
Renesas Electronics America Inc.

© 2013 Renesas Electronics America Inc. All rights reserved.

Using Interrupts With Peripherals
Chapter 9

Advanced Embedded Systems using the RX63N

00000-A

Rev. 0.1

This image cannot currently be displayed.

© 2013 Renesas Electronics America Inc. All rights reserved. 2

Interfacing with the Real World

 All embedded applications need to monitor some external
events and process those events like a switch press for
example.

 So how do we monitor an external event ?

This image cannot currently be displayed.

Method 1. Polling

 We can constantly monitor all switches, and keep checking
weather they are being pressed or not.

 Hence MCU will keep on polling the switches and wait unless
it detects an event

 Is this efficient?

© 2011 Renesas Electronics America Inc. All rights reserved. 3

This image cannot currently be displayed.

Disadvantages of Polling

 The Answer is No.

 This is not efficient because it’s a waste of CPU’s resources (
like power) to keep on waiting for a peripheral to respond.

 The code required for polling generally tends to be messy
with multiple calls inside a big loop to check if a peripheral is
ready or not.

© 2011 Renesas Electronics America Inc. All rights reserved. 4

This image cannot currently be displayed.

Method 2: Interrupts

 The other method is : Peripheral sends a signal to CPU
indicating an external event whenever it occurs.

 CPU performs other tasks, and processes the external event,
only when it receives the signal from the peripheral.

© 2011 Renesas Electronics America Inc. All rights reserved. 5

This image cannot currently be displayed.

Method 2: Interrupts

 The signal peripheral uses to draw the CPU’s attention is
called an Interrupt.

 When CPU receives interrupt, it stops its current execution,
and processes the interrupt, and then resumes the original
execution. This is called Interrupt Handling.

© 2011 Renesas Electronics America Inc. All rights reserved. 6

This image cannot currently be displayed.

Example

© 2011 Renesas Electronics America Inc. All rights reserved. 7

This image cannot currently be displayed.

How CPU Processes the Interrupts

 1. Finish processing current instruction.

 2. Save program counter and flags to stack.

 3. Run interrupt service routine.

 4. Restore program counter and flags from stack.

 5. Resume main program.

© 2011 Renesas Electronics America Inc. All rights reserved. 8

This image cannot currently be displayed.

Interrupt Service Routines (ISR)

 Subroutines used to service an interrupt are called ISR.

 Each interrupt has an ISR which has an address listed in

Interrupt Vector Table.

 Processor obtains the subroutine address from the vector
table and directs the execution to the ISR.

© 2011 Renesas Electronics America Inc. All rights reserved. 9

This image cannot currently be displayed.

Interrupt Vector Table

 Interrupt Vector Table (IVT) in the RX63N microcontroller
has 256 interrupts

 Each interrupt source occupying four bytes in the table.

 In total, the size of IVT is 1024 bytes (4 bytes 256
sources).

 When the CPU accepts an interrupt, it acquires the 4 byte
address from the IVT and executes the code specified at that
particular interrupt service routine.

© 2011 Renesas Electronics America Inc. All rights reserved. 10

This image cannot currently be displayed.

Types of Interrupts

 Interrupts from peripherals modules

 External pin interrupts (IRQ0 to IRQ15)

 Software interrupts

 Non Maskable interrupts

 © 2011 Renesas Electronics America Inc. All rights reserved. 11

This image cannot currently be displayed.

Non Maskable Interrupts

 NMI are interrupts that cannot be ignored by the processor

 The non maskable interrupts are usually used for non-
recoverable errors and serious hardware errors that need
immediate attention.

 One example of a non-maskable interrupt is the reset pin.

© 2011 Renesas Electronics America Inc. All rights reserved. 12

This image cannot currently be displayed.

Interrupt Request Detection Methods

 Edge detection
 The IR Flag is 1 when the interrupt is detected and is
cleared by writing 0 to it once the request is accepted

 Level detected
 The IR Flag is 1 when the interrupt is detected, but is
cleared only when the interrupt source is cleared

© 2011 Renesas Electronics America Inc. All rights reserved. 13

This image cannot currently be displayed.

Interrupt Request Detection Methods

  Edge detection:

 Level Detection:

© 2011 Renesas Electronics America Inc. All rights reserved. 14

This image cannot currently be displayed.

Registers

 Interrupt Request Register (IR)
 Interrupt Request Enable Register (IER)
 Interrupt Priority Register (IPR)
 Fast Interrupt Register (FIR)
 Software Interrupt Activation Register (SWINTR)
 IRQ Control Register (IRQCR)
 Non-Maskable Interrupt Status Register (NMISR)
 Non-Maskable Interrupt Enable Register (NMIER)
 Non-Maskable Interrupt Clear Register (NMICLR)
 NMI Pin Interrupt Control Register (NMICR)

© 2011 Renesas Electronics America Inc. All rights reserved. 15

This image cannot currently be displayed.

Interrupt Request Enable Register (IERm)

 m 02 to 1Fh

 IREj (j=0 to 7) is used to enable or disable a particular
interrupt. Writing 0 disables an interrupt, and writing 1
enables it.

 m and j values represent particular interrupts that can be
referenced in the interrupt vector table

© 2011 Renesas Electronics America Inc. All rights reserved. 16

This image cannot currently be displayed.

Interrupt Request Register

 IRn where n represents the different interrupt sources in the
interrupt vector table

 Address(es): 0008 7010h to 0008 70FDh

 Bit B0 represents the interrupt status flag.
 0: No interrupt request is generated
 1: Interrupt Request is generated

 © 2011 Renesas Electronics America Inc. All rights reserved. 17

This image cannot currently be displayed.

Interrupt Priority Register (IPRn)

 n goes from 0 to 253
 This register is used to set priority of an interrupt

 Bit B3 to B0 are used to set the priority of the interrupt,
0000 being the lowest and 1111 being the highest

 These bits can be written only when interrupt requests are

disabled. IERm.IENj bit = 0

© 2011 Renesas Electronics America Inc. All rights reserved. 18

This image cannot currently be displayed.

IRQ Control Register i (IRQCRi) (i=0 to 15)

 Address: 0008 7500h to 0008 750Fh

 The IRQ Control Register (IRQCRi) is used to select the type
of external interrupts, which are either edge detection or
level detection.

 These settings should only be done when the interrupt is
disabled and after the interrupt is set up. The interrupt
request bit for the particular external interrupt should be
cleared and the interrupt enable bit should be set to 1.

© 2011 Renesas Electronics America Inc. All rights reserved. 19

This image cannot currently be displayed.

Interrupt Controller Unit

 The part of the MCU that receives the interrupts from the
peripherals is called the Interrupt Control Unit (ICU)

 ICU does the following:
1. Detecting the interrupts
2. Enabling/Disabling interrupts
3. Determining the interrupt destination
4. Determining the priority.

© 2011 Renesas Electronics America Inc. All rights reserved. 20

This image cannot currently be displayed.

Setting an Interrupt

The steps to set up an interrupt for a peripheral are as follows:

 The peripheral or port pin must be enabled and configured.

 Set an interrupt priority for the interrupt source (IPR macro)

to a value greater than 0 (0 disabled).

 Enable the interrupt in the peripheral (local enable bit).

 Enable the interrupt in the ICU (IEN macro).

© 2011 Renesas Electronics America Inc. All rights reserved. 21

This image cannot currently be displayed.

Setting an Interrupt

 Before enbaling registers, the ISR for interrupt needs to be
defined.

 Renesas provides the following macro for defining the ISR :

#pragma interrupt (SUBROUTINE_NAME(vect = VECTORNUMBER))

void SUBROUTINE_NAME(void);

This code is to be placed in the beginning of the program or in a
separate “.h” file.
1. //Name of Interrupt

2. void SUBROUTINE_NAME(void){

3. //ISR Code

4. }

© 2011 Renesas Electronics America Inc. All rights reserved. 22

This image cannot currently be displayed.

Setting an Interrupt

 All the registers can be accessed by macros defined by
Renesas such as IPR(), IR().

 To clear the IR flag,

 IR(“PERIPHERAL”, “INTERRUPT”) = 0;

 To check weather the flag is set or not,

 if(IR(“PERIPHERAL”, “INTERRUPT”)) == 1)
 {

 //Code if flag is set

 }

© 2011 Renesas Electronics America Inc. All rights reserved. 23

This image cannot currently be displayed.

Switch as Input using Interrupts

 The following code uses interrupts to signal a user input via
a switch.

1. #include "iodefine.h"

2.

3. //Define SW1 interrupt

4. #pragma interrupt(SW1_Int(vect = VECT_IRQ8))

5. void SW1_Int(void);

6.

7. //Function definitions

8. void main(void);

9. void LED_Rotate(void);

10. void EnableIRQ8(void);

11.

12. //Define global variables

13. int Switch_Press = 0;

© 2011 Renesas Electronics America Inc. All rights reserved. 24

This image cannot currently be displayed.

Switch as Input using Interrupts

14. int Current_LED

16. void main(void){

17. ENABLE_LEDS

18. EnableIRQ8();

19. Current_LED = 1;

20.

21. while(1){

22. if(Switch_Press){

23. LED_Rotate();

24. Switch_Press = 0;

25. }

26. }

27. }

© 2011 Renesas Electronics America Inc. All rights reserved. 25

This image cannot currently be displayed.

Switch as Input using Interrupts

1. void EnableIRQ8(void){

2. IEN(ICU,IRQ8) = 0;

3. PORT4.ICR.BIT.B0 = 1;

4. ICU.IRQCR [8].BIT.IRQMD = 0x01;

5. ENABLE_SWITCHES

6. IPR(ICU,IRQ8) = 0x03;

7. IR(ICU,IRQ8) = 0;

8. IEN(ICU,IRQ8) = 1;

9. }

© 2011 Renesas Electronics America Inc. All rights reserved. 26

This image cannot currently be displayed.

Switch as Input using Interrupts

 SW1 is connected to IRQ8 which is defined in the interrupt
vector table at vector address 72.

 The function enableIRQ8() interfaces the switch as an
interrupt

© 2011 Renesas Electronics America Inc. All rights reserved. 27

This image cannot currently be displayed.

Using State Machines with Interrupts

 With state machines we think of our program as having
‘states.’

 We will implement the state machine by making a variable
to represent the current state of the machine, and then
using a switch statement to check that variable in the
while(1) loop.

While(1)

{ …

 switch(state)

{ case s1: //code

 case s2: //code

 .

 .

 case s3: // code }

© 2011 Renesas Electronics America Inc. All rights reserved. 28

This image cannot currently be displayed.

Example of state machine with Interrupts

© 2011 Renesas Electronics America Inc. All rights reserved. 29

This image cannot currently be displayed.

Example

 In one state the machine will rotate the LEDs in a circular
sequence.

 In the second state we will display the value of the
potentiometer on the LCD.

 In the third state the LCD will display the number of seconds
elapsed since the program has started.

 Each time switch one is pressed the board will cycle to the
next state, once it goes beyond state three it will return to
state one

© 2011 Renesas Electronics America Inc. All rights reserved. 30

This image cannot currently be displayed.

In This Chapter We Learned

 Polling
 Interrupts – How a CPU processes interrupts
 ISR
 IVT
 Edge and Level triggered interrupts
 Registers used for setting an interrupt
 Example : Switch as an input using interrupts
 Using state machines with interrupts

© 2011 Renesas Electronics America Inc. All rights reserved. 31

Renesas Electronics America Inc.

© 2011 Renesas Electronics America Inc. All rights reserved.

	Using Interrupts With Peripherals
	Interfacing with the Real World
	Method 1. Polling
	Disadvantages of Polling
	Method 2: Interrupts
	Method 2: Interrupts
	Example
	How CPU Processes the Interrupts
	Interrupt Service Routines (ISR)
	Interrupt Vector Table
	Types of Interrupts
	Non Maskable Interrupts
	��Interrupt Request Detection Methods��
	��Interrupt Request Detection Methods��
	Registers
	Interrupt Request Enable Register (IERm)
	Interrupt Request Register
	Interrupt Priority Register (IPRn)
	IRQ Control Register i (IRQCRi) (i=0 to 15)
	Interrupt Controller Unit
	Setting an Interrupt
	Setting an Interrupt
	Setting an Interrupt
	Switch as Input using Interrupts
	Switch as Input using Interrupts
	Switch as Input using Interrupts
	Switch as Input using Interrupts
	Using State Machines with Interrupts
	Example of state machine with Interrupts
	Example
	In This Chapter We Learned
	Slide Number 32

