
1 Embedded Systems

C Programming
Language Review

 Embedded Systems 2

C: A High-Level Language
Gives symbolic names to values

– don’t need to know which register or memory location

Provides abstraction of underlying hardware
– operations do not depend on instruction set
– example: can write “a = b * c”, even if

CPU doesn’t have a multiply instruction

Provides expressiveness
– use meaningful symbols that convey meaning
– simple expressions for common control patterns (if-then-else)

Enhances code readability
Safeguards against bugs

– can enforce rules or conditions at compile-time or run-time

 Embedded Systems 3

A C Code “Project”
• You will use an “Integrated Development Environment”

(IDE) to develop, compile, load, and debug your code.
• Your entire code package is called a project. Often you

create several files to spilt the functionality:
– Several C files
– Several include (.h) files
– Maybe some assembly language (.src) files
– Maybe some assembly language include (.inc) files

• A lab, like “Lab7”, will be your project. You may have

three .c, three .h, one .src, and one .inc files.
• More will be discussed in a later set of notes.

 Embedded Systems 4

Compiling a C Program
Entire mechanism is usually called

the “compiler”
Preprocessor

– macro substitution
– conditional compilation
– “source-level” transformations

• output is still C
Compiler

– generates object file
• machine instructions

Linker
– combine object files

(including libraries)
into executable image

C
Source and
Header Files

C Preprocessor

Compiler

Source Code
Analysis

Target Code
Synthesis

Symbol Table

Linker

Executable
Image

Library
Object Files

 Embedded Systems 5

Compiler
Source Code Analysis

– “front end”
– parses programs to identify its pieces

• variables, expressions, statements, functions, etc.
– depends on language (not on target machine)

Code Generation
– “back end”
– generates machine code from analyzed source
– may optimize machine code to make it run more efficiently
– very dependent on target machine

Symbol Table
– map between symbolic names and items
– like assembler, but more kinds of information

 Embedded Systems 6

Memory Map for Our MCU

 Embedded Systems 7

Classifying Data

Variables
– Automatic – declared within a function

• Only exist while the function executes
• Are re-initialized (re-created, in fact) each time the function is called

– Static – declared outside of all functions, always exist
• Can make an automatic variable retain its value between invocations

by using the “static” keyword

 Embedded Systems 8

Storage of Local and Global Variables
int inGlobal;

void chapter12() {
 int inLocal;
 int outLocalA;
 int outLocalB;

 /* initialize */
 inLocal = 5;
 inGlobal = 3;

 /* perform calculations */
 outLocalA = inLocal++ & ~inGlobal;
 outLocalB = (inLocal + inGlobal) - (inLocal -

inGlobal);
}

 Embedded Systems 9

Another Example Program with Function Calls

const int globalD=6;
int compute(int x, int y);
int squared(int r);

void main() {
 // These are main’s automatic variables, and will be
 int a, b, c; a = 10; // stored in main’s frame
 b = 16;
 c = compute(a,b);
}

int compute(int x, int y) {
 int z;
 z = squared(x);
 z = z + squared(y) + globalD;
 return(z);
}

int squared(int r) {
 return (r*r);
}

 Embedded Systems 10

Control Structures
• if – else
• switch
• while loop
• for loop

 Embedded Systems 11

If-else
if (condition)
 action_if;
else
 action_else;

condition

action_if action_else

T F

Else allows choice between
two mutually exclusive actions without re-testing condition.

 Embedded Systems 12

Switch
switch (expression) {
case const1:
 action1; break;
case const2:
 action2; break;
default:
 action3;

}

evaluate
expression

= const1?

= const2?

action1

action2

action3

T

T
F

F

Alternative to long if-else chain.
If break is not used, then
case "falls through" to the next.

 Embedded Systems 13

While
while (test)
 loop_body;

test

loop_body

T

F

Executes loop body as long as
test evaluates to TRUE (non-zero).

Note: Test is evaluated before executing loop body.

 Embedded Systems 14

For
for (init; end-test; re-init)

 statement
init

test

loop_body

re-init

F

T

Executes loop body as long as
test evaluates to TRUE (non-zero).
Initialization and re-initialization
code included in loop statement.

Note: Test is evaluated before executing loop body.

 Embedded Systems 15

ASCII Table

00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p

01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q

02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r

03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s

04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t

05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u

06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v

07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w

08 bs 18 can 28 (38 8 48 H 58 X 68 h 78 x

09 ht 19 em 29) 39 9 49 I 59 Y 69 i 79 y

0a nl 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z

0b vt 1b esc 2b + 3b ; 4b K 5b [6b k 7b {

0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c |

0d cr 1d gs 2d - 3d = 4d M 5d] 6d m 7d }

0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~

0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del

 Embedded Systems

Masking
One of the most common uses of logical operations is “masking.”
Masking is where you want to examine only a few bits at a time, or

modify certain bits.
For example, if I want to know if a certain number is odd or even, I can

use an “and” operator.
 0101 0101 0101 0101
AND 0000 0000 0000 0001
 0000 0000 0000 0001

Or, lets say you want to look at bits 7 to 2:
 0101 0101 0101 0101
AND 0000 0000 1111 1100
 0000 0000 0101 0100

Code? Bitwise and is &, bitwise or is |

16

Code Example
Let’s assume three switches

connected to port 1 like the
following:

How do you read the three switches?
After you set the direction:

int data;

data = (int)PORT1.PIDR.BIT.B0;

All at the same time?
data = 7 &(int) PORT1.PIDR.BYTE;

Embedded Systems 17

S
W

3 S
W

2 S
W

1

C examples
Now, write the C code to interrogate
the switches and print
 “Switch n pressed”
if it is being pressed. Print
 “No switches printed”
If none are being pressed.

//perform bitwise AND for bit0, then 1, then 2
if (!(data & 1)) printf(“Switch 1 pressed/n”);
if
if
// if no switches pressed, say so
if

Embedded Systems 18

S
W

3 S
W

2 S
W

1

 Embedded Systems

Example - upper/lower case ASCII
Masking also lets you convert between ASCII upper and

lower case letters:
– “A” = 0x41 (0100 0001)
– “a” = 0x61 (0110 0001)

To convert from capitals to lower case:
– Add 32 (0x20)
– OR with 0x20

To convert from lower case to capitals
– Subtract 32 (0x20)
– AND 0xDF

The logical operations are the only way to ensure the
conversion will always work

19

 Embedded Systems 20

1D Arrays

 Embedded Systems 21

2D Arrays

[0][0]
[1][0]

[0][1]
[1][1]

[0][2]
[1][2]

Columns
R

ow
s

Column Row C arrays are stored in a row-major form
(a row at a time)

 Embedded Systems 22

Pointers
A pointer variable holds the address of the data, rather

than the data itself
To make a pointer point to variable a, we can specify

the address of a
– address operator &

The data is accessed by dereferencing (following) the
pointer

– indirection operator * works for reads and writes
Assigning a new value to a pointer variable changes

where the variable points, not the data

void main () {

 int i, j;

 int *p1, *p2;

 i = 4;

 j = 3;

 p1 = &i;

 p2 = &j;

 *p1 = *p1+*p2;

 p2 = p1;

}

1

2

3

4

5

6

i

j

p1

p2

1&2

4

3

Adx
600
602
604
606

i

j

p1

p2

3

4

3

600

i

j

p1

p2

4

4

3

600

602

i

j

p1

p2

5

7

3

600

602

i

j

p1

p2

6

7

3

600

600

 Embedded Systems 23

More about Pointers
Incrementing and decrementing pointers to array elements

– Increment operator ++ makes pointer advance
to next element (next larger address)

– Decrement operator -- makes pointer move to
previous element (next smaller address)

– These use the size of the variable’s base type
(e.g. int, char, float) to determine what to add

• p1++ corresponds to p1 = p1 + sizeof(int);
• sizeof is C macro which returns size of type

in bytes

Pre and post

– Putting the ++/-- before the pointer causes inc/dec before pointer is used
• int *p=100, *p2;

– p2 = ++p; assigns 102 to integer pointer p2, and p is 102
afterwards

– Putting the ++/-- after the pointer causes inc/dec after pointer is used
• char *q=200, *q2;

– q2 = q--; assigns 200 to character pointer q2, and q is 199
afterwards

int a[18];

int * p;

p = &a[5];

p = 5; / a[5]=5 */

p++;

p = 7; / a[6]=7 */

p--;

p = 3; / a[5]=3 */

 Embedded Systems 24

What else are pointers used for?
Data structures which reference each other

– lists
– trees
– etc.

Exchanging information between procedures
– Passing arguments (e.g. a structure) quickly – just pass a pointer
– Returning a structure

Accessing elements within arrays (e.g. string)

 Embedded Systems 25

Strings
See Section 16.3.4 of Patt & Patel.
There is no “string” type in C.
Instead an array of characters is used - char a[44]
The string is terminated by a NULL character (value of 0,

represented in C by \0).
– Need an extra array element to store this null

Example
– char str[10] = “testing”;

t e s t i n g \0

str[0]
str[1]

str

str[2]

 Embedded Systems 26

Formatted String Creation
Common family of functions defined in stdio.h

– printf: print to standard output
– sprintf: print to a string
– fprintf: print to a file

Syntax: sprintf(char *str, char * frmt, arg1, arg2, arg3 ..);
– str: destination
– fmt: format specifying what to print and how to interpret arguments

• %d: signed decimal integer
• %f: floating point
• %x: unsigned hexadecimal integer
• %c: one character
• %s: null-terminated string

– arg1, etc: arguments to be converted according to format string

 Embedded Systems 27

sprintf Examples – strings and integers
char s1[30], s2[30];

int a=5, b=10, c=-30;

char ch=‘$’;

sprintf(s1, “Testing”);

sprintf(s2, “a=%d, b=%d”, a, b);

sprintf(s1, “b=%x, c=%d”, b, c);

sprintf(s1, “b=0x%x”, b);

sprintf(s2, “s1=%s”, s1);

sprintf(s1, “%c %c”, ch, s2);

Testing
s1

a=5, b=10
s2

b=a, c=-30
s1

b=0xa
s1

s1=b=0xa
s2

$ s
s1

 Embedded Systems 28

sprintf Examples – floating-point
Variation on %f format specifier

– %-w.pf
• - = left-justify. Optional
• w = minimum field width (# of symbols)
• p = precision (digits after decimal point)

Examples

3.140000
s1

float f1=3.14, f2=9.991, f3=-19110.331;

char s1[30], s2[30];

sprintf(s1, “%f”, f1);

sprintf(s1, “%f”, f3);

sprintf(s1, “%4.1f”, f2);

-19110.3
s1

10.0
s1

 Embedded Systems 29

sprintf Examples – More Integers
Variation on %d format specifier for integers (d/i/o/x/u)

– %-w.pd
• - = left justify. Optional
• w = minimum field width (# of symbols)
• p = precision (digits). Zero pad as needed

Examples

 442
s1 int a=442, b=1, c=-11;

char s1[30], s2[30];

sprintf(s1, “%5d”, a);

sprintf(s1, “%-4d”, b);

sprintf(s1, “%4d”, b);

sprintf(s1, “%-5.4d”, c);

1
s1

 1
s1

-011
s1

 Embedded Systems 30

String Operations in string.h

Copy ct to s including terminating null character. Returns a pointer to s.
– char* strcpy(char* s, const char* ct);

s1 = “cheese”;

s2 = “limburger”;

strcpy(s1, s2); /* s1 = limburger */

Concatenate the characters of ct to s. Terminate s with the null character and

return a pointer to it.
– char* strcat(char* s, const char* ct);

s1 = “cheese”;

s2 = “ puffs”;

strcat(s1, s2); /* s1 = cheese puffs */

 Embedded Systems 31

More String Operations
Concatenate at most n characters of ct to s. Terminate s with the null

character and return a pointer to it.
– char* strncat(char* s, const char* ct, int n);

s1 = “cheese”;

s2 = “ puffs”;

strncat(s1, s2, 4); /* cheese puf */

Compares two strings. The comparison stops on reaching a null

terminator. Returns a 0 if the two strings are identical, less than zero if
s2 is greater than s1, and greater than zero if s1 is greater than s2.
(Alphabetical sorting by ASCII codes)
– int strcmp(const char* s1, const char* s2);

s1 = “cheese”;

s2 = “chases”;

strcmp(s1,s2); /* returns non-zero number */

strcmp(s1, “cheese”); /* returns zero */

 Embedded Systems 32

More String Operations
Return pointer to first occurrence of c in s1, or NULL if not found.

– char* strchr(const char* s1, int c);
s1 = “Smeagol and Deagol”;

char a *;

a = strchr(s1, “g”); /* returns pointer to s1[4] */

Return pointer to last occurrence of c in s1, or NULL if not found.

– char* strrchr(const char* s1, int c);
s1 = “Smeagol and Deagol”;

char a *;

a = strrchr(s1, “a”); /* returns pointer to s1[14] */

Can use the returned pointer for other purposes
a = ‘\0’; / s1 = “Smeagol and De” */

strcat(s1, “spair”); /* s1 = “Smeagol and Despair” */

 Embedded Systems 33

Dynamic Memory Allocation in C
Why?

– Some systems have changing memory requirements, and stack
variables (automatic) aren’t adequate

– Example: Voice recorder needs to store recordings of different lengths.
Allocating the same size buffer for each is inefficient

How?
– Allocate nbytes of memory and return a start pointer

• void * malloc (size_t nbytes);

– Allocate nelements*size bytes of memory and return a start pointer
• void * calloc (size_t nelements, size_t size);

– Change the size of a block of already-allocated memory
• void * realloc (void * pointer, size_t size);

– Free a block of allocated memory
• void free (void * pointer);

 Embedded Systems 34

Using Dynamic Memory Management
Request space for one or more new variables

– Request pointer to space for one element
int * j, *k;

j = (int *) malloc (sizeof(int));

*j = 37;

– Request pointer to space for array of elements and initialize to zero
k = (int *) calloc(num_elements, sizeof(int));

k[0] = 55;

k[1] = 31;

– These return NULL if there isn’t enough space
• Program has to deal with failure -- embedded program probably

shouldn’t just quit or reset….
Free up space when done using variables

free(k);

 Embedded Systems 35

Example Application: Voice Recorder
Recording

– While record switch is pressed
• sample microphone
• store in temporary RAM buffer

– When record switch is released
• copy audio to a permanent buffer
• add to end of list of recordings

Playback and skipping
– forward switch: skip forward over one

recording, wrap around at end
– play switch: play the current recording
– delete switch: delete the current

recording
Data Structure: linked list of recordings

buffer

recordings

record
record
record
delete

A

 Embedded Systems 36

Data Structure Detail: Linked List
Each list element is defined as a

structure with fields
– AudioSize: Number of bytes
– AudioData: …
– Next: Pointer to next list element

typedef struct {

 unsigned AudioSize;

 char * AudioData;

 struct List_T * Next;

} List_T;

 Embedded Systems 37

Code for Voice Recorder main
unsigned char buffer[MAX_BUFFER_SIZE];

struct List_T * recordings = NULL, * cur_recording = NULL;

void main(void) {

 while (1) {

 while (NO_SWITCHES_PRESSED)

 ;

 if (RECORD)

 handle_record();

 else if (PLAY)

 handle_play();

 else if (FORWARD)

 handle_forward();

 else if (DELETE)

 handle_delete();

 }

}

 Embedded Systems 38

Code for handle_forward
void handle_forward(void) {

 if (cur_recording)

 cur_recording = cur_recording->Next;

 if (!cur_recording)

 cur_recording = recordings;

}

 Embedded Systems 39

Code for handle_record
void handle_record(void) {

 unsigned i, size;

 unsigned char * new_recording;

 struct List_T * new_list_entry;

 i = 0;

 while (RECORD)

 buffer[i++] = sample_audio();

 size = i;

 new_recording = (unsigned char *) malloc (size);

 for (i=0; i<size; i++) /* could also use memcpy() */

 new_recording[i] = buffer[i];

 new_list_entry = (List_T *) malloc (sizeof(List_T));
new_list_entry->AudioData = new_recording;

 new_list_entry->AudioSize = size;

 new_list_entry->Next = NULL;

 recordings = Append(recordings, new_list_entry);

}

 Embedded Systems 40

Code for handle_delete
void handle_delete(void) {

 List_T * cur = recordings;

 if (cur == cur_recording)

 recordings = recordings->Next;

 else {

 while (cur->Next != cur_recording)

 cur = cur->Next;

 /* cur now points to previous list entry */

 cur->Next = cur_recording->Next;

 }

 free(cur_recording->AudioData);

 free(cur_recording);

}

 Embedded Systems 41

Allocation Data Structures
Keep free memory in

sorted list of free blocks
typedef struct hdr {

struct hdr * next;
unsigned int size;
};

hdr * FreeList;

Assume hdr takes no
space for examples

More details in “Memory
Allocation in C,” Leslie
Alridge, Embedded
Systems Programming,
August 1989

Used

Used

Used

Size = 412
Next

Size = 508
Next

Size = 38
Next

Size = 88
Next

FreeList

 Embedded Systems 42

Allocation Operations
To allocate memory

– find first block of size >= requested_size
– modify list to indicate space isn’t free

• if sizes match exactly, remove free block from list
• else split memory

– reduce size field by requested_size, keeping first part of block in free
space

– allocate memory in second part of block
• return pointer to newly allocated block

To free memory depends on block’s memory location
– If before first free block, prepend it at head of free list
– If between free list entries, insert in list
– If after last free block, append it at tail of free list

Freed memory block may be adjacent to other free blocks. If so,
merge contiguous blocks

 Embedded Systems 43

Dangers of Dynamic Memory Allocation
Memory leaks waste memory

– Never freeing blocks which are no longer needed. User’s
responsibility.

May accidentally use freed memory
– User’s responsibility.

Allocation speed varies
– Linked list must be searched for a block which is large enough
– Bad for a real-time system, as worst case may be large.

Fragmentation
– Over time free memory is likely to be broken into smaller and

smaller fragments.
– Eventually there won’t be a block large enough for an allocation

request, even though there is enough total memory free

 Embedded Systems 44

Heap and Fragmentation
Problem:

– malloc/calloc/free use a heap of memory; essentially a list of blocks
of empty and used memory

– Repeated allocation/free cycles with differently sized allocation
units leads to fragmentation

• Although there may be enough memory free, it may be
fragmented into pieces too small to meet request

Solutions (none optimal):
– Always allocate a fixed size memory element
– Use multiple heaps, each with a fixed element size

 Embedded Systems 45

What is an Algorithm?
A formula? A solution? A sequence of steps? A recipe?
A former Vice-President? (Al-Gore-ithm?)

An algorithm is created in the design phase

How is an algorithm represented?
Typically represented as pseudo code
Historically represented as flowcharts

Do yourself a favor – write

algorithms before code –
always!

 Embedded Systems 46

Pseudo Code
Pseudo code is written in English to describe the functionality

of a particular software module (subroutine)
Include name of module/subroutine, author, date, description

of functionality of module, and actual steps
Often you can take the pseudo code and use them lines in

your program as comments!
Avoid a very fine level of detail (although this may sometimes

be difficult to do)
Avoid writing code – use English, not assembly language (or

higher-level language) instructions

 Embedded Systems 47

An Example
Problem: Compare two numbers in x and y, put the larger

number in z. If Equal, put 0 in z.

Sample input/output:

x y z
5 4

5 -4

-5 4

-5 -4

5 5

 Embedded Systems 48

Algorithm - Larger
Algorithm:
; Larger: Jim Conrad, 2011-09-13
; Purpose: Compare two numbers in x and
; y, put the larger number in z. If
; equal, put 0 in z.
Perform x-y
If result is positive ; x is bigger
 Put x in z, exit
If result is negative ; y is bigger
 Put y in z, exit
If zero,
 Put 0 in z, exit

 Embedded Systems 49

An example
What do you think this does?

; ____________: Jim Conrad, 2011-09-13
; Purpose:
;
;

Set total to zero
Set grade counter to one
While grade counter is less than or equal to ten
 Input the next grade
 Add the grade into the total
Set the class average to the total divided by ten
Print the class average.

Borrowed from http://www.unf.edu/~broggio/cop2221/2221pseu.htm

	C Programming �Language Review
	C: A High-Level Language
	A C Code “Project”
	Compiling a C Program
	Compiler
	Memory Map for Our MCU
	Classifying Data
	Storage of Local and Global Variables
	Another Example Program with Function Calls
	Control Structures
	If-else
	Switch
	While
	For
	ASCII Table
	Masking
	Code Example
	C examples
	Example - upper/lower case ASCII
	1D Arrays
	2D Arrays
	Pointers
	More about Pointers
	What else are pointers used for?
	Strings
	Formatted String Creation
	sprintf Examples – strings and integers
	sprintf Examples – floating-point
	sprintf Examples – More Integers
	String Operations in string.h
	More String Operations
	More String Operations
	Dynamic Memory Allocation in C
	Using Dynamic Memory Management
	Example Application: Voice Recorder
	Data Structure Detail: Linked List
	Code for Voice Recorder main
	Code for handle_forward
	Code for handle_record
	Code for handle_delete
	Allocation Data Structures
	Allocation Operations
	Dangers of Dynamic Memory Allocation
	Heap and Fragmentation
	What is an Algorithm?	
	Pseudo Code
	An Example
	Algorithm - Larger
	An example

