$$
\begin{aligned}
\frac{1}{n_{e}} \frac{A^{5 / 3}}{P^{2 / 3}} & =\sum_{i=1}^{N} \frac{1}{n_{i}} \frac{A_{i}^{5 / 3}}{P_{i}^{2 / 3}} \\
\frac{1}{n_{e}} P R^{5 / 3} & =\sum_{i=1}^{N} \frac{1}{n_{i}} P_{i} R_{i}^{5 / 3}
\end{aligned}
$$

which simplifies to

$$
n_{e}=\frac{P R^{5 / 3}}{\sum_{i=1}^{N} \frac{P_{i} R_{i}^{5 / 3}}{n_{i}}}
$$

3.19. From the given shape of the floodplain (Figure 3.5), the following geometric characteristics are derived:

Section, i	$\|c\| c$ P_{i} $(\mathrm{~m})$	A_{i} $\left(\mathrm{~m}^{2}\right)$	R_{i} $(\mathrm{~m})$	n_{i}	y_{i} $(\mathrm{~m})$
1	20.6	50	2.42	0.040	2.50
2	100.0	500	5.00	0.030	5.00
3	6.7	39	5.81	0.015	6.50
4	15.0	120	8.00	0.013	8.00
5	6.7	39	5.81	0.017	6.50
6	150.0	750	5.00	0.035	5.00
7	20.6	50	2.42	0.060	2.50
7	319.6	1548			

The total perimeter, P, of the (compound) channel is 319.6 m , the total area, A, is $1548 \mathrm{~m}^{2}$, and hence the hydraulic radius, R, of the compound section is given by

$$
R=\frac{A}{P}=\frac{1548}{319.6}=4.84 \mathrm{~m}
$$

Substituting these data into the formulae listed in Table 3.2 yields the following results:

Formula	n_{e}
Horton/Einstein	0.034
Muhlhofer/Einstein and Banks	0.035
Lotter	0.026
Krishnamurthy and Christensen	0.029
Average	0.031

A conservative (high) estimate of the composite roughness is 0.035 , and the average composite roughness predicted by the models is 0.031 .
3.20. In the main channel: $n=0.016$ and $S_{o}=0.005$. When the main channel flows full:

$$
\begin{aligned}
A & =\frac{1}{2}[30+30+3(2)+3(3)](3)=112.5 \mathrm{~m}^{2} \\
P & =30+3\left(\sqrt{3^{2}+1^{2}}+\sqrt{2^{2}+1^{2}}\right)=46.2 \mathrm{~m} \\
R & =\frac{A}{P}=\frac{112.5}{46.2}=2.44 \mathrm{~m}
\end{aligned}
$$

