Lab 05: A* Path Planning — Tutorial

Note: The idea behind the implementation of this code is to use the sample code obtained from
NI.com and add additional code that will use the output from that sample VI to navigate the map.
This involved obtaining the array and setting the starting position of the robot. The array
elements around the robot are analyzed and checked to see if a value of -2 is assigned to one of
those blocks. (A -2 signifies that the block is a part of the calculated path. According to which
block holds the -2, the robot will turn a certain degree, move forward, and turn back to a certain
degree to come back to its original stance.

Step 1: Create a new project and title it as LabSAStar. Download the file “A-Star simple
example” from Ni.com

Step 2: Add the file “A-Star simple example” to the project by simply right clicking on sbRIO
and clicking on add file.

{3 Project Explorer - LabSAStarivproj Lilﬂlg

File Edit View Project Operate Tools Window Help

EX il R B e

Items | Files

=8 @. Project: LabSAStar.lvproj
EI E My Computer

'{E Dependencies

E Build Specifications

é-n

o § FpGa| New » i

8 O gy »
£ w 9 Folder (Snapshot)...
E}Ll' Mg Connect :
40 T Folder (Auto-populating)...
J'I.I'LI' F L L k“r
< Mo tilities o I s
'l} M
@ Sta Deploy
@ [NL Deploy Al lib
B De
E By Arrange by [3

- @] Roam Expand All
- | readm Collapse All

E}g; AR fn Remowve from Project

& % Depen

e +&: Build Rename... F2
Help...
Properties

Figure 5.1

Step 3: We will now start to build the AStar subVI. Just in case, open the A-Star simple example
VI, go to the block diagram, select all, and copy. Open a new VI and paste the copied
code to the block diagram.

Note: To create a subVI, the connector pane must be the same for all other subVIs used in the
main code. Also, connections must be assigned to either control elements or indicators in
the code.

Step 4: Right click on the image shown in the top right and click on show connector to see the
connector pane for the VI. This will already be visible in LV 2011.)

{3 Untitled 3 Block Diagram on LabSAStar.lvproj/Starter Kit sbRIO *

B 13 Untited 3 Front Panel on LabSAStarlvpraj/Starter Kit sbRIO * Lo | B i
| 3 .EI|E g.dlt View Project Operate Tools ﬂlndo\fv Help oz |
|q>i@i ;.;'-uIE | 15pt Application Font |+ I| Hoh ”T]:‘ ﬂﬁ‘ I 7 VI Properties

Edit Icon...

Find All Instances

Lab5AStar. vproj/Starter Kit sbRIO| « i

Fig. 5.2

Step 5: The connections then need to be made. All inputs for the VI are shown on the left and all
output connections are shown on the right side. Connect the map as an input and the array
on the front panel as the output.

Intitled 3 Block Diagram on Lab5AStar. Ivproj/Starter Kit sbRIO =

{3 Untitled 3 Front Panel on Lab3AStar.Ivproj/Starter Kit shRIO *

Eite Edit Yiew Project Operate Tools Window Help
i~ | 2-] €5~

BE| @ [15pt Application Font |~ |[8z]

1T

Fig5.3

Lab5AStar.vproj/Starter Kit shRIO| <

Intitled 3 Block Diag

13 Untitid 3 Front Panel on Lab5AStaruproj/Starter Kit soRIO *
File Edit View Project Operate Tools Window Help o
(B[] & [1][Sot Appesean o |1 Eo [~ 2] (- Fai
=
LabSAStar, hrpmaltel Kit sbRIC|
iz =% —]

Step 6: To finish up with this subVI, select the timed loop and right click on it. Then select remove timed
loop.

MEror]
perform the 4%
generate the map array (35 % 35) planning from
from the boolean array control 33103232
[N]
TF [FEE] Get Cell Referencewi Get Cells in Path.vi
Wap Input [[TER b Bk iod BB |0 e Visible Ttems b oie
[. Help intensity
Examples
Description and Tip.., y
o L : W] Intensity Graph
3 o Breakpoint P
A Star Plan.vi 5]
Timed Structures Palette 3

J Auto Grow EILEneY grid

Exclude from Diagram Cleanup
il shared Clone Allocation
Replace with While Loop

Replace with Timed Sequence stop

[i] | Remove Timed Loop TEH - [@)

o Show Left Data Node
« Show Right Data Node

Add Frame After
Add Frame Before

« Stop if True
Continue if True

marter Kit sbRIO <

[0 Properties

Fig 5.5

Step 7: Before closing the AStar subVI, create a new VI and title it “Determining Direction.” This VI will
implement the idea behind implementing the A* algorithm. This VI will look at all array elements around

the robot’s position. Thus, copy the occupancy grid indicator that shows the resulting array on the front
panel of AStar subVI.

Step 8: To start building the new VI, create two numeric constants and paste the occupancy grid
indicator that was copied earlier. Make these constants and indicator controls for the VI by right clicking
each and selecting “make control.”

row

=

occupancy grid

(==
B Visible Items »

Find Indicator

Hide Indicator

Change to Control

Change to Constant
Change to Shared Variable Node »
Description and Tip...

Array Palette
Create

Data Operations
Advanced

v v ww

4 View AsIcon

Adapt To Source
Representation 4

Properties

Fig 5.6

Step 9: The arrays in LabVIEW are a bit different from other languages in the fact that the rows and cols
appears to be reversed. A 2-D array will have what appears as rows to be cols and what appears as cols
to be rows. By analyzing these rows and cols around the robot, you can see how each position will

correspond to the current row and col as shown below.

Front Diagonal Left
Row -1

Col +1

Forward position

Same Row

Col +1

Front Diagonal Right

Row +1

Col +1

Left position
Row -1

Same Col

Right position
Row +1

Same Col

Back Diagonal Left
Row -1

Col -1

Back position

Same row

Col -1

Back Diagonal Right

Row +1

Col -1

Fig. 5.7

From this knowledge we will set up a check for each of these positions. Place an index array subVI,
which can be found under the programming template and under the array template. When first placed,
it will only allow a row input but expanding it vertically will show a col input as well. Based on what
position we check we will either increment or decrement the row or col input value. The outputs of
these index array subVIs will be used as the inputs to the case statements made later on.

o

ﬁ Checks the position in front of the robot
same row col +1

col @

L] S
occcupancy grid

= 12:' 3 Checks right pos
| H row +1, same col

k —_—

DE {>_ @

-t
1 =

)

u}

Checks left pos
row -1, same col

B

— m-t

wt O

Check front diagonal right
row +1, col +1

— 3
> si O

Fig. 5.8

Step 10: The case statements will then be made. If a -2 is found from its corresponding index array subVI
output, then it will execute the code to make the robot move accordingly. If not found, then the case
statement will then go to another case statement that is inside and check again. This is done again and
again until all checks have been made. Since we will be using the write DC motor VI to write values to
the FPGA to set the velocity setpoints, we will create a control for both the initialize reference input and

a control to the error input for this write dc motors.

Prev row

starter kit host in

E

error out

=0

[gy
prev col

[gy

array

Checks the position in front of the robot

Case Statement

same row col +1

B
|

+

Checks right pos
row +1, same col
3 i

| o

Fig. 5.9

[robot will move forward one black]

d00000000000000000000000000000000°T

[S

O0000000000000000000000000000000T

Step 11: Like in the figure above, inside the -2 case for each case statement values will be written to the
FPGA depending on which direction the robot will move. The time depends on how big the squares in
the map are set up to be. For this map, the squares were set up to be 2 feet by 2 feet and the values
were calculated using the equations from the meter square project. At the end of the flat sequence that
handles how the robot will move, the row and col values are changed by either incrementing or
decrementing them depending on which position the robot is moving to. Create two indicators outside
of the case statement that will hold the values for the next row and next col. Two indicators must also

be created for the FPGA VI reference and error out.

starter kit host out

g‘

error out 2

nexg row
I1.23:
I3

next col

[z

Fig. 5.10

I3

Step 12: To finish up this subVI, the connections to the connector pane must be done. The left side will

connect to the row, col, and array input. The two middle connections can be used to connect the FPGA

VI Reference and error out inputs. Only the right side connections are considered to be outputs and will
be used to connect the next row, next col, FPGA VI Refernce, and error out outputs.

Step 13: Now we are ready to make the main VI. Make a new VI and title it “Implementation.” A flat
sequence will be used to step through the process involved in obtaining the number of blocks in the
path and then moving the robot in the appropriate directions. Also like in the AStar sample code, a map
will be needed to act as an input. Thus, copy the map with black and white blocks from the sample code
and paste it on the front panel of the Implementation VI. As a precautionary measure, we will set the
values of the velocity to zero and make it wait for a a small amount of time (2ms) since a delay was
sometimes seen in the first turn the robot made. Making the appropriate connections it should look like
this:

100000000000 00000°cCL

200

Map Input

Sh2s —

i o e 1 e o e o s e B w

Fig. 5.11

Step 14: The next step is to obtain the path that the robot will take. Depending on how your map looks
and the settings that are in your AStar subVI like the starting and end points, the path may be different.
To select a VI to use as a subVI, right click anywhere on the block diagram and select “select a VI...” a
dialog box will then appear allowing you to browse your directories and select a VI. Select AStar subVI
and since we have made the connections to the connector pane, the VI will have the inputs and outputs

we have selected for it once we place it on the block diagram. The map input is then passed to this subVI
and an output array of the map with the path in it is obtained.

TOoooOo0O00oO0o0000000000000000000000000
Call the subVI that will do the
200 (53) .
A* Path Planning algorithm and
return the array with the path the
robot will take.
Map Input
..... . .mg .:
’!.-"Eiﬂ occupancy grid
[i | li](12T
] 'l *L
H=lH 3
ul - ‘? |r -
Iml
o O = = = =

Fig. 5.12

Step 15: Now that we have the array with the path in it, we will search the array to see how many blocks
are in the path. To do this, two for loops are needed. In the second for loop, A case statement is used to
check if the block contains a -2 like how we checked in the Determining Directions subVI. The for loops
can be auto-indexed but for these for loops we tied the value 36 to N because the 2-D array is a size of
36 x 36. A numeric constant is also created that is first set to zero. This will be used in the case
statement when a -2 is found in one of the blocks in the array. If a -2 is found, then the constant is
incremented. The end result should appear like this. The shift registers are used to pass values from
previous loop iterations to the next iteration.

Doooooooooooooooooonooooooooooooooooooooooooooooooooooooionnc

all the subVI that will do the |_a'_a'C|:|unt5 the number of elements in the path or counts all -2 values in the array.|
A" Path Planning algerithm and

return the array with the path the N

robot will take.

N

[i}-m &
m—,_--: a col
- - = - n
’!v"‘EjK occupancy grid 17
[;i[fllﬁ row
k

i i :

O000¢C

Fig. 5.13

Step 16: The last segment of code involve taking the number of blocks found in the path and connecting
it to the N value in another for loop. This for loop will have two numeric constants on the outside of the
loop that will be passed to the for loop. These constants will act as the initial row and col where the
robot is first located. Shift registers will be used to pass these values to the next loop iteration.

Step 17: A flat sequence will be placed in the for loop that will call the Determining Direction subVI. The
array with the path must then be updated to avoid seeing two blocks when checking the array elements
around the robot by setting the current position’s value to 1 using the replace array subset subVI which
can be found in the same place the index array subVI was found. To see the robot move through the
path, a wait statement is used and set to 200ms. The resulting steps look like this:

OO0 000 000000000000 000

AN

OOooo0oooo

0w B s w
Call subVI that will check the array occupancy grid 2
elements arcund the robot and . [R==]
make the robot move accordingly. il

[—

initial row

Replace value in current
array element with a
value of 1 to prevent the
rebot from seeing twe
array elements with the

pL_

value of -2, I_I

E—F

=

g .

oooooooo

100000000000 000000000

o o e o s e s e A w s B w B w = Y w i w = W w

I

Oo0Oo0o0o0070010

Fig. 5.14

Step 18: To prevent the robot from constantly moving after closing reference, the velocities are set to
zero and then a wait statement is used. After these last blocks in the flat sequence, there is a close

statement and we are done with lab 5.

o) o o o oo o o o o o e o oo o o o o o o e |

B A A
. -
g 2 =

These last two frames will set the velocities to 00
zerc and wait for a small period of time at this i
velocity in order to ensure the rebot will come
to a halt after it has finished traversing the map.

-y

1000000000000 0000000000000 0000 oo0on

Fig. 5.15

