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ABSTRACT 

As the explosion of Internet, Internet connectivity is 
required for versatile computing systems. TCP/IP 
protocol is the core technology for this connectivity. 
However, to implement TCP/IP protocol stacks for a 
target operating system from the scratch is a 
time-consuming and error-prone task. Because of the 
spirit of GNU GPL and open source codes, Linux 
gains its popularity and has the advantages of stability, 
reliability, high performance, and well documentation. 
These advantages let making use of the existing open 
source codes and integrating Linux TCP/IP protocol 
stacks into a target operating system become a 
feasible and cost-effective way. 

In this paper, we describe how to integrate Linux 
communication stacks into LyraOS, a compo-
nent-based operating system for embedded systems. 
Under the component design principle, the commu-
nication stack should also be implemented as a sepa-
rate and self-contained component. So the integration 
work should deal with the difference of system design 
principles and kernel architectures. This work in-
cludes modifying Linux communication stack codes 
and implementing LyraOS kernel support modules. 
Performance evaluation shows that for TCP transmis-
sion, LyraOS performed better than Linux by 7.39%. 
The experience of this integration study can be of 
practical value to serve as the reference for embed-
ding TCP/IP stacks into a target system. 

1. INTRODUCTION 

Embedded applications are versatile and the hardware 
devices range from simple controllers to more 
complex systems. For the versatile hardware devices 
and different application requirements, a 
reconfigurable embedded operating system is needed. 

Thus, various operating systems design dedicated for 
embedded systems are thus created, such as PalmOS 
[22], EPOC [12], Windows CE [25], GEOS [16], 
QNX [23], Pebble [2,17], MicroC/OS [21], eCos [11], 
LyraOS [3-7,18,19,26], etc.  

As the explosion of Internet, adding Internet 
connectivity is required for embedded systems. 
TCP/IP protocol [8,9,24] is the core technology for 
this connectivity. However, to implement the TCP/IP 
protocol stacks for a target operating system from the 
scratch is a time-consuming and error-prone task. 
Because of the spirit of GNU General Public License 
(GPL) [15] and open source codes, Linux [1] gains its 
popularity and has the advantages of stability, reli-
ability, high performance, and well documentation. 
These advantages let making use of the existing open 
source codes and integrating Linux TCP/IP protocol 
stacks into a target operating system become a feasi-
ble and cost-effective way.  

This paper describes how to integrate Linux 
communication stacks into LyraOS [3-7,18,19,26]. 
LyraOS is a component-based operating system de-
signed for embedded systems. Under the component 
design principle [2,14,17,20], the communication 
stack should also be implemented as a separate com-
ponent, such that the advantages of modularity, re-
configurability, component replacement and reuse can 
be maintained. However, there are many difficulties 
to deal with for this integration work. For example, 
being a monolithic kernel, Linux communication 
stack is not a separate component that has closely re-
lationship and interaction with other kernel functions 
such as file system, device driver, and kernel core.  

Therefore, the integration work should solve the 
difficulties from different system design principles 
and different kernel architectures. Our work focuses 
on two parts. First, implementing the communication 
stacks as a self-contained component, which requires 
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modifying the Linux TCP/IP codes to separate them 
from other kernel functions. Second, implementing 
kernel support modules in LyraOS for integrating 
Linux TCP/IP protocols. 

The rest of this paper is organized as follows. 
Section 2 briefly describes the difference between 
LyraOS and Linux, which affects the integration work. 
The difficulties that should be dealt with for this inte-
gration are also discussed and presented. Section 3 
presents the integration work including modifying 
Linux communication codes and adding kernel sup-
port modules. Section 4 shows primitive performance 
evaluation results, and Section 5 concludes this paper. 

2. INTEGRATION ISSUES 

In this section, we first briefly describe the Linux 
communication stack architecture and the LyraOS 
architecture. Then the difficulties and problems 
encountered in the integration work are discussed and 
presented.  

2.1 Linux Communication Stack Architecture 

The basic Linux I/O system architecture is illustrated 
in Figure 1, which includes network subsystem and 
file system. The network subsystem includes socket 
layer, network protocol layer, and network device 
layer, as shown in Figure 2.  

 

 
Figure 1: Linux I/O System Architecture. 

 

Programmers make use of the socket interfaces 
to access network services. The invocation is made 
through system call interface in C library to enter into 
kernel’s socket layer. The exported C library func-
tions are listed in Table 1. Since Linux supports many 

different socket address families [1], so the main task 
of socket layer is to call the service functions of the 
requested address family (e.g. INET sockets). The 
INET layer will call the service functions of underly-
ing TCP or UDP layers, which in turn will call the 
service functions of IP layer. The IP layer deals with 
the packets sent/received to/from network interfaces.  

 

 
Figure 2: The Layer Architecture of Linux Network 

Subsystem. 

 

 
int socket(int domain, int type, int protocol); 

int bind(int sockfd, struct sockaddr *my_addr, int addrlen); 

int listen(int s, int backlog); 

int connect(int  sockfd, struct sockaddr *serv_addr, int addrlen ); 

int accept(int s, struct sockaddr *addr, int *addrlen); 

int send(int s, void *msg, int len, unsigned int flags); 

int sendto(int s,void *msg,int len,unsigned int flags,  
struct sockaddr *to, int tolen); 

int sendmsg(int s, struct msghdr *msg, unsigned int flags); 

int recv(int s, void *buf, int len, unsigned int flags); 

int recvfrom(int s,void *buf,int len,unsigned int flags, 
struct sockaddr *from,int *fromlen); 

int recvmsg(int s, struct msghdr *msg, unsigned int flags); 

int getsockopt(int s, int level, int optname, void *optval, int *optlen); 

int setsockopt(int s, int level, int optname, void *optval, int optlen); 
 

Table 1: The Related C Library Functions. 

 

Linux network subsystem shares some data 
structures and operations with file systems, which 
adds the difficulties in the integration work for im-
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plementing the network system as a separate compo-
nent. As shown in Figure 3, when BSD sockets are 
used, kernel will create inode (consists of socket) and 
sock data structures and then make the corresponding 
links in the invoking process’s file descriptor table 
and open file table [1]. 

 

 

 
Figure 3: Linux BSD Socket Data Structures. 

2.2 LyraOS 

LyraOS [3-7,18,19,26] is a component-based 
operating system which aims at serving as a research 
vehicle for operating system and providing a set of 
well-designed and clear-interface system software 
components that are ready for Internet PC, hand-held 
PC, embedded systems, etc.  

It was implemented most in C++ and some as-
sembly codes. It is designed to abstract the hardware 
resources of computer systems, so low-level machine 
dependent layer is clear cut from higher-level system 
semantics. Therefore, it can be easily ported to dif-
ferent hardware architectures [4,6]. Each system com-
ponent is complete separate, self-contained, and 
highly modular. So the system is also designed to be 
scalable and reconfigurable.  

Besides being light weight system software, it is 
a time-sharing multi-threading kernel. Threads can be 
dynamically created and deleted, and thread priorities 
can be dynamically changed. It provides a preemptive 
prioritized scheduling and supports various mecha-
nisms for passing signals, semaphores, and messages 
between threads. On top of the kernel core component, 
a micro window component with Windows OS look 
and feel is provided [18]. Figure 4 shows the system 
architecture. 

 
Figure 4: LyraOS System Architecture. 

2.3 Integration Issues and Difficulties 

Since LyraOS and Linux are different in system 
architecture, Linux communication stacks must be 
modified for being integrated into LyraOS. LyraOS 
should also provide some kernel support functions for 
this integration. 

Currently, LyraOS supports single address space 
[4,10] with static binding of applications and kernel. 
No system call invocation is needed for applications 
to use the kernel’s exported services. To provide the 
compatible system call interface with Linux, LyraOS 
should provide the same socket interfaces for applica-
tions’ use as Linux C library functions listed in Table 
1. 

Aside from the different OS architecture, under 
the component design principle, each LyraOS system 
component is complete separate, self-contained, and 
highly modular. Each component has clean exported 
and imported interfaces for components to communi-
cate with. So, the communication stack should also be 
implemented as a separate component such that the 
advantages of modularity, reconfigurability, compo-
nent replacement and reuse can be maintained. How-
ever, Linux is a monolithic kernel, its communication 
stack codes have closely relationship and interaction 
with other kernel functions such as file systems, de-
vice drivers, and kernel core. As introduced in Sec-
tion 2.1, the socket layer shares the same data struc-
tures and operations with file system. Therefore, our 
first work is to separate Linux communication stack 
codes from file system codes. 

To sum up, the integration work focuses on two 
parts. First, implementing the communication stacks 
as a self-contained component. We should clarify its 
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import and export interfaces clearly and modify 
Linux TCP/IP codes to separate them from other ker-
nel functions. Second, implementing kernel support 
modules in LyraOS for integrating Linux TCP/IP 
protocols. 

3. DESIGN AND IMPLEMENTATION 

This section describes the integration work including 
modifying Linux TCP/IP codes in Section 3.1 to 3.4 
and adding kernel support modules in Section 3.5. 

3.1 Socket Interfaces 

As introduced in Section 2.1, programmers make use 
of the socket interfaces to use network services. This 
invocation is made through system call interface in C 
library to enter into kernel’s socket layer. However, in 
LyraOS, no system call invocation is needed for 
applications to use the kernel’s exported services.  

To provide the compatible system call interface 
with Linux, we add in LyraOS the same socket inter-
faces for applications as in Linux C library functions 
as listed in Table 1. For example, the socket function 
called by applications is implemented in this way that 
it directly calls Linux socket layer service function as 
shown in Figure 5. 
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and the address of socket data structure is the LyraOS 
socket descriptor. 

 

 

Figure 6: Socket Data Structures for Linux and 
LyraOS. 

3.3 select() Function and fd_set Data Structure 

In Linux, the select() function uses the fd_set data 
structure that is a bit array for mapping to file 
descriptor table. The select() function uses this bit 
array to check which corresponding socket is 
selected.  

However, in LyraOS, this file descriptor table 
should not exist as explained in Section 3.2. There-
fore, the fd_set data structure and its related manipu-
lating macros should be modified. As shown in Figure 
7, the fd_set data structure is modified to store Ly-
raOS socket descriptor instead of bit array. It’s related 
manipulating macros, i.e. FD_SET, FD_CLR, 
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extern int sys_socket(int family, int type, int protocol);
 
int socket(int family, int type, int protocol)  
{ 
        int err; 
 
        NO_PREEMPT(); 
        err = sys_socket(family, type, protocol); 
        PREEMPT_OK(); 
        return err; 
4

Figure 5: socket Function. 

.2 Socket Descriptor 

s introduced in Section 2.1, Linux network 
ubsystem shares some data structures and operations 
ith file systems, as shown in Figure 3. To implement 

he network system as a separate component, we 
odify Linux communication stack codes to separate 

hem from file system codes as shown in Figure 6. It 
eans there is no need to access process’s file 

escriptor table and open file table for invoking 
etworking services. So, when BSD sockets are used, 
ernel will create only socket and sock data structures 

FD_ISSET, FD_ZERO, are modified to manipulate 
arrays of socket descriptors instead of bit array. Fig-
ure 8 shows Linux over LyraOS fd_set data structure. 

 

 

Figure 7: LyraOS fd_set Data Structure. 

 

} 

#define __SELECT_FD_SETSIZE    63 
 
typedef struct { 
        in t nr; 
        void *fd[__SELECT_FD_SETSIZE]; 
} __select_fd_set; 
 
typedef __select_fd_set fd_set; 
 
#define FD_SETSIZE          __SELECT_FD_SETSIZE  
typedef __select_fd_set    fd_set;   
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Figure 8: fd_set Data Structure for Linux and LyraOS.

Since fd_set data structure is modified to store 
array of LyraOS socket descriptor, the select() func-
tion is modified to manipulate the array of LyraOS 
socket descriptor instead of bit array. 

3.4 Other Modified Communication Stack 
Routines 

This section describes the other part of Linux 
communication stack codes modified for being 
integrated into LyraOS. 

wait queue Related Functions 

The Linux communication stacks implement the 
following wait queue related functions: 
add_wait_queue(), remove_wait_queue(), sleep_on(), 
interruptible_sleep_on(), wake_interruptible(), 
wake_up(), etc. To be integrated into LyraOS, these 
routines are modified to call LyraOS kernel’s 
thread_sleep() and thread_wakeup() functions. 

In Linux communication stack codes, the current 
system variable is used to represent the current run-
ning process. When porting to LyraOS, the related 
codes are modified to call self_thread_id() to get cur-
rent running thread’s id. 

alarm() functions 

In Linux, alarm() function can be used to set the 
timing information and timer related functions. Linux 
uses kernel’s add_timer() function to implement the 
alarm(). Therefore, LyraOS kernel must also provide 
the timer related functions. The alarm() function is 

implemented as shown in Figure 9. 

 

 

Figure 9: Implementation of alarm() Function. 

schedule() Function 

Linux communication stack uses kernel’s schedule() 
function to relinguish current process’s CPU 
execution. To be integrated into LyraOS, schedule() is 
modified to call the thread_sleep() that is a 
comparable kernel function to relinguish current 
thread’s CPU execution in LyraOS. Figure 10 shows 
the implemented schedule() function. 

 

 

F

soc

In 
wa
thi
op
Ly
thi
Ly
soc

 

void do_alarm(unsigned long data) 
{ 
    send_signal(data, SIGALRM); 
} 
 
int alarm(int t) 
{ 
    static struct timer_list tl; 
    tl.expires = jiffies + t * 100; 
    tl.data = self_thread_id(); 
    tl.function = do_alarm; 

add_timer(&tl); 
return 0; 

}
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void schedule(void)
{ 
    PREEMPT_OK();
    thread_sleep(); 
    NO_PREEMPT();
igure 10: Implementation of schedule() Function.

k_wake_async() Function 

Linux, sock_wake_async() function is used to 
ke up all processes waiting on the socket. However, 
s function is implemented through file system’s 
erations and data structures. To be integrated into 
raOS and implemented as a separate component, 
s function is rewritten to use wake_up() function in 
raOS to wake up all the threads waiting on this 
ket, as shown in Figure 11. 

}



 6

 

Figure 11: Implementation of sock_wake_async() 
Function. 

3.5 LyraOS Kernel Support Functions 

This section describes what functions LyraOS kernel 
must support for integrating Linux communication 
stacks. 

 

self_thread_id() Function 

This function returns the current running thread’s id 
that is the address of thread data structure in LyraOS. 

 

thread_sleep() and thread_wake() 

The thread_sleep() function used to relinghish CPU’s 
execution is provided for the implementation of 
schedule() function and wait queue related functions 
as introduced in Section 3.4. The thread_wake() 
function used to wake up the waiting threads is 
provided for the implementation of 
sock_wake_async() function and wait queue related 
functions as introduced in Section 3.4. 

 

Linux Device Driver Emulation Environment 

Communication stacks must interact with network 
device driver for transferring packets from/to network 
interface card. To reduce implementation overhead 
and make use of Linux device drivers, LyraOS 
provides the Linux device driver emulation 
environment [26]. Under this environment, Linux 
device driver codes can be integrated into LyraOS 
without modification. Therefore, a thread is created 
for running this network device driver emulation 
environment. Detail about the implementation of this 
emulation environment can be referred to the paper 
[26]. 

4. PERFORMANCE EVALUATIONS 
This section describes the primitive performance 
evaluation for this ported communication stacks. To 
measure the maximum data transferring rate, two PCs 
are directly connected. Figure 12 and Table 2 show 
the experimental platform. 

 

Figure 12: Experimental Platform. 

 
   
 NODE 1 NODE 2 

CPU Pentium 200 MHz Pentium 90 MHz
RAM 64MB DRAM 80M DRAM 
OS Linux Kernel version: 

2.0.36 and LyraOS 
Linux 2.0.35 

Network 
Interface 

Card 

 
3com 3c509 

 
NE2000 

 

Table 2: Experimental Platform. 

4.1 Code Size 

This section measures the modification of Linux 
communication stacks and implementation of socket 
interface for application use in LyraOS. Table 3 
shows the modification and code size about the 
ported TCP layer. kern_inf.c is the added socket 
interface in LyraOS.  

4.2 Data Transfer Rate 

This section describes evaluation of LyraOS TCP 
transmission performance. The maximum data 
transfer rate is measured. The same evaluation was 
conducted under Linux and LyraOS in order to 
compare the performance difference under different 
systems. 

One set of benchmark including client and server 
programs are created to measure the elapsed time of 

int sock_wake_async(struct socket *sock, int how)
{ 
    struct sock *p; 
    if (!sock) 
        return -1; 
    p = (struct sock *)(sock->data); 
    wake_up(p->sleep); 
    return 0; 
}  
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LinuxLinux
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LinuxLinux
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LinuxLinux
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LinuxLinux
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transferring 10,000 times of 1460-byte packets. Two 
kinds of evaluation were performed as shown in Fig-
ure 13 and 14. One evaluation measured the elapsed 
time for server to send data; the other measured the 
elapsed time for server to receive data. Each evalua-
tion was performed 100 times. 

 

 

Table 3: Code Size of TCP Layer. 

 

 

Figure 13: Evaluation of Data Send Rate on Server.

 

 

Figure 14: Evaluation of Data Receive Rate on 
Server. 

Table 4 shows the evaluation results. In our 
measurement, LyraOS performed better than Linux 
by 7.39%. The reason can be explained as follows. 
First, in LyraOS, no system call invocation is needed 
for accessing network services, which eliminates the 
overhead for crossing user mode and kernel mode. 
Besides, since communication stacks are imple-
mented as a separate component in LyraOS and sepa-
rated from file system, the overhead to manipulate 
and access file system data structures are eliminated.  

  
 Average Rate  

(Bytes per sec.) 

LyraOS 1,051,741 

Linux 979,285  

Table 4: Data Transferring Rate. 

5. CONCLUSIONS 

To add Internet connectivity to LyraOS, we have 
successfully integrated Linux communication stacks 
into LyraOS. In this paper, we have described how to 
solve the integration difficulties from different system 
design principles and different kernel architectures. 
The integration work focuses on two parts as follows. 
For implementing the communication stacks as a 
self-contained component, we clarify its import and 
export interfaces and modify Linux TCP/IP codes to 
separate them from other Linux kernel functions. 
Some kernel support modules are implemented in 
LyraOS for integrating Linux TCP/IP protocols.  

Performance evaluation shows that for TCP 
transmission, LyraOS performed better than Linux by 
7.39%. This improvement is because the elimination 
of overhead from system call invocation and from 
crossing protection domains. Data copy between user 
space and kernel space is also removed. Besides, the 
overhead to access and manipulate file system data 
structures is also eliminated. 

To sum up, the success of this porting and the 
experience of this integration study can be of practi-
cal value to serve as the reference for embedding 
TCP/IP stacks into target systems which need com-
munication capability. 
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