
Implementation of Real-time Network Extension on Embedded Linux

Yuan Tian1,2
1. Institute of Optics and Electronics,

Chinese Academy of Science
2. Graduate University of the Chinese

Academy of Science
Chengdu , China

ioecas@gmail.com

Guoqiang Ren
Institute of Optics and Electronics,

Chinese Academy of Science
Chengdu , China
ioeren@163.com

Qinzhang Wu
Institute of Optics and Electronics,

Chinese Academy of Science
Chengdu , China
ioeren@163.com

Abstract—Linux over the past few years has gained in
popularity as the operating system for embedded networking
equipment. Its reliability, low cost and undisputed networking
capabilities made it one of the most popular choices for the
networking devices. But traditional software network
interfaces in Linux do not deliver satisfactory real-time
performance. Hence alternative efficient real-time interfaces
are required in network monitoring, distributed systems, real-
time networking and remote data acquisition applications. So
it is necessary to modify the original Linux to meet the real-
time requirement. This paper describes the implementation of
real-time network extension based on embedded Linux.
Compared with different solution of achieving real-tine ability
on Linux system, Xenomai and Rtnet have been chosen in our
system. Finally, the real-time performance test has been
carried out on embedded Linux network system. The test
results indicate that, through applying Xenomai and Rtnet on
embedded Linux, the hard real-time requirement can be met in
our system.

Keywords: Xenomai;Rtnet;Embedded Linux;Real-time

I. INTRODUCTION
PowerPC440 embedded processor was used to control

and manage the entire system in hardware system.
PowerPC440 is designed specifically to address high-end
embedded applications and provides a high-performance,
low-power solution which is able to interface to a wide range
of peripherals. With on-chip power management features and
intrinsically lower power dissipation, this embedded
processor is suitable for embedded applications. This chip
contains a high-performance RISC processor core, DDR
SDRAM controller, PCI-X bus interface, Ethernet interface,
control for external ROM and peripherals, DMA with
scatter-gather support, serial ports, IIC interface, and general
purpose I/O. Figure 1 illustrates the architecture of the
hardware system based on PowerPC440[1].

Today, the use of Linux in embedded systems become
more popular, because of its proven networking capabilities
and well suiting for networking applications and services that
require high reliability and high availability [2]. So Linux
was chosen as operating system in our designing. However,
Linux is not a real-time operating system. There are usually
two approaches to make Linux real-time. The one is using a
second kernel to schedule real-time tasks: solutions include

Figure 1. Architecture of the hardware system

Xenomai/ADEOS, RTLinux and RTAI, etc. The other is
improving Linux kernel itself with regards to preemption,
low latency, etc. In order to implement hard real-time
network, Xenomai/ADEOS was chosen as real-time
operating system mentioned in first method. Xenomai is a
real-time development framework cooperating with the
Linux kernel. It implements a micro-kernel with real-time
scheduler. Xenomai's real-time nucleus and Linux kernel are
in two ADEOS domains. Xenomai runs in a higher priority
domain than Linux kernel. It also implements different APIs
providing real-time services, like creating real-time tasks,
timers, semaphores [3].

RTnet is an open source hard real-time network protocol
stack for Xenomai and RTAI (real-time Linux extensions).It
makes use of standard Ethernet hardware and supports
several popular card chip sets, including Gigabit Ethernet.
RTnet implements UDP/IP, ICMP and ARP in a
deterministic way. It provides a POSIX socket API to real-
time user space processes and kernel modules. Access to

2009 International Conference on Communication Software and Networks

978-0-7695-3522-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ICCSN.2009.119

163

2009 International Conference on Communication Software and Networks

978-0-7695-3522-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ICCSN.2009.119

163

2009 International Conference on Communication Software and Networks

978-0-7695-3522-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ICCSN.2009.119

163

2009 International Conference on Communication Software and Networks

978-0-7695-3522-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ICCSN.2009.119

163

2009 International Conference on Communication Software and Networks

978-0-7695-3522-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ICCSN.2009.119

163

2009 International Conference on Communication Software and Networks

978-0-7695-3522-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ICCSN.2009.119

163

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 15, 2010 at 00:31 from IEEE Xplore. Restrictions apply.

nondeterministic media is managed by the pluggable RTmac
layer and the actual control discipline. As default for
Ethernet, a Time Division Multiple Access (TDMA)
discipline is provided.

In this paper, we describe the implementation of real-
time network extension based on embedded Linux. The
remainder of this paper is organized as follows. In section 2,
the procedure of setting up bootloader and Linux kernel is
present. Section 3 describes the architecture of Xenomai and
how to use it to realize real-time kernel. Then RTnet based
on Xenomai is introduced in section 4. Finally, we conclude
in section 5.

II. SETTING UP BOOTLOADER AND LINUX KERNEL
Though the bootloader runs for a very short time during

the system's startup and is mainly responsible for loading the
kernel, it is a very important system component. It is a
special task for embedded Linux systems, because the
bootloaders used in such systems are either completely
different from those used in common systems or, even when
they are the same, are configured and operated in very
different ways.

U-Boot, the universal bootloader, is arguably the richest,
most flexible, and most actively developed open source
bootloader available. U-Boot is based on the PPCBoot and
ARMBoot projects. The version of U-Boot we used is 1.1.4
[4].

There are a lot of examples of evaluation board in U-
Boot, but our hardware system is different from them. So
some codes in U-Boot should be changed to adapt our
system. Three main aspects of code should be modified. First,
some addresses of peripheral hardware are needed to change.
Second, the parameters to initialize SDRAM are adjusted.
Finally, some device drivers should be rewrite. After
finishing the three steps, U-Boot commands can be used to
check system information, for example printenv, flinfo etc.

As the same with U-Boot, there are also lots of examples
for different evaluation board in Linux source. The codes of
an evaluation board which is similar with our hardware
system are chosen. Then make some modification in Linux
kernel source which is similar in U-Boot. After compiling
the kernel, a uImage in the kernel source can be gained. Now
U-Boot is used to download the uImage and startup system.

One of the last operations conducted by the Linux kernel
during system startup is mounting the root file system. The
root file system has been an essential component of Linux
systems from the start. At the stage of test, network file
system is used as root file system. The host nfs server is
enabled and export a directory as root file system to target
system. Then the target can mount this directory and share
the file with host. After finishing testing, U-Boot, kernel and
file system should be put into flash in three different
partitions. In order to implement flash partition, Linux’s
MTD subsystem is used. JFFS2 is chosen as root file system.
Though JFFS2 doesn't achieve compression ratios as high as
CRAMFS, it has to maintain space for garbage collection
and metadata structures that allow file system writing. JFFS2
provide power-down reliability and wear-leveling, which are

very important characteristics for devices that rely on flash
storage. The creation of a JFFS2 image is fairly simple:
mkfs.jffs2 -r rootfs/ -o images/rootfs-jffs2.img

Once you create the JFFS2 image, you can write it to its
designated MTD device. But you first need to erase the
MTD device where the image will be placed:
eraseall /dev/mtd0

With the MTD device erased, copy the JFFS2 image to
the MTD partition:
cat images/rootfs-jffs2.img > /dev/mtd0

Now, mount the copied file system to take a look at it. If
your target had previously been using an nfs-mounted root
file system, you are now ready to boot it using the JFFS2 file
system as its root file system. Thus the entire system set up
automatically and successfully.

III. XENOMAI EVALUATION
Xenomai is a new real-time operating system emulation

framework based on Linux. It aims at providing a consistent
framework that helps implementing real-time interfaces and
debugging real-time software on Linux. Xenomai comes
with a growing set of emulators of traditional RTOS APIs,
which ease the migration of applications from these systems
to a Linux-based real-time environment.

It was designed with the goal to help application
designers using traditional and proprietary real-time
operating systems to move as smoothly as possible to a
Linux based execution environment. Xenomai relies on the
common features and behaviors found between many
embedded traditional RTOS, especially from the thread
scheduling and synchronization standpoints. These
similarities are exploited to implement a nucleus exporting a
set of generic services. These services grouped in a high-
level interface can be used in turn to implement emulation
modules of real-time application programming interfaces,
which mimic the corresponding real-time kernel APIs [5].

A. Architecture of Xenomai
To make Xenomai’s tasks hard real-time in Linux a Real-

Time Application Interface co-kernel is used. It allows
running real-time tasks seamlessly aside of the hosting Linux
system while the tasks of the regular Linux kernel can be
seen as running in a low-priority mode. The Real-Time
Application Interface co-kernel shares hardware interrupts
and system-originated events like traps and faults with the
Linux kernel using the Adaptive Domain Environment for
Operating Systems (Adeos) layer, which in turn ensures
Real-Time Application Interface low interrupt latencies. The
entire architecture of Xenomai is shown in Figure 2. Adeos
is an event pipe line. The purpose of Adeos is to provide a
flexible environment for sharing hardware resources among
multiple operating systems, or among multiple instances of a
single operating system. It has been ported to PowerPC.
ADEOS is also known as “I-pipe”, it delivers system events
(interrupts, exceptions, system calls) in a timely and
prioritized manner, along a “pipe line” of domains.

164164164164164164

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 15, 2010 at 00:31 from IEEE Xplore. Restrictions apply.

Figure 2. Architecture of Xenomai

B. Apply Adeos and Xenomai Kernel Patch to the Linux
Kernel

Run the Xenomai configuration script to apply the kernel
patch [6].
xenomai-root/scripts/prepare-kernel.sh
--arch=ppc --adeos=$adeos-patch-dir/adeos-ipipe-
2.6.19.patch --linux=$linux-tree
Configure and build kernel:
make menuconfig
make

Build Xenomai applications and install the applications to
Linux file system directory. This will build Xenomai in
FDPIC format.
Xenomai-root/configure --host=ppc
make install

C. Performance of Xenomai
After finishing installation of Xenomai, now we can use

the tools in Xenomai to test the system latency. This latency
example program features a periodic real-time thread
measuring its scheduling latency over periods of 100 us.
Each second, results are posted by the sampling thread to a
display thread, which in turn outputs the latency figures to
the screen using standard Linux services. This illustrates the
seamless migration of Xenomai's real-time threads between
the Xenomai and Linux schedulers, in order to perform
every system call issued by xeno-enabled Linux tasks from
the proper execution context. The latency involves hand-
ling timer interrupt and current thread scheduled to run. Test
results are shown in two different situations. One is without
system load in table 1, the other is in heavy load in table 2.
All results are in microseconds.

TABLE I. LATENCY WITHOUT LOAD

Min Avg Max Overrun
-4.226 -3.574 6.385 0

TABLE II. LATENCY WITH HEAVY LOAD

Min Avg Max Overrun
-4.211 -3.521 13.935 0

Two tables show that the maximum latency is 13.935us

even though in heavy load situation, which doesn’t overrun
the real-time demand.

IV. RTNET EVALUATION
With the goal to provide a widely hardware independent

and flexible real-time communication platform, RTnet
project has been founded in 2001 at the University of
Hannover, based on ideas and source code of a previous
effort to provide deterministic networking. RTnet is a purely
software-based framework for exchanging arbitrary data
under hard real-time constraints. The available
implementation is founded on Linux with the hard real-time
extension RTAI [7].

A. RTnet Stack
 RTnet implements a real-time capable IP-Protocol stack.

Thus was done by porting the robust UDP/IP stack of the
Linux kernel to RTAI. Furthermore the Address Resolution
Protocol (ARP) that is normally dynamic is replaced by a
static solution. The Media Access Control (MAC) sublayer
from standard Ethernet (which is nondeterministic because
of the stochastic media access mechanism CSMA/CD) is
replaced by:(1) a token based MAC variant or a (2) Time
Division Multiple Access (TDMA) approach. Because of the
modularity of Rtnet and the available source code it is
possible to implement a different mechanism for media
access. A wide difference to the above-described Powerlink
protocol is, that no dedicated protocol controller is needed.
The RT capabilities are based on the real-time functionality
of RTAI. Rtnet has been designed to lend real-time
networking functionality to both the RTAI and Xenomai
environments. It provides a customizable and extensible
framework for hard real-time communication over Ethernet
and other transport media.

The design of the RTnet stack as depicted in Figure 3
was inspired by the modulised structure of the Linux
network subsystem. It aims at scalability and extensibility in
order to comply with the different requirements of
application as well as research scenarios. RTnet’s software
approach addresses both the independence of specific
hardware for supporting hard real-time communication and
the possibility to use such hardware nevertheless when it is
available. Furthermore, it enables the integration of various
other communication media beyond Ethernet [8].

B. Installation of RTnet and Driver Porting
Now the installation of RTnet will be explained and the

test result of it will also be shown later. Firstly, RTnet source
code should be downloaded [9]. The instructions are given
below.
cd to a preferred directory (e.g. /usr/src)
tar xvjf /usr/src/rtnet-0.9.10.tar.bz2
cd rtnet

165165165165165165

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 15, 2010 at 00:31 from IEEE Xplore. Restrictions apply.

make menuconfig (run "make help" for further information)

Figure 3. RTnet Stack

Set at least the real-time extension installation path and
the path RTnet is to be installed to. You could also check
other options if they fit your requirements. Help is available
for each feature.
make
make install

Because Ethernet media access controllers in PowerPC
aren’t supported by RTnet currently. So EMAC driver
should be ported from Linux to RTnet. A list is shown below
about porting Ethernet device driver to RTnet.

• Add the following fields to private data:
 struct rtskb_queue skb_pool;
 rtdm_irq_t irq_handle;
• Initialize skb pool in probe or init function:
• Replace struct net_device with struct rtnet_device
• Replace netif_stop_queue with rtnetif_stop_queue
• Replace struct sk_buff with struct rtskb
• Replace netif_rx with rtnetif_rx
• Revise the xmit routine
• Modify interrupt handler
• Replace alloc_etherdev with the following lines
• Replace dev_alloc_skb(size) with dev_alloc_rtskb

(size, &<priv>->skb_pool)
 Ten point just be shown about porting, but they are not
enough. It is recommended to take a look at existing drivers
in RTnet source if some steps remain unclear.

C. RTnet Testing
After installations of RTnet, there are still several steps

should be taken before testing. First, shutdown the network
device which shall become part of the RT-network and
remove its driver module (this also means that it must not be
compiled into the kernel!). Second, Load required real-time
modules (xeno_hal, xeno_nucleus, xeno_rtdm). Third,
Check /etc/rtnet.conf and adapt at least the following
parameters: RT_DRIVER, IPADDR, TDMA_MODE,

TDMA_SLAVES. Run /sbin/rtnet start. Run rtping
<remote-host> or load an application module.

Round Trip Time (RTT) is used to check the
performance of RTnet. The command of rtping is executed
to compute RTT. The test results with different data size are
shown in table 3. All results are in microseconds.

TABLE III. RTT WITH RTNET

Byte Min Avg Max
50 89 96 113

100 90 105 117
200 115 125 134
400 147 161 183
800 224 235 283
1000 263 270 278
1460 344 353 364

The information from the table above shows that real-

time network requirement can be satisfied with RTnet.

V. CONCLUSIONS
In this paper Xenomai and RTnet based on embedded

Linux are introduced. They are adaptable and extensible
frameworks for real-time network over standard Ethernet.
We extensively evaluated the performance of them. The test
results show that this scheme can completely satisfy the
requirement of real-time network. We believe this work is
important to the implementation of distributed real-time
systems, fieldbus coupling devices, low-cost real-time
network analysers, etc [10]. Future work will further
optimize network performance using advanced interrupt
handling techniques.

REFERENCES

[1] AMCC Applied Micro Circuits Corporation, “PPC440GX Embedded
Processor User’s Manual”, Revision 1.04-October 3, 2005

[2] Apostolos N. Meliones, Stergios D. Spanos, “Performance Analysis
of Embedded Linux ATM for MPC8260 and Derivatives”,
Computers and Communications, in: Proceedings 11th IEEE
Symposium, 26-29 June 2006 , pp.101 – 108

[3] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, C.
Taliercio, “Performance comparison of VxWorks, Linux, RTAI and
Xenomai in a hard real-time application”, IEEE-Trans. Nucl. Sc.,
submitted for publication.

[4] Karim Yaghmour, Building Embedded Linux Systems, O'Reilly &
Associates, Inc, Sebastopol, 2003

[5] Philipper Gerum, “The Xenomai Project-Implementing a RTOS
emulation framework on GNU/-Linux”, White Paper, France, April
2004

[6] Philipper Gerum, “The Xenomai Project-Implementing a RTOS
emulation framework on GNU/-Linux”, White Paper, France, April
2004

[7] Hanssen, F, Jansen, P.G, Scholten, H, and Mullender, S, “RTnet: a
distributed real-time protocol for broadcast-capable networks”,
Autonomic and Autonomous Systems and International Conference
on Networking and Services, Joint International Conference, 23-28
Oct. 2005 , pp.18

[8] J. Kiszka, B.Wagner, Y. Zhang, J.F. Broenink, “RTnet—a flexible
hard real-time networking framework”, in: Proceedings of the 10th

166166166166166166

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 15, 2010 at 00:31 from IEEE Xplore. Restrictions apply.

IEEE International Conference on Emerging Technologies and
Factory Automation, Catania, Italy, 2005.

[9] RTnet Home Page [Online], http://www.rtnet.org.
[10] R. Felton, K. Blackler, S. Dorling, O. Hemming, “Real-time plasma

control at JET using an ATM Network”, in: Proceedings of the 11th
IEEE-NPSS Real Time Conference, Santa Fe NM, USA, 1999.

167167167167167167

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 15, 2010 at 00:31 from IEEE Xplore. Restrictions apply.

