Port

Parallel ports send a byte in parallel through eight lines. All the eight bits move essentially at the same time and at the same rate. Sending a byte in parallel is faster than sending serially through one wire. Parallel cables typically need 25 lines (8 for data and 17 for control signals). 

Port Registers:

All parallel ports use the same register interface which consists of three ports occupying the first three port addresses of the card. Ex: 378\h, 379\h, 37A\h. A direct connection exists between the bits of the port registers and the lines in a parallel cable. If a bit in one of the registers is set to 1, then an electrical signal is immediately sent over the corresponding line. If the bits is set to 0, then the current in the line returns to “low” status.

Data lines:

The eight bits of the first parallel port register use positive logic and correspond to the data lines 0 to 7. This register is meant only to output data, not to receive data and is located at the address 378\h. IBM PC and compatible computers have a parallel printer interface that has a control port and a data port.

The Control Port

Typically the control port for the IBM PC and compatibles is located at the hexadecimal address 37A, written in BASIC as &H37A.

BASIC Statement				What does it mean ?

OUT &H37A, 1	‘Output hex 1 to the control port’

OUT &H37A, 2	‘Output hex 2 to the control port’





The Data Port

The data port for the IBM PC and compatible computer printer interface is located at the hexadecimal address 378, written in BASIC as &H378. A data port write is usually combined with a control port write to direct the data to the desired driver.

Code				What does it mean ?

OUT &H378, 1		‘Output hex 1 to the data port’

OUT &H378, 3		‘Output hex 3 to the data port’



The Control Program

The program will be used to control the robot. Three different versions of the program in BASIC, C, and assembler are shown below.

BASIC Program:

REM 			Program Name: CONTROL.BAS

REM			This program lights up the LED's sequentially

DO

OUT &H37A, 0		REM Pass all data port writes

OUT &H378, 0

GOSUB DELAY

OUT &H378, 1

GOSUB DELAY

OUT &H378, 2

GOSUB DELAY

OUT &H378, 4

GOSUB DELAY

OUT &H378, 32   REM LED's are reversed for the last three

GOSUB DELAY

OUT &H378, 16

GOSUB DELAY

OUT &H378, 8

GOSUB DELAY

LOOP

DELAY: FOR X = 1 TO 1000: NEXT X:  RETURN



The first two lines of the program starts with REM  which means that it is Remark and is not actually a part of  the program. Remarks are included in the program to help the programmer understand the logic of the program and are ignored by the compiler. Remarks can be inserted anywhere in the program. The first two lines of the program convey to us that the name of  the program is CONTROL.BAS and that the program is used to light up the LED’s sequentially. The third line of the program contains the statement OUT &H37A, 0 which is an instruction to the computer. As explained earlier, the IBM PC and compatible control port is located at the hexadecimal address 37A and is written in BASIC as &H37A. The statement OUT &H37A,0 actually sets up the ports for transfer. 

The fifth line of the program contains the instruction OUT &H378, 0.  As explained earlier the data port for an IBM PC is located at the hexadecimal address 378 and is written in BASIC as OUT &H378. The statement OUT &H378A writes the data valued 0 to the data port. The next statement contains GOSUB DELAY which means that the program will not execute the next sequential line but will branch of to a subroutine called DELAY.  The purpose of this DELAY loop is to hold the data on the data port for a certain time before another value is written to the data port. The time required to execute one instruction is of the order of micro seconds and it would be very hard to notice which one of the LED’s was turned on if the DELAY loop was not present

The last line of the program contains the DELAY subroutine. This subroutine will execute a loop 1000 times before returning to the main program. The execution of this loop takes a certain amount of time and the time can be increased by executing the loop for more cycles. The  process is repeated by subsequently writing the values of 1, 2, 4, 32, 16, 8 to the data port which will light up the LED’s sequentially. The whole process is repeated in a loop until the execution is terminated by the user. 

C Program:

/*	 Program Name:  control.c 				*/

/*	This program lights up the LED's sequentially  	*/



/* The following files are to be included in the beginning of the C Program and contain

the meaning and definitions of the built in functions used in the program. The program will not 

run if any one of the files are missing */



 #include <stdio.h>

 #include <conio.h>

 #include <dos.h>

 main()

 {

void DELAY(void);   	/* Function prototype for the user function DELAY */

while(!kbhit())	 	/* Perform the instructions in parenthesis  until any one of 						the keyboard keys is pressed .*/

{

outportb (0x37A,0x0); /* pass all data port writes */

outportb (0x378,0x0); /* Output hex 0 to the data port */

DELAY();		/* Execute the DELAY loop */

outportb (0x378,0x1);

DELAY();

outportb (0x378,0x2);

DELAY();

outportb (0x378,0x4);

DELAY();

outportb (0x378,0x32);

DELAY();

outportb (0x378,0x16);

DELAY();

outportb (0x378,0x8);

DELAY();

}

return;

 } /* End of main Program */



/* Code for the function DELAY */

/* This function will delay the execution of the next instruction in the main program */

 void DELAY( void)

 {

int i; /* Defines i as integer */

for (i=0;i<1000;i++); /* Executes the loop 1000 times after each execution the value of i is 

incremented from 0 to 1000; When i is equal to 1000 exits  loop */

 } /* End of the function DELAY */



The above version of the C Program performs exactly the same function as the BASIC Program shown earlier. You notice that the syntax varies from the BASIC version. At the beginning of each C program are included some files which are required for the program to compile and run properly. The C Program also starts with a main() which contains the main section of the program. The user defined functions should be prototyped before they can be used. The function kbhit() is offered by the C language and detects if the key board is pressed or not. The ! which means NOT indicates that while no keys have been depressed on the keyboard, it will continue executing the loop.

The C equivalent of OUT &H37A, 0 is outportb( 0x37A, 0x0), and the equivalent of�FOR X = 1 TO 1000 : NEXT X:  in C will be�for (i=0;i<1000;i++);

Assembler Program:

;	control.asm

;

;	Input:  User presses a key to terminate the program.

;	Output: Computer sends signals out to parallel port, to light LED's sequentially.

;

;	Note: Hexadecimal values are written with an 'h' on the end.

;			Example: 16 in decimal is 10h in hexadecimal

;	Written in Microsoft Assembler 5.0

;	To assemble	MASM control,,,,

;	To link		LINK lights,,,



		.model small			;small memory model

		.stack 100h			;set up program stack

		.data				;data segment



		Message	db	13,10,'Press a key to end.',13,10,'$'

						; message	13 �> Carriage return

						;		10 �> Line Feed



		.code                          	;code segment

; This is the beginning of the actual program



		mov	ax,@data		;load addr of data segment in ax

		mov	ds,ax			;load ds to point to data seg

		mov	ah,9                    	;dos print string

		mov	dx,OFFSET Message	;point to message

		int	21h                     	;display message

looper:

		mov	ax,0			;set up port initially, write out 0

		mov	dx,37ah		;pass all port writes

		out	dx,ax			;output byte to port

		mov	ax,0

		mov	dx,378h		;second half of port

		out	dx,ax

; delay

d1:	mov	ax,0ffffh		;set delay loop

		dec	ax			;subtract 1 from loop

		cmp	ax,0			;check if equal to 0

		jg	d1			;if loop < 0, continue

		xor	ax,ax			;clear ax

		mov	al,01h			;write 01h to port

		out	dx,ax

; delay

d2:	mov	ax,0ffffh

		dec	ax

		cmp	ax,0

		jg	d2

		xor	ax,ax

		mov	al,02h			;write 02h to port

		out	dx,ax

; delay

d3:	mov	ax,0ffffh

		dec	ax

		cmp	ax,0

		jg	d3

		xor	ax,ax

		mov	al,04h			;write 04h to port

		out	dx,ax

; delay

d4:	mov	ax,0ffffh

		dec	ax

		cmp	ax,0

		jg	d4

		xor	ax,ax

		mov	al,32h			;write 32h to port

		out	dx,ax

; delay

d5:	mov	ax,0ffffh

		dec	ax

		cmp	ax,0

		jg	d5

		xor	ax,ax

		mov	al,16h			;write 16h to port

		out	dx,ax

; delay

d6:	mov	ax,0ffffh

		dec	ax

		cmp	ax,0

		jg	d6

		xor	ax,ax

		mov	al,08h			;write 08h to port

		out	dx,ax

; delay

d7:	mov	ax,0ffffh

		dec	ax

		cmp	ax,0

		jg	d7



		mov	ah,1			;check for keypress

		int	16h

		jz	looper			;if no key pressed continue



;;;;; terminate the program and exit to DOS



leave:	mov	ah,4ch			;load dos terminate

		int	21h			;terminate program



		end				;end of main



The assembler program begins by setting the memory model for the assembler. Setting up the memory model arises because the CPU chip design which forces memory management to be done in segments and each segment can address a maximum of 65,636 (64k) bytes. The memory model simply specifies how the segments are to be managed. The stack is then set up. The ‘Press a key to end.’ message is set up in the data segment, along with carriage returns and line feeds to make the line print properly to the screen. Then the actual program begins with the code segment. The segment and offset of the message are loaded for printing. The message is then printed to the screen, using an interrupt. Initialization values are sent to the parallel ports. A delay is then set up and executed. Note that due to the speed of assembler code, this delay may not be long enough. This is dependent upon the computer used. A value is then written to the parallel port. This process continues until a key is pressed. The keypress is detected at the end of the process loop, with interrupt 16h. The program then cleans up after itself and terminates to DOS. A delay subroutine was not included in this program for clarity.

Note that this program is significantly longer than the C or BASIC versions. Also note that it appears much more cryptic. This is one of the tradeoffs of assembler. Assembler will allow the user power and speed, but it requires more intricate and extensive programming. 

This should give an idea of the various ways that different programming languages can be used to write out to the hardware ports for IBM PC and compatible computers. 



ENTERING THE PROGRAM INTO THE COMPUTER

Once the program has been written it must be entered into the computer before it can be compiled and executed. This is usually accomplished by using a text editor. Any editor can be used to enter a program and its accompanying data files. The text file is then assigned a file name and stored either in the computer’s memory or on an auxiliary storage device. To save the file choose File option from the menu and click on Save option found in the pull down menu. Usually suffixes such as C, BAS are attached to the file name, identifying the files as C and BASIC program respectively. These suffixes are called extensions. The C and BASIC compilers that will be used for this experiment have their own editors. These editors can be used in conjunction with the compiler by displaying a portion of an unsuccessfully compiled program and indicate exactly where the compilation error occurred.



COMPILING AND EXECUTING THE PROGRAM

Once the program has been correctly entered into the computer, it has to be compiled and linked with one or more library routines before it can be executed. Both these operations can be accomplished automatically by choosing Compile option from the menu and clicking on the Build All option found in the pull down menu. Any syntax errors in the program are identified at this stage by the compiler. Use the text editor to correct these errors. The program should be free of  errors to be compiled and linked successfully. The successful compilation and linking of a C program will result in an executable(machine language) program that can be executed in response to an appropriate command. To run the program choose Run option from the menu and click on the Run option from the pull down menu. 

Bibliography

The New Peter Norton Programmer’s Guide To The IBM PC & PS/2, Microsoft Press, Redmond, Washington 98073, 1988.

Turbo C Bible, Nabajyoti Barkakati, SAMS, A Division of Prentice Hall Computer Publishing, 11711 North College, Carmel, Indiana 46032, 1992.

Stiquito II, Mills J, 1994. This is available on ftp from : /app/ftp/pub/engr_ed/stiquito.

Using Assembly Language, Allen L. Wyatt, Sr., QUE, 11711 North College, Carmel, Indiana 46032, 1992.

� TITLE  \* MERGEFORMAT �Computer Controlled Robot�	�subject �Computer Systems Engineering�: Module �keywords �1�/�PAGE�2�



( The Summer Institute for Engineering and Technology Education, University of Arkansas 1995.  All rights reserved.



Revision: �TIME \@ "MM/dd/yy"�08/01/95�



( The Summer Institute for Engineering and Technology Education, University of Arkansas 1995.  All rights reserved.







