The Renesas System Profiler

By

Kevin Hammond

Introduction
This library of functions can be used by Renesas SKP developers to analyze and profile bottlenecks in their software. By simply including the profile.c and profile.h into their project files, the profile will start to accumulate data on what the parent program is doing most of the time.

The output consists simply an address and a frequency. This data is transmitted via the included LCD panel and sent serially on an output pin. This address can then be checked against the .map file produced by the HEW compiler for function identification.
To Start
To begin using the Profiler, add profile.c and profile.h to the project file. Refer to HEW documentation for exact details on how this is done. The next step is to add the function profileInitialize (); into the initialization phase of the parent program. Additionally, the function profileIRQ (); needs to be specified in the .inc file that indicates which functions to call when various internal timers go off. The default timer is B0. These are the only changes needed to the original program.
The profileInitialize (); function will then call all the profiler library functions required to start timers and set interrupts. Timer B0 is the default profile timer and set to fire every 1ms, calling the profileIRQ function. Also, the profile initialization function will call a “splash screen” function that blinks LEDs and displays information on the LCD to indicate that the profiler has been compiled into the program and has been called.
Compile, download and run your program. You should see the “splash screen” for verification.
Running the Profiler
The profiler itself will automatically start to accumulate data. Because there is a small window of “initialization” at the beginning of every program, a small delay is built in to the profiler. This value can be changed in the profile.h file.

Every computer system handles interrupts basically the same way. Push the values of all the pertinent registers onto the stack for storage. This works in our favor in that the program counter value is pushed onto the stack as well. This is done in the first line of the interrupt service routine. The Renesas SKP happens to store the PC contents at SP+14. Simply copy that word value to a local global and you have the address of the instruction that was about to be executed when the profiler interrupted.

This address is then compared against a list of previously encountered addresses to compile a frequency list of executing addresses. Because of timing issues, there some “play” in the actual address encountered by the profiler. A cumbersome piece of code may have several points that get detected, but all are still in that certain function. Therefore, the profiler uses a range value to compare the new address against those already in the list. The profiler keeps track of total number of samples and the number of hits on a particular address. Every 10 seconds, the list of addresses is resorted to have the most frequent placed at the beginning.
While the profiler is running, the button below the red LED is checked for depression. If so, then the user has requested the profile information to be displayed. The list is sorted one last time, then _profileReport (); is called. This function will display the information on the LCD screen. Once sent to the display, _profileTransmit (); is called to send the information to an external device serially at 9600 baud.

The accumulated data is then cleared and the process starts over.
