© 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

For the exclusive use of adopters of the book Water-Resources Engineering, Second Edition,
3.31. Flow in a rectangular open channel is choked when

$$
\begin{aligned}
E_{1} & =E_{2}+\Delta z_{c} \\
y_{1}+\frac{V_{1}^{2}}{2 g} & =\frac{3}{2} y_{c}+\Delta z_{c} \\
y_{1}+\frac{V_{1}^{2}}{2 g} & =\frac{3}{2}\left(\frac{q^{2}}{g}\right)^{1 / 3}+\Delta z_{c} \\
y_{1}+\frac{V_{1}^{2}}{2 g} & =\frac{3}{2}\left(\frac{Q^{2}}{g b^{2}}\right)^{1 / 3}+\Delta z_{c} \\
y_{1}+\frac{V_{1}^{2}}{2 g} & =\frac{3}{2}\left[\frac{\left(V_{1} b y_{1}\right)^{2}}{g b^{2}}\right]^{1 / 3}+\Delta z_{c} \\
y_{1}+\frac{V_{1}^{2}}{2 g} & =\frac{3}{2} \frac{\left(V_{1}^{2 / 3} y_{1}^{2 / 3}\right)}{g^{1 / 3}}+\Delta z_{c}
\end{aligned}
$$

Dividing by y_{1} yields

$$
\begin{equation*}
1+\frac{V_{1}^{2}}{2 g y_{1}}=\frac{3}{2}\left(\frac{V_{1}^{2}}{g y_{1}}\right)^{1 / 3}+\frac{\Delta z_{c}}{y_{1}} \tag{1}
\end{equation*}
$$

and defining

$$
\operatorname{Fr}_{1}=\frac{V_{1}}{\sqrt{g y_{1}}}
$$

then Equation 1 can be written as

$$
\frac{\Delta z_{c}}{y_{1}}=1+\frac{\mathrm{Fr}_{1}^{2}}{2}-\frac{3}{2} \mathrm{Fr}_{1}^{2 / 3}
$$

From Problem 3.30: $b=3 \mathrm{~m}, Q=4 \mathrm{~m}^{3} / \mathrm{s}, y_{1}=1.5 \mathrm{~m}$, and $\Delta z_{c}=0.15 \mathrm{~m}$. Therefore

$$
\begin{aligned}
V_{1} & =\frac{Q}{b y_{1}}=\frac{4}{(3)(1.5)}=0.889 \mathrm{~m} / \mathrm{s} \\
\operatorname{Fr}_{1} & =\frac{V_{1}}{\sqrt{g y_{1}}}=\frac{0.889}{\sqrt{(9.81)(1.5)}}=0.232
\end{aligned}
$$

which yields

$$
\begin{aligned}
\frac{\Delta z_{c}}{y_{1}} & =1+\frac{\operatorname{Fr}_{1}^{2}}{2}-\frac{3}{2} \operatorname{Fr}_{1}^{2 / 3} \\
\frac{\Delta z_{c}}{1.5} & =1+\frac{(0.232)^{2}}{2}-\frac{3}{2}(0.232)^{2 / 3}
\end{aligned}
$$

and solving for Δz_{c} gives

$$
\Delta z_{c}=0.69 \mathrm{~m}
$$

