Learning Objectives

This lab will introduce you to interfacing two MSV30262-SKP boards via an Infrared (IR) Link.

General Information

The general steps for this lab are:
1. Create a new folder for lab 1. Copy your files from last semester into the new folder.
2. Generate a new project using the files you just copied. Name your new project Lab1.
3. Open and edit your main.c file to perform the lab functions.
4. Program the lab. Don’t forget the necessary include files to get the correct functionality.
5. Compile the code into an .x30 file, and load onto the board.
6. Test the program and repeat steps 4, 5, and 6 until the program works as required.
7. Write your lab report.
8. Demonstrate for the professor and turn in your report.

Prelab Activity

You may use the PCs in Smith 347 or your own PC to do this lab experiment. The machines in Smith 347 already have the software tools loaded.

Compile and make sure the new project is working.
1. What system in a house could a remote temperature sensor network be used in to improve performance?
2. Write the pseudo code for this lab.

Laboratory Assignments

In this lab you will be utilizing onboard timers, serial UARTs, and I/O ports of the starter kit to create an IR communications device. The main objective is to create a board which can attach to a PC and transmit/receive data via an IR link. Two boards should be programmed with the same code and have the same IR hardware. IR hardware has been provided. You will need two serial cables and one PC with two serial ports.

Steps

1. Modify the main.c file and include the appropriate files. Include commenting along the way.
2. Build your program slowly, testing along the way. Perform compiles and solve each requirement one at a time. Make sure comments are written as you progress.
3. Continue to build and test the program until all of the requirements have been met. Did we mention you should write your comments as you progress, not at the end?
4. If you run into problems, use the break point functionality of KD30 to step through the code until you find the problem.
5. Once all the requirements have been met, ensure that everything works.
6. Finish lab write-up and demonstrate for the professor.
7. Submit your C code (*.c) and .map files on a floppy disk or CD ROM.
Requirements

Req. 1 – The code generated is written in C for the MSV30262-SKP
Req. 2 – The code is well commented and easy to follow
Req. 3 – Your lab report should include the final build output from the builder
Req. 4 – Both boards should run the same code
Req. 5 – The serial communications with the PC should operate at 9600 baud 8,N,1
Req. 6 – HyperTerm will be used to transmit and receive characters (you can run it on one PC with
two serial ports, but with two HyperTerm applications open).
Req. 7 – The general operation will be that a character will be typed in a HyperTerm window,
transmitted via RS-232 link to one board, transmitted via IR link to another board, then transmitted
via RS-232 link to another HyperTerm window. This transmission is bi-directional.
Req. 8 – Transmit via IR with three start bits, seven data bits, one parity bit (odd), and two stop bits.
Req. 9 – Transmit via IR only valid ASCII character, between 0x20 and 0x7F, except ACK and
NAK
Req. 10 – Each IR transmitted byte should be acknowledged. The receiving board should
acknowledge a valid transmission with a NAK character (0x06). If the transmission is invalid,
acknowledge with a NAK (0x15).
Req. 11 – A valid IR transmission will be characterized by the correct number and type of start,
data, parity, and stop bits.
Req. 12 – A valid IR transmission will have the correct parity.
Req. 13 – Each byte transmitted via IR should be acknowledged within 0.01 seconds. (Extra credit
for faster transmission).
Req. 14 – The LCD does not need to show characters, but can be used during debug.
Req. 15 – Use the IR hardware provided by the professor.
Req. 16 – The minimum transmission distance is 1.5 meters. (Extra credit for transmission over
greater distances).
Req. 17 – The IR hardware should be powered by the Renesas boards.
Req. 18 – The PC will send one character every 5 seconds (no need for queues).

Lab Report

Include in your lab report observations and procedure like the following:

The general learning objectives of this lab were . . .
The general steps needed to complete this lab were . . .
Some detailed steps to complete this lab were . . .

1. Step one
2. Step two
3. . . .

Code generated for this lab...
Some important observations while completing/testing this lab were . . .
In this lab we learned . . .