Since the tailwater depth of 4 m exceeds the distinguishing condition $\left(y_{3}=3.12 \mathrm{~m}\right)$, then submerged flow conditions exist and the flow through the gate is given by Equation 3.219. In this case, Equations 3.220 and 3.221 give

$$
\begin{aligned}
\lambda & =\frac{y_{1}}{y_{3}}=\frac{5}{4}=1.25 \\
\xi & =\left(\frac{1}{\eta}-1\right)^{2}+2(\lambda-1)=\left(\frac{1}{0.134}-1\right)^{2}+2(1.25-1)=42.3
\end{aligned}
$$

and Equation 3.219 gives

$$
\begin{aligned}
Q & =C_{c} \frac{\left[\xi-\sqrt{\xi^{2}-\left(\frac{1}{\eta^{2}}-1\right)^{2}\left(1-\frac{1}{\lambda^{2}}\right)}\right]^{1 / 2}}{\frac{1}{\eta}-\eta} b y_{g} \sqrt{2 g y_{1}} \\
& =0.61 \frac{\left[42.3-\sqrt{42.3^{2}-\left(\frac{1}{0.134^{2}}-1\right)^{2}\left(1-\frac{1}{1.25^{2}}\right)}\right]^{1 / 2}}{\frac{1}{0.134}-0.134}(8)(1.10) \sqrt{2(9.81)(5)} \\
& =28.7 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Therefore, when the tailwater depth is 4 m , the flow through the gate is submerged and equal to $28.7 \mathrm{~m}^{3} / \mathrm{s}$.
3.93. Since

$$
C_{c}=1-0.75\left(\frac{\theta}{90}\right)+0.36\left(\frac{\theta}{90}\right)^{2}
$$

To find θ that minimizes C_{c},

$$
\frac{d C_{c}}{d \theta}=-\frac{0.75}{90}+0.72\left(\frac{\theta}{90}\right) \frac{1}{90}=0
$$

which simplifies to

$$
-0.00833+0.0000889 \theta=0
$$

or

$$
\theta=93.7^{\circ}
$$

Since

$$
\frac{d^{2} C_{c}}{d \theta^{2}}>0
$$

then $\theta=93.7^{\circ}$ is a minimum. Since θ must be between 0° and 90°, then, within this range, the minimum value of C_{c} occurs at $\theta=90^{\circ}$.
3.94. From the given data: $D=0.5 \mathrm{~m}, n=0.013, k_{e}=0.05, C_{d}=0.95, S_{o}=0.02$, and $L=20 \mathrm{~m}$. The elevation difference, Δh, between the headwater and the top of the culvert at the exit is given by

$$
\Delta h=0.2+S_{o} L=0.2+(0.02)(20)=0.6 \mathrm{~m}
$$

Assume that the exit is not submerged, flow is either Type 2 or Type 3. Assume the flow is Type 2:

$$
\begin{aligned}
Q & =A \sqrt{\frac{2 g \Delta h}{2 g n^{2} \frac{L}{R^{4 / 3}}+k_{e}+1}}=\pi(0.25)^{2} \sqrt{\frac{2(9.81)(0.6)}{2(9.81)(0.013)^{2} \frac{20}{(0.5 / 4)^{4 / 3}}+0.05+1}} \\
& =0.464 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Determine if the culvert flows full. The Manning equation gives

$$
Q_{\mathrm{full}}=\frac{1}{n} \frac{A^{5 / 3}}{P^{2 / 3}} \sqrt{S_{o}}=\frac{1}{0.013} \frac{\left(\pi 0.25^{2}\right)^{5 / 3}}{(\pi 0.5)^{2 / 3}} \sqrt{0.02}=0.534 \mathrm{~m}^{3} / \mathrm{s}
$$

and the culvert flows full when the discharge exceeds $1.07(0.534)=0.571 \mathrm{~m}^{3} / \mathrm{s}$. Since $Q<$ $0.571 \mathrm{~m}^{3} / \mathrm{s}$, the culvert does not flow full, and the assumption of Type 2 flow is not supported. Assuming Type 3 flow,

$$
Q=C_{d} A \sqrt{2 g h}=0.95 \pi(0.25)^{2} \sqrt{2(9.81)(0.25+0.2)}=0.55 \mathrm{~m}^{3} / \mathrm{s}
$$

Since $Q<0.571 \mathrm{~m}^{3} / \mathrm{s}$, the culvert does not flow full, Type 3 flow is confirmed, and the discharge through the culvert is $0.55 \mathrm{~m}^{3} / \mathrm{s}$.
3.95. From the given data: $T W=10.00 \mathrm{~m}, D=380 \mathrm{~mm}=0.38 \mathrm{~m}$, and $L=8 \mathrm{~m}$. Since the water depth at the outlet is $10.00 \mathrm{~m}-9.50 \mathrm{~m}=0.50 \mathrm{~m}$, and the culvert diameter is 0.38 m , then Type 1 flow is expected. Accordingly, the discharge, Q, is given by Equation 3.228 as

$$
\begin{equation*}
Q=A \sqrt{\frac{2 g \Delta h}{2 g n^{2} L / R^{\frac{4}{3}}+k_{e}+1}} \tag{1}
\end{equation*}
$$

For a corrugated metal pipe, Table 3.13 gives $n=0.028$ (conservative value) and Table 3.14 gives $k_{e}=0.7$ for a mitered entrance. Substituting into Equation (1) gives

$$
Q=\frac{\pi}{4}(0.38)^{2} \sqrt{\frac{2(9.81)(H W-10.00)}{2(9.81)(0.028)^{2}(8) /(0.38 / 4)^{\frac{4}{3}}+0.7+1}}
$$

which simplifies to the following culvert performance curve

$$
\begin{equation*}
Q=0.236 \sqrt{(H W-10)} \tag{2}
\end{equation*}
$$

If the culvert is required to pass $0.30 \mathrm{~m}^{3} / \mathrm{s}$, then the required headwater elevation satisfies the relation

$$
0.3=0.236 \sqrt{(H W-10)}
$$

which gives $H W=11.62 \mathrm{~m}$.

When the tailwater elevation is 9.75 m , the flow through the culvert is Type 2 , and the flowrate is based on the crest elevation of the culvert exit, which is equal to $9.50 \mathrm{~m}+0.38 \mathrm{~m}$ $=9.88 \mathrm{~m}$. Hence the discharge relation is given by

$$
Q=0.236 \sqrt{(H W-9.88)}
$$

For $H W=11.62 \mathrm{~m}$,

$$
Q=0.236 \sqrt{(11.62-9.88)}=0.31 \mathrm{~m}^{3} / \mathrm{s}
$$

Therefore the culvert capacity increases by $0.01 \mathrm{~m}^{3} / \mathrm{s}$ or 3%.
3.96. From the given data: culvert dimensions $=1.5 \mathrm{~m} \times 1.5 \mathrm{~m}, n=0.013, C_{d}=0.95, k_{e}=0.05$, $S_{o}=0.007$, and $L=40 \mathrm{~m}$.
(a) Free outlet conditions. Assume Type 2 flow, where

$$
\Delta h=0.5 \mathrm{~m}+0.007(40)=0.78 \mathrm{~m}
$$

and therefore

$$
\begin{aligned}
Q & =A \sqrt{\frac{2 g \Delta h}{2 g n^{2} \frac{L}{R^{4 / 3}}+k_{e}+1}}=(1.5)^{2} \sqrt{\frac{2(9.81)(0.78)}{2(9.81)(0.013)^{2} \frac{40}{\left(1.5^{2} / 6\right)^{4 / 3}}+0.05+1}} \\
& =7.08 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Determine if the culvert flows full. Calculate the normal depth, y_{n}, using the Manning equation,

$$
\begin{aligned}
Q & =\frac{1}{n} \frac{A_{n}^{5 / 3}}{P_{n}^{2 / 3}} S_{o}^{1 / 2} \\
7.08 & =\frac{1}{0.013} \frac{\left(1.5 y_{n}\right)^{5 / 3}}{\left(1.5+2 y_{n}\right)^{2 / 3}}(0.007)^{1 / 2} \\
1.33 & =\frac{\left(1.5 y_{n}\right)^{5}}{\left(1.5+2 y_{n}\right)^{2}} \\
y_{n} & =1.22 \mathrm{~m}
\end{aligned}
$$

Therefore, the assumption that the culvert flows full (Type 2 flow) is not supported. Assuming Type 3 flow,

$$
Q=C_{d} A \sqrt{2 g h}=0.95(2.25) \sqrt{2(9.81)(0.75+0.5)}=10.6 \mathrm{~m}^{3} / \mathrm{s}
$$

Determine if the culvert flows full. Calculate the normal depth, y_{n}, using the Manning equation,

$$
\begin{aligned}
Q & =\frac{1}{n} \frac{A_{n}^{5 / 3}}{P_{n}^{2 / 3}} S_{o}^{1 / 2} \\
10.6 & =\frac{1}{0.013} \frac{\left(1.5 y_{n}\right)^{5 / 3}}{\left(1.5+2 y_{n}\right)^{2 / 3}}(0.007)^{1 / 2} \\
4.468 & =\frac{\left(1.5 y_{n}\right)^{5}}{\left(1.5+2 y_{n}\right)^{2}} \\
y_{n} & =1.7 \mathrm{~m}
\end{aligned}
$$

Therefore, the assumption that the culvert does not flow full (Type 3 flow) is not supported. The flow is somewhere between Type 2 and Type 3 flow, and the discharge is in the range 7.08 to $10.6 \mathrm{~m}^{3} / \mathrm{s}$.
(b) For a submerged outlet with tailwater 0.5 m above the crown of the culvert at the exit,

$$
\Delta h=S_{o} L=0.007(40)=0.28 \mathrm{~m}
$$

and

$$
\begin{aligned}
Q & =A \sqrt{\frac{2 g \Delta h}{2 g n^{2} \frac{L}{R^{4 / 3}}+k_{e}+1}}=(1.5)^{2} \sqrt{\frac{2(9.81)(0.28)}{2(9.81)(0.013)^{2} \frac{40}{\left(1.5^{2} / 6\right)^{4 / 3}}+0.05+1}} \\
& =4.25 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Find Δh for $Q=10.6 \mathrm{~m}^{2} / \mathrm{s}$, where

$$
\Delta h=\left[\frac{2 g n^{2} L}{R^{4 / 3}}+k_{e}+1\right] \frac{Q^{2}}{2 g A^{2}}=\left[\frac{2(9.81)(0.013)^{2}(40)}{(2.25 / 6)^{4 / 3}}+0.05+1\right] \frac{10.6^{2}}{2(9.81)(2.25)^{2}}=1.74 \mathrm{~m}
$$

So the headwater must be $1.5+0.5+1.74-0.28=3.46 \mathrm{~m}$ above the inflow-channel invert. For $Q=7.08 \mathrm{~m}^{3} / \mathrm{s}, \Delta h=0.78 \mathrm{~m}$. Therefore the range of headwater elevations is from 2.50 to 3.46 m above the channel invert.
3.97. From the given data: $Q=0.80 \mathrm{~m}^{3} / \mathrm{s}, n=0.013, H=1 \mathrm{~m}, S_{o}=2 \%=0.02, L=10 \mathrm{~m}, k_{e}=$ 0.5 , and $C_{d}=1$. The data indicate that the difference between the headwater elevation and the crown of the culvert exit is given by

$$
\Delta h=L S_{o}+H-D=(10)(0.02)+1-D=1.2-D
$$

where D is the culvert diameter. Assume the flow is either Type 2 or Type 3 flow. For Type 2 flow, Equation 3.228 gives

$$
0.80=\frac{\pi}{4} D^{2} \sqrt{\frac{2 g(1.2-D)}{2(9.81)(0.013)^{2}(10) /(D / 4)^{4 / 3}+0.5+1}}
$$

which simplifies to

$$
1.02=D^{2} \sqrt{\frac{19.62 D^{4 / 3}(1.2-D)}{0.211+1.5 D^{4 / 3}}}
$$

Solving iteratively for D gives

$$
D=0.65 \mathrm{~m}
$$

Since $H>1.2 D$, inlet submergence verified. It must also be verified that the normal depth of flow is greater than the culvert diameter. When the culvert just flows full,

$$
Q=\frac{1}{n} A R^{2 / 3} S_{o}^{1 / 2}
$$

where $n=0.013, A=\pi(0.65)^{2} / 4=0.332 \mathrm{~m}^{2}, R=D / 4=0.65 / 4=0.163 \mathrm{~m}, S_{o}=0.02$, and

$$
Q_{\text {full }}=\frac{1}{0.013}(0.332)(0.163)^{2 / 3}(0.02)^{1 / 2}=1.08 \mathrm{~m}^{3} / \mathrm{s}
$$

Therefore, when the flow is $0.80 \mathrm{~m}^{3} / \mathrm{s}$ and the diameter is 0.65 m , the culvert does not flow full. This implies Type 3 flow, where

$$
Q=C_{d} A \sqrt{2 g h}
$$

where $C_{d}=1$ and

$$
0.80=(1) \frac{\pi}{4} D^{2} \sqrt{2(9.81)(1-D / 2)}
$$

which yields

$$
D=0.52 \mathrm{~m}
$$

Since $A=\pi(0.52)^{2} / 4=0.212 \mathrm{~m}^{2}, R=D / 4=0.52 / 4=0.13 \mathrm{~m}$, then the full-flow discharge is given by the Manning equation as

$$
Q_{\text {full }}=\frac{1}{0.013}(0.212)(0.13)^{2 / 3}(0.02)^{1 / 2}=0.59 \mathrm{~m}^{3} / \mathrm{s}
$$

and the maximum flowrate in the culvert is $1.07(0.59)=0.63 \mathrm{~m}^{3} / \mathrm{s}$. Therefore the culvert flows full and the flow is not Type 3. Since the flow is between Type 2 and Type 3, select the larger culvert diameter of 65 cm .
3.98. From the given data: $H=2 \mathrm{~m}, \mathrm{TW}=1 \mathrm{~m}, Q=1 \mathrm{~m}^{3} / \mathrm{s}, L=15 \mathrm{~m}$, and $S_{o}=0.015$. Assuming Type 1 flow, then Equation 3.228 gives

$$
\begin{equation*}
Q=A \sqrt{\frac{2 g \Delta h}{2 g n^{2} L / R^{4 / 3}+k_{e}+1}} \tag{1}
\end{equation*}
$$

where $A=\pi D^{2} / 4=0.785 D^{2}, \Delta h=H-\mathrm{TW}+S_{o} L=2-1+(15)(0.015)=1.225 \mathrm{~m}, n=$ $0.013, R=D / 4=0.25 D$, and taking $k_{e}=0.50$, Equation 1 gives

$$
\begin{aligned}
1 & =0.785 D^{2} \sqrt{\frac{2(9.81)(1.225)}{2(9.81)(0.013)^{2}(15) /(0.25 D)^{4 / 3}+0.50+1}} \\
1 & =3.85 D^{2} \sqrt{\frac{1}{0.316 D^{-4 / 3}+1.50}}
\end{aligned}
$$

Solving gives $D=0.61 \mathrm{~m}$. This indicates that the exit is submerged, confirming Type 1 flow. Use a culvert with $D=61 \mathrm{~cm}$.
3.99. From the given data: $b=2 \mathrm{~m}, Q=4 \mathrm{~m}^{3} / \mathrm{s}, S_{o}=0.1, L=25 \mathrm{~m}, k_{e}=0.1$, and for a concrete culvert $n=0.013$. Find the normal depth of flow in the culvert using the Manning equation,

$$
\begin{aligned}
Q & =\frac{1}{n} \frac{A^{5 / 3}}{P^{2 / 3}} S_{o}^{1 / 2} \\
4 & =\frac{1}{0.013} \frac{\left(2 y_{n}\right)^{5 / 3}}{\left(2+2 y_{n}\right)^{2 / 3}}(0.1)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { © } 2006 \text { Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is } \\
& \text { protected under all copyright laws as they currently exist. No portion of this material may be } \\
& \text { reproduced, in any form or by any means, without permission in writing from the publisher. }
\end{aligned}
$$

For the exclusive use of adopters of the book Water-Resources Engineering, Second Edition,
by David A. Chin.
ISBN 0-13-148192-4.
which gives

$$
y_{n}=0.24 \mathrm{~m}
$$

Find the critical depth, y_{c}, where

$$
\begin{aligned}
\frac{Q^{2}}{g} & =\frac{A_{c}^{3}}{T_{c}} \\
\frac{4^{2}}{9.81} & =\frac{\left(2 y_{c}\right)^{3}}{2}
\end{aligned}
$$

which gives

$$
y_{c}=0.74 \mathrm{~m}
$$

Therefore the culvert slope is steep. Assume Type 5 flow. Applying Equation 3.235 (neglecting the upstream velocity) gives

$$
\begin{aligned}
Q & =A_{c} \sqrt{2 g\left(\Delta h+V_{1}^{2} / 2 g-h_{i}\right)} \\
4 & =(0.74 \times 2) \sqrt{2(9.81)\left(\Delta h-0.1 \times \frac{4^{2}}{\left.2(9.81)(2 \times 0.74)^{2}\right)}\right)}
\end{aligned}
$$

which gives

$$
\Delta h=0.41 \mathrm{~m}
$$

Since y_{c} occurs at about $1.4 y_{c}$ downstream of the culvert entrance, the headwater depth is $y_{c}+\Delta h-S_{o}\left(1.4 y_{c}\right)=0.74+0.41-0.1(1.4 \times 0.74)=1.05 \mathrm{~m}$. Since the entrance is unsubmerged, Type 5 flow is confirmed.
3.100. The relationship between the depth of flow, y_{1}, at the culvert entrance and the depth of flow, y_{2} at the culvert exit can be estimated using the standard-step method, where

$$
L=\frac{\left[y+\frac{Q^{2}}{2 g A^{2}}\right]_{2}^{1}}{\bar{S}_{f}-S_{o}}
$$

which can be put in the form

$$
\begin{equation*}
\frac{L}{2}\left(S_{f 1}+S_{f 2}-2 S_{o}\right)=y_{1}+\frac{Q^{2}}{2 g A_{1}^{2}}-y_{2}-\frac{Q^{2}}{2 g A_{2}^{2}} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& S_{f 1}=\left[\frac{n Q}{A_{1} R_{1}^{2 / 3}}\right]^{2} \tag{2}\\
& S_{f 2}=\left[\frac{n Q}{A_{2} R_{2}^{2 / 3}}\right]^{2} \tag{3}
\end{align*}
$$

In this case,

$$
\begin{align*}
& A_{1} R_{1}^{2 / 3}=\frac{A_{1}^{5 / 3}}{P_{1}^{2 / 3}}=\frac{\left(2 y_{1}\right)^{5 / 3}}{\left(2+2 y_{1}\right)^{2 / 3}} \tag{4}\\
& A_{2} R_{2}^{2 / 3}=\frac{A_{2}^{5 / 3}}{P_{2}^{2 / 3}}=\frac{\left(2 y_{2}\right)^{5 / 3}}{\left(2+2 y_{2}\right)^{2 / 3}} \tag{5}
\end{align*}
$$

Combining Equations (2) and (4), and taking $n=0.013$ and $Q=10 \mathrm{~m}^{3} / \mathrm{s}$ gives

$$
\begin{equation*}
S_{f 1}=\left[(0.013)(10) \frac{\left(2+2 y_{1}\right)^{2 / 3}}{\left(2 y_{1}\right)^{5 / 3}}\right]^{2}=0.00168 \frac{\left(2+2 y_{1}\right)^{4 / 3}}{y_{1}^{10 / 3}} \tag{6}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
S_{f 2}=0.00168 \frac{\left(2+2 y_{2}\right)^{4 / 3}}{y_{2}^{10 / 3}} \tag{7}
\end{equation*}
$$

The culvert tailwater depth, y_{2}, satisfies the Manning equation in the downstream channel, hence

$$
\begin{equation*}
Q=\frac{1}{n} A R^{2 / 3} S_{o}^{1 / 2}=\frac{1}{n} \frac{A^{5 / 3}}{P^{2 / 3}} S_{o}^{1 / 2} \tag{8}
\end{equation*}
$$

where $Q=10 \mathrm{~m}^{3} / \mathrm{s}, n=0.022, S_{o}=0.005, b=5 \mathrm{~m}, m=2$, and

$$
\begin{aligned}
& A=b y_{2}+m y_{2}^{2}=5 y_{2}+2 y_{2}^{2} \\
& P=b+2 \sqrt{1+m^{2}} y_{2}=5+2 \sqrt{1+2^{2}} y_{2}=5+4.47 y_{2}
\end{aligned}
$$

Substituting into Equation (8) gives

$$
10=\frac{1}{0.022} \frac{\left(5 y_{2}+2 y_{2}^{2}\right)^{5 / 3}}{\left(5+4.47 y_{2}^{2 / 3}\right.}(0.005)^{1 / 2}
$$

which yields

$$
\begin{equation*}
y_{2}=0.713 \mathrm{~m} \tag{9}
\end{equation*}
$$

From the given data, $L=10 \mathrm{~m}$, and combining Equations (1), (6), (7), and (9) gives

$$
\begin{array}{r}
\frac{10}{2}\left[0.00168 \frac{\left(2+2 y_{1}\right)^{4 / 3}}{y_{1}^{10 / 3}}+0.00168 \frac{(2+2 \times 0.713)^{4 / 3}}{0.713^{10 / 3}}-2(0.005)\right] \\
=y_{1}+\frac{10^{2}}{2(9.81)\left(2 y_{1}\right)^{2}}-0.713-\frac{10^{2}}{2(9.81)(2 \times 0.713)^{2}}
\end{array}
$$

which yields

$$
y_{1}=0.677 \mathrm{~m}
$$

Therefore, the depth of flow at the culvert entrance is 0.68 m and the depth of flow at the culvert exit is 0.71 m . Since the culvert is $2 \mathrm{~m} \times 2 \mathrm{~m}$, then the culvert has adequate capacity when the flow is $10 \mathrm{~m}^{3} / \mathrm{s}$. It is interesting to note that the critical flow depth in the culvert is 1.36 m , the normal flow depth is 1.33 m , and hence there is a S 3 water surface profile in the culvert.
3.101. A flow scenario in which the culvert entrance is not submerged and the exit is submerged is illustrated below:

The flow capacity of the culvert could be calculated as follows: (1) assume a flow, Q; (2) use backwater calculations to find where the water surface intersects the top of the pipe; (3) using this intersection point and the tailwater elevation, calculate the flow through the pressurized portion of the pipe; (4) repeat steps 1 to 3 until the flow in step 1 equals the flow in step 3. This would yield the capacity of the culvert under the given headwater and tailwater conditions.

