ail",-; MO HARIOTTE

The uC/0S-I
Real-Time Operating System

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

uC/OS-II

Real-time kernel
— Portable, scalable, preemptive RTOS
— Ported to over 90 processors
Pronounced “microC OS two”

Written by Jean J. Labrosse of Micrium,
hitp://ucos-ii.com

Extensive information in MicroC/OS-Ill: The Real-Time
Kernel (A complete portable, ROMable scalable
preemptive RTOS), Jean J. LaBrosse, CMP Books

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

Task States |

Five possible states for a
task to be in)]

— Dormant — not yet visible to
OS (use OSTaskCreate(),
etc.)

— Ready

— Running
— Waiting
— ISR — preempted by an ISR

See manual for details

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

Task Scheduling
Scheduler runs highest-priority task using OSSched()
— OSRdyTbl has a set bit for each ready task
— Checks to see if context switch is needed
— Macro OS_TASK_SW performs context switch
« Implemented as software interrupt which points to OSCitxSw

« Save registers of task being switched out
» Restore registers of task being switched in

Scheduler locking

— Can lock scheduler to prevent other tasks from running (ISRs still run)
« OSSchedLock()
« OSSchedUnlock()

— Nesting of OSSchedLock possible

— Don’t lock the scheduler and then perform a system call which could
put your task into the WAITING state!

|dle task
— Runs when nothing else is ready
— Automatically has prioirty OS_LOWEST_PRIO
— Only increments a counter for use in estimating processor idle time

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\ # UNCCHARLOITE

Where Is The Code Which Makes It Work?

Selecting a thread to run
— OSSched() in os_core2.c

Context switching
— OS_TASK SW in os_cpu.h
— OSCtxSw in os_cpu_a.a30

What runs if no tasks are ready?
— OSTaskldle() in os_core2.c

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

TCB for#C/OS-II

typedef struct os_tcb {
OS_STK *OSTCBStkPtr;

s;ruct os_tcb *OSTCBNext;
%
struct os_tcb *0OSTCBPrev;

INT16U OSTCBDly;

INT8U OSTCBStat;
INT8U OSTCBPrio;

/¥ Pointer to current top of stack */

/*
/*

/*

/*
/*

Pointer to next TCB in the TCB 1list

Pointer to previous TCB in list */

Nbr ticks to delay task or, timeout
waiting for event */

Task status */

Task priority (0 == highest,

63 == lowest) */

. ready table position information ..

P

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

Task States
Task status OSTCBStat
/* TASK STATUS (Bit definition for OSTCBStat) */
#define OS_STAT _RDY 0x00 /* Ready to run */
#define OS_STAT _SEM 0x01 /* Pending on semaphore */
#define OS_STAT_MBOX 0x02 /* Pending on mailbox */
#define OS_STAT Q 0x04 /* Pending on queue */

#define OS_STAT _SUSPEND 0x08 /* Task is suspended */

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

ata structures fTor u -
OSTCBCur - Pointer to TCB of
currently running task

OSTCBHighRdy - Pointer to
highest priority TCB ready to run

OSTCBList - Pointer to doubly - v
linked list of TCBs

OSTCBPrioTbI[OS_LOWEST _

—
(@]
los]
A
A 4
—
(@]
los]
A
A 4
—
(@]
los]
A
A 4
—
(@]
los]
A
A 4
—
(@]
los]

\ A\ 4
o
Il
(0]
)
Il
(@)
)
Il
Ul
)
Il
—
o
Il
w

PRIO + 1] - Table of pointers to
created TCBs, ordered by
priority

OSReadyTbl - Encoded table of
tasks ready to run

OSPrioCur — Current task priority 3
OSPrioHighRdy — Priority of highest
ready task Bl

OSTCBFreelList - List of free

OS_TCBs, use for creating new
tasks

TCB ¥ TCB

A
A 4

TCB

A
A 4

TCB

A
A 4

TCB

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

Enabling Interrupts

Macros OS_ENTER_CRITICAL, OS_EXIT_CRITICAL

Note: three methods are provided in 0s_cpu.h
— #1 doesn’t restore interrupt state, just renables interrupts

— #2 saves and restores state, but stack pointer must be same at
enter/exit points — use this one!

— #3 uses a variable to hold state
* |s not reentrant

« Should be a global variable, not declared in function
StartSystemTick()

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

System Clock Tick | |
OS needs periodic timer for time delays and timeouts

Recommended frequency 10-200 Hz (trade off overhead vs.
response time (and accuracy of delays)

Must enable these interrupts after calling OSStart()

Student exercise
— Which timer is used for this purpose on the QSK62P?
— What is the frequency?

OSTick() ISR

— Calls OSTimeTick()

 Calls hook to a function of your choosing

. tI?lec{(ements non-zero delay fields (OSTCBDIy) for all task control
ocks

 |If a delay field reaches zero, make task ready to run (unless it was
suspended)

— Increments counter variable OSTime (32-bit counter)
— Then returns from interrupt

Interface
—(Ot e el =GS-S [ime value) since OSStart was called

— OSTimeSet(): Set value of this counter

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\ # UNCCHARLOITE

Overview of Writing an Application

Scale the OS resources to match the application
— See o0s_cfg.h

Define a stack for each task
Write tasks
Write ISRs

Write main() to Initialize and start up the OS (main.c)
— Initialize MCU, display, OS
— Start timer to generate system tick
— Create semaphores, etc.
— Create tasks

— Call OSStart“

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

Configuration and Scaling

For efficiency and code size, default version of OS supports
limited functionality and resources

When developing an application, must verify these are
sufficient (or may have to track down strange bugs)
— Can't just blindly develop program without considering what'’s
available
Edit os_cfg.h to configure the OS to meet your application’s
needs
— # events, # tasks, whether mailboxes are supported, etc.

g
The WILLIAM STATES LEE COLLEGE of ENGINEERING T I
R E Writing ISRs

Structure needed
— Save CPU registers — NC30 compiler adds this automatically

— Call OSlIntEnter() or increment OSIntNesting (faster, so preferred)

« OSIntEnter uses OS_ENTER_CRITICAL and OS_EXIT_CRITICAL,
so make sure these use method 2 (save on stack)

— Execute code to service interrupt — body of ISR
— Call OSIntEXxit()

« Has OS find the highest priority task to run after this ISR finishes (like
OSSched())

— Restore CPU registers — compiler adds this automatically

— Execute return from interrupt instruction — compiler adds this
automatically

Good practices

— Make ISR as quick as possible. Only do time-critical work here,
and defer remaining work to task code.
— Have ISR notify task of event, possibly send data
« OSSemPost — raise flag indicating event happened
« OSMboxPost — put message with data in mailbox (1)

« OSQPost — put message with data in queue (n)

— Example: Unload data from UART receive buffer (overflows with 2
eue(e.g-overflows after 128 characters)
which is serviced by task

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

Writing Tasks

Define a stack for each task
— Must be a global (static) array of base type OS_STK

Task structure: two options
— Function with infinite loop (e.g. for periodic task)

« Each time the loop is executed, it must call an OS function
which can yield the processor (e.g. OSSemPend(),
OSMboxPend(), OSQPend(), OSTaskSuspend(), OSTimeDly(),
OSTimeDIlyHMSM())

— Function which runs once and then deletes itself from scheduler
« Task ends in OSTaskDel()

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

Task Creation
OSTaskCreate() in os_task.c

— Create a task

— Arguments: pointer to task code (function), pointer to argument,
pointer to top of stack (use TOS macro), desired priority (unique)

OSTaskCreateExt() in os_task.c
— Create a task
— Arguments: same as for OSTaskCreate(), plus
« id: user-specified unique task identifier number

 pbos: pointer to bottom of stack. Used for stack checking (if
enabled).

» stk_size: number of elements in stack. Used for stack checking
(if enabled).

« pext: pointer to user-supplied task-specific data area (e.g. string
with task name)

. oet: oetions to control how task is created.

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

More Task Management

OSTaskSuspend()
— Task will not run again until after it is resumed
— Sets OS_STAT _SUSPEND flag, removes task from ready list if there
— Argument: Task priority (used to identify task)
OSTaskResume()
— Task will run again once any time delay expires and task is in ready queue
— Clears OS_STAT_SUSPEND flag
— Argument: Task priority (used to identify task)
OSTaskDel()
— Sets task to DORMANT state, so no longer scheduled by OS

— Removed from OS data structures: ready list, wait lists for
semaphores/mailboxes/queues, etc.

OSTaskChangePrio()
— Identify task by (current) priority
— Changes task’s priority
OSTaskQuery()
— ldentify task by priority
— Copies that task’s TCB into a user-supplied structure

=-useiul for debugging

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\ # UNCCHARLOITE

Time Management

Application-requested delays
— Task A calls OSTimeDly or OSTimeDIyHMSM() in os_time.c
— TCB->OSTCBDly set to indicate number of ticks to wait

— Rembember that OSTickISR() in os_cpu_a.a30, OSTimeTick() in
0s_core2.c decrement this field and determine when it expires

— Task B can resume Task A by calling OSTimeDIyResume()

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\ # UNCCHARLOITE

Example: uC/OSIl Demo

Tasks

— Task 1

« Flashes red LED

 Displays count of loop iterations on LCD top line
— Task 2

» Flashes green LED
— Task 3

» Flashes yellow LED

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

Debugging with an RTOS

Did you scale the RTOS to your application?
« Number of tasks, semaphores, queues, mailboxes, etc.
Always check result/error codes for system calls
« Light an LED if there’s an error
Why doesn’t my thread run?
— Look at scheduler’s data structures via debugger
« OSReadyTbl: Table of tasks ready to run
— Bitfield array
« TCB: Task control block
— OSTCBStat: status field
— If the error LED goes on, set a breakpoint there and see what happened
Does your thread have enough stack space?
— sprintf takes a lot. Floating point math does too.
Did you remember to call OSTaskCreate for your thread?
Is your thread structured as an infinite loop with an OS call on which to block?
Are interrupts working properly? Try substituting a polling function to isolate the problem.
Is there enough memory for your program? Check the .map file
— RAM: 0400h to 0137Eh
— Flash ROM: 0F0000h to OFF8FFh

\ g
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\ # UNCCHARLOITE

Summary

Basics of using uC/OS-ll
— Task states and scheduling
— Time tick
— How to structure an application
— How to create and manage tasks
— How to delay a task

How to debug when using an RTOS

