Fault-Tolerant Architecture for High Performance Embedded System Applications

Author:

Gul N. Khan

Division of Computing Systems School of Applied Science Nanyang Technological University, Singapore

Presented by: Matthew D. McClellan ECGR 6185 Adv. Embedded Systems April 3rd, 2013

- Purpose
- Abstract
- Architecture
- Fault Detection
- Fault Containment and Recovery
- System Reliability Analysis

Purpose

- Overkill for most systems
 - Cellular Phones
 - Printers
- Needed for safety-critical systems
 - Medical Systems
 - Avionics
 - Astronautics

- High Performance
 - Exploit Parallelism with Multithreading
 - High Throughput for Real-Time Critical Applications
- Reliability
 - System Failure at Most 10⁻¹⁰ per Hour (MTF: 1.1 Million Years)

HPEC Architecture

- High Performance Embedded Computer (HPEC)
 - Five Processors
 - Three Worker Processors (WP₁, WP₂ & WP₃)
 - Two Interface Processors (IP₄ & IP₅)
 - Ten Dual Port Memory
 - Connecting Each Processor Pair (DP₁₂, DP₁₃, ..., DP₄₅)

[2]: HPEC System Architecture

HPEC Architecture (cont.)

- Divisions of Tasks
 - Worker Processors for Intense
 Computations
 - Interface Processors for Real-Time I/O
- Additional Processors
 Possible

Fault Detection

- Watchdog Timer Detects Processor Failure
 - Generates PF Flag
- Local Memory uses Error Correction Circuits
 - If Error Cannot be Corrected, Generates MF Flag
- DP Memory Checked by CRC
- One Interface Processor Acts as Controller
 - Load Balancing in Addition to I/O
- Second IP Monitors the First

Fault Detection (cont.)

Fault Containment and Recovery

- Failing Node Interrupts the Controller
- If Fault is a Processor:
 - Disable Interrupt capability of the node
 - Generate Isolation Signal (IS_n)
 - Prevents the Node from Effecting DP Modules
 - Broadcast Failure to All Nodes
 - Attempt Diagnostic Subroutine to Recover the Processor
 - If Successful, Return the Node to Service
 - If Unsuccessful, Redistribute Tasks to Other Nodes
 - Redo All Suspect Tasks
 - Both IPs Keep Records of Work Done by All Nodes

Fault Containment and Recovery (cont.)

- If Fault is a Local Memory:
 - Disable Interrupt capability of the node
 - Generate Isolation Signal (IS_n)
 - Prevents the Node from Effecting DP Modules
 - Broadcast Failure to All Nodes
 - Run Diagnostic Program from DP Memory
 - If Recoverable, Return the Node to Full Service
 - If Unrecoverable, Node is Used in Degraded Mode
 - DP Memory Used Instead of Local Memory

Fault Containment and Recovery (cont.)

- If Fault is in DP Memory:
 - System Controller Isolates
 the DP Module
 - All Memory Traffic is Routed Through Other Modules
 - Ex: If DP₁₂ fails, WP₁ and WP₂ can communicate through DP₁₃ to DP₃₂

System Reliability Analysis

- Assume Each Processing Node Has Failure Rate λ_p
- Assume Each DP Memory Unit Has Failure Rate λ_m
- Assume All Failures are Independent
- Performance Measure is thus Defined:

•
$$C_{Max} = f(P, M) = \frac{[P*(P-1)*(M+1)]}{k}$$
, where $k \cong 20$

 For p Faulty Processor Nodes and m Faulty DP Memory Nodes:

•
$$C = f(P - p, M - m) = \frac{[(P - p)*(P - p - 1)*(M - m - 1)]}{k}$$

• Finally, Normalize:

•
$$C_{Nor} = f(P - P, M - m + 1)/C_{Max}$$

System Reliability Analysis (cont.)

- Determine System Reliability:
 - $R(t) = \sum_{p=0}^{P} \sum_{m=0}^{M} r(p) * r(m) * C_{nor}$
- Approximate r(p) & r(m) with Poisson Distributions:

•
$$r(p) = \frac{(\lambda_p t)^p}{p!} * e^{-\lambda_p t}$$

•
$$r(m) = \frac{(\lambda_m t)^m}{m!} * e^{-\lambda_m t}$$

• After lots of Fancy Math....

•
$$R_{sys} = (1 - 2\lambda_p t) * (1 - \lambda_m t)$$

System Reliability Affected More Strongly by Processor Failure

System Reliability Analysis (cont.)

- Analysis of the System by Subsystem:
 - Worker Subsystem Functions When 1 out of 3 WP Nodes Works:
 - $R_{comp} = R_{wp}^{3} 3R_{wp}^{2} + 3R_{wp}$
 - I/O Subsystem Functions When 1 out of 2 IP Nodes Works:

•
$$R_{io} = 2R_{ip} - R_{ip}^2$$

- System Functions When 1 out of Each Subsystem Works:
 - $R_{sys} = R_{comp} * R_{io} = \dots = R_p^2 (6 9R_p + 5R_p^2 R_p^3)$
- System Can Function With a Single IP Node (Degraded):

•
$$R_{sys} = R_{io} = 2R_{ip} - R_{ip}^2$$

Conclusion

- HPEC System is Incredibly Powerful
 - Processing Power Gracefully Degrades as Nodes Fail
- Easy to Implement
 - 5 Processors and 10 DP Memory Units to Build the System
- Weakest Point is the I/O Partition
 - To Further Improve System Reliability, Focus on the Improving the IP Processor's Fault Tolerance

References

[1] (2013) Uncyclopedia "Image - Startrek-BSoD.gif"[Web Photo] Retrieved from <u>http://uncyclopedia.wikia.com/wiki/File:Startrek-BSoD.gif</u>

- [2] G. N. Khan, "Fault-Tolerant Architecture for High Performance Embedded System Applications"
- [3] G. N. Khan, K. Mahmud, M. S. Iqbal and H. U. Rashid, "RSM A restricted shared memory architecture for high speed interprocessor communication", *Microprocessors* and *Microsystems* 18(4) 1994 pp. 193-203.