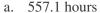
To LED

Batteries

UNC Charlotte-ECGR4101/5101-Midterm Exam -10/10/07

Name:	SOLUTION	Mosaic User ID	SOLUTION	


- 1. According the ECGR4101 programming standards, which of the following should be included in the header of a subroutine? (5 points all or nothing)
 - a. Subroutine name

d. Interfaces

b. Assumptions

e. All of the above

- c. Inputs/Outputs
- 2. You have several 400mAh 1.5V batteries and a LED that has an average drain of 3.5mA at 4.5V. If you had the following battery configuration how long would the LED stay lit? (5 points)

- b. 228.6 hours (5 points all or nothing)
- c. 371.4 hours
- d. 209.3 hours
- e. None of the above Batteries = 4.5v, 800mAhr/3.5 mA = 228.6 hr
- 3. Vref+ = 3V, vref- = 0V, step size = 3v/1024 = 2.93mV = 4 points, all or nothing

1100110010 = 0x332 = 818, 818 * 2.93 mV = 2.40 V = 3pts formula, 3 points correct answer (note: the formula from the notes in class is also valid)

```
4. Algorithm Solution:
```

```
// Name: James Conrad - 10/10/07
// Function: when sw1 is pressed, turn the green LEDs on
// If the thermister value is above 511 light the yellow LED
// If the light sensor value is above 511 light the red LED
// Inputs: sw1, 2 ADC;
                            Outputs: LEDs
Setup a switch (input)
Setup LEDs (output, turn off)
Setup thermister and light sensor ADC (sweep)
Start continually reading thermister, light sensor
While (1) {
      If (sw1 pressed) Turn on the green LED
             Else turn off green LED;
      If (thermister>511) Turn on the yellow LED;
             Else turn off yellow LED;
      If (light sensor>511) Turn on the red LED
             Else turn off red LED;
      }
```

Points:

5 points: header comments

5 points: set up switch and LEDs

5 points: set up ADCs

5 points: While loop with testing values inside (continuously)

5 points: Handle green LED on

5 points: Handle green LED off

5 points: Handle yellow LED on with condition

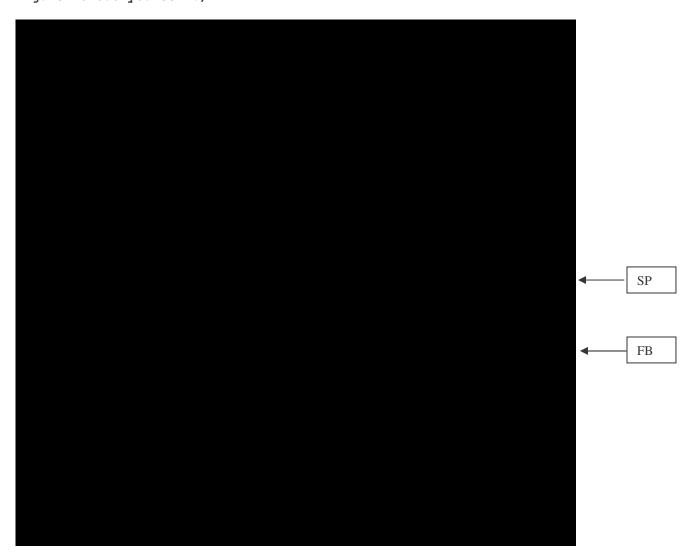
5 points: Handle yellow LED off with condition

5 points: Handle red LED on with condition

5 points: Handle red LED of with condition

No extra points for writing the entire code package. I only asked for the algorithm.

5. Code Solution: adcon0=0x18; // perform repeated A/D conversions - sweep adcon1=0x28; // sweep pins 0-3 (to get pins 0 and 1, but no more) // sample and hold adcon2=0x01;adst=1; // <- start measuring!</pre> Points: 5 points: set up reg0 with correct values 5 points: set up reg1 with correct values 5 points: set up reg2 with correct values 5 points: start sampling (adst or adcon bit set) No extra points for writing the entire code package. I only asked for a few lines. FYI: adcon0 = 0x18; /* x0011xxx; /* ANO input, 1 shot mode, soft trigger analog input select bit 0 - don't care analog input select bit 1 - don't care analog input select bit 2 - don't care A/D operation mode select bit 0 - sweep A/D operation mode select bit 1 - sweep trigger select bit - software A/D conversion start flag - set any time frequency select bit 0 - don't care */ adcon1 = 0x28;** 10-bit mode, Vref connected _A/D sweep pin select bit 0 - 1 for pins 0-1 _A/D sweep pin select bit 1 - 0 for pins 0-1 xx1x1000; /* A/D operation mode select bit 1 $\frac{8}{10}$ bit mode select bit = 1 = 10-bit Frequency select bit 1 - don't care Vref connect bit External op-amp connection mode bit 0 External op-amp connection mode bit 1 */ adcon2 = 0x01;000x0001; ** Sample and hold enabled AD conversion method select bit AD input group select bit 0 - port 10 AD input group select bit 1 - port 10 Reserved Frequency select bit 2 - don't care Reserved Reserved


Reserved */

6. Solution:

Assumptions:

Allocate 4 bytes (2 bytes each) for integers m and z for main. m is at -2[FB] and z is at -4[FB]. For factorial allocate 4 bytes again, 2 bytes for temp and 2 bytes for the incoming argument n. temp is at -2[FB] and n is at -4[FB].

(50 points, as below, for table, 10 points for assumptions and FP/SP. Note: I took more points away if you copied the solution from a previous semester, since you clearly did not read the problem and figure it out yourself.)

