and the average energy slope, \bar{S}, between sections 1 and 2 is given by

$$
\bar{S}=\frac{1}{2}\left(S_{1}+S_{2}\right)=\frac{1}{2}(0.4193+2247)=0.3220
$$

Applying the energy equation using the direct step method yields

$$
\begin{aligned}
L & =\frac{\left[y+\frac{V^{2}}{2 g}\right]_{2}^{1}}{\bar{S}-S_{o}} \\
& =\frac{\left[0.305+\frac{16.4^{2}}{2(9.81)}\right]-\left[0.376+\frac{13.3^{2}}{2(9.81)}\right]}{0.3220-0} \\
& =14.4 \mathrm{~m}
\end{aligned}
$$

Therefore, the hydraulic jump occurs 14.4 m downstream of the gate.
Installation of baffle blocks or other energy-dissipation structures to increase friction losses at the gate outlet would cause a drowned hydraulic jump to occur at the gate.
3.89. From the given data: $y_{g}=0.20 \mathrm{~m}, y_{1}=1.7 \mathrm{~m}$, and $b=1.5 \mathrm{~m}$. Assuming $C_{c}=0.61$, Equation 3.216 gives

$$
\eta=C_{c} \frac{y_{g}}{y_{1}}=0.61 \frac{0.20}{1.7}=0.0718
$$

and, for free-flow conditions, Equation 3.211 gives the discharge coefficient, C_{d}, as

$$
C_{d}=\frac{C_{c}}{\sqrt{1+\eta}}=\frac{0.61}{\sqrt{1+0.0718}}=0.589
$$

The free-flow discharge through the gate is given by Equation 3.210 as

$$
Q=C_{d} b y_{g} \sqrt{2 g y_{1}}=0.589(1.5)(0.20) \sqrt{2(9.81)(1.7)}=1.02 \mathrm{~m}^{3} / \mathrm{s}
$$

The distinguishing condition for the tailwater depth is given by Equation 3.215 as

$$
y_{3}=\frac{C_{c} y_{g}}{2}\left[\sqrt{1+\frac{16}{\eta(1+\eta)}}-1\right]=\frac{0.61(0.20)}{2}\left[\sqrt{1+\frac{16}{0.0718(1+0.0718)}}-1\right]=0.82 \mathrm{~m}
$$

Therefore, the flow depth through the gate will be equal to $1.02 \mathrm{~m}^{3} / \mathrm{s}$ as long as the tailwater depth is less than or equal to 0.82 m . If the tailwater depth exceeds 0.0 .82 m , then the flow through the gate will be submerged and the flow will be reduced.
3.90. The energy equation (Equation 3.217) can be put in the form

$$
\begin{equation*}
y=y_{1}+\frac{Q^{2}}{2 y b^{2} y_{1}^{2}}-\frac{Q^{2}}{2 y b^{2} y_{2}^{2}} \tag{1}
\end{equation*}
$$

and the momentum equation (Equation 3.218) can be put in the form

$$
\begin{equation*}
y^{2}=y_{3}^{2}+\frac{2 Q^{2}}{g b^{2} y_{3}}-\frac{2 Q^{2}}{g b^{2} y_{2}} \tag{2}
\end{equation*}
$$

Combining Equations (1) and (2) gives

$$
y_{3}^{2}+\frac{2 Q^{2}}{g b^{2}}\left(\frac{1}{y_{3}}-\frac{1}{y_{2}}\right)=\left[y_{1}+\frac{Q^{2}}{2 g b^{2}}\left(\frac{1}{y_{1}^{2}}-\frac{1}{y_{2}^{2}}\right)\right]^{2}
$$

which simplifies to

$$
\begin{equation*}
\frac{Q^{4}}{4 g^{2} b^{4}}\left(\frac{1}{y_{1}^{2}}-\frac{1}{y_{2}^{2}}\right)^{2}+\frac{Q^{2}}{g b^{2}}\left(\frac{1}{y_{1}}-\frac{y_{1}}{y_{2}^{2}}-\frac{2}{y_{3}}+\frac{2}{y_{2}}\right)+\left(y_{1}^{2}-y_{3}^{2}\right)=0 \tag{3}
\end{equation*}
$$

Define the following relations

$$
\begin{align*}
\xi & =\left(\frac{1}{\eta}-1\right)^{2}+2(\lambda-1) \tag{4}\\
\lambda & =\frac{y_{1}}{y_{3}} \tag{5}\\
y_{2} & =C_{c} y_{g} \tag{6}\\
\eta & =C_{c} \frac{y_{g}}{y_{1}}=\frac{y_{2}}{y_{1}} \tag{7}
\end{align*}
$$

Combining Equations (3) to (7) yields

$$
\begin{equation*}
\left[\frac{\eta^{2}}{4 C_{c}^{2} y_{g}^{2}}\left(\frac{1}{\eta^{2}}-1\right)^{2}\right]\left(\frac{Q^{2}}{g b^{2} y_{1}}\right)^{2}-\xi\left(\frac{Q^{2}}{g b^{2} y_{1}}\right)+\frac{C_{c}^{2} y_{g}^{2}}{\eta^{2}}\left(1-\frac{1}{\lambda^{2}}\right)=0 \tag{8}
\end{equation*}
$$

Equation (8) is a quadratic equation in $Q^{2} /\left(g b^{2} y_{1}\right)$, and applying the quadratic formula to Equation (8) gives

$$
\frac{Q^{2}}{g b^{2} y_{1}}=\frac{\xi \pm \sqrt{\xi^{2}-\left(\frac{1}{\eta^{2}}-1\right)^{2}\left(1-\frac{1}{\lambda^{2}}\right)}}{\frac{\eta^{2}}{2 C_{c}^{2} y_{g}^{2}}\left(\frac{1}{\eta^{2}}-1\right)^{2}}
$$

which simplifies to

$$
Q=C_{c} \frac{\left[\xi-\sqrt{\xi^{2}-\left(\frac{1}{\eta^{2}}-1\right)^{2}\left(1-\frac{1}{\lambda^{2}}\right)}\right]^{1 / 2}}{\frac{1}{\eta}-\eta} b y_{g} \sqrt{2 g y_{1}}
$$

3.91. From the given data: $y_{1}=5 \mathrm{~m}, b=8 \mathrm{~m}, y_{g}=1.40 \mathrm{~m}$, and $y_{3}=4.0 \mathrm{~m}$. It must first be determined whether free-flow or submerged flow conditions exist. The distinguishing condition is given by Equation 3.215, where the contraction coefficient, C_{c}, can be assumed equal to 0.61 , and η is given by Equation 3.216 as

$$
\eta=C_{c} \frac{y_{g}}{y_{1}}=0.61 \frac{1.40}{5}=0.17
$$

Substituting into Equation 3.215 gives the distinguishing condition as

$$
y_{3}=\frac{C_{c} y_{g}}{2}\left[\sqrt{1+\frac{16}{\eta(1+\eta)}}-1\right]=\frac{0.61(1.40)}{2}\left[\sqrt{1+\frac{16}{0.17(1+0.17)}}-1\right]=3.43 \mathrm{~m}
$$

Since the tailwater elevation ($=4 \mathrm{~m}$) exceeds 3.43 m , then the flow is submerged and Equation 3.219 must be used to calculate the flow through the gate. From the given data, Equations 3.220 and 3.221 give

$$
\begin{aligned}
\lambda & =\frac{y_{1}}{y_{3}}=\frac{5}{4}=1.25 \\
\xi & =\left(\frac{1}{\eta}-1\right)^{2}+2(\lambda-1)=\left(\frac{1}{0.17}-1\right)^{2}+2(1.25-1)=24.34
\end{aligned}
$$

Substituting into Equation 3.219 gives

$$
\begin{aligned}
Q & =C_{c} \frac{\left[\xi-\sqrt{\xi^{2}-\left(\frac{1}{\eta^{2}}-1\right)^{2}\left(1-\frac{1}{\lambda^{2}}\right)}\right]^{1 / 2}}{\frac{1}{\eta}-\eta} b y_{g} \sqrt{2 g y_{1}} \\
& =0.61 \frac{\left[24.34-\sqrt{24.34^{2}-\left(\frac{1}{0.17^{2}}-1\right)^{2}\left(1-\frac{1}{1.25^{2}}\right)}\right]^{1 / 2}}{\frac{1}{0.17}-0.17}(8)(1.40) \sqrt{2(9.81)(5)} \\
& =38.8 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Therefore, under the given headwater, tailwater, and gate-opening conditions, the (submerged) discharge through the gate is $38.8 \mathrm{~m}^{3} / \mathrm{s}$.
3.92. From the given data: $y_{1}=5 \mathrm{~m}, b=8 \mathrm{~m}$, and $Q=50 \mathrm{~m}^{3} / \mathrm{s}$ under free-flow conditions. Taking $C_{c}=0.61$, Equation 3.216 gives

$$
\eta=C_{c} \frac{y_{g}}{y_{1}}=0.61 \frac{y_{g}}{5}=0.122 y_{g}
$$

and Equation 3.211 gives

$$
C_{d}=\frac{C_{c}}{\sqrt{1+\eta}}=\frac{0.61}{\sqrt{1+1.22 y_{g}}}
$$

and Equation 3.210 gives the (free) flow through the gate as

$$
\begin{aligned}
Q & =C_{d} b y_{g} \sqrt{2 g y_{1}} \\
50 & =\frac{0.61}{\sqrt{1+1.22 y_{g}}}(8)\left(y_{g}\right) \sqrt{2(9.81)(5)}
\end{aligned}
$$

which yields

$$
y_{g}=1.10 \mathrm{~m}
$$

For $y_{g}=1.10 \mathrm{~m}$, and $\eta=1.22(1.10)=0.134$, the distinguishing condition is given by Equation 3.215 as

$$
\begin{aligned}
y_{3} & =\frac{C_{c} y_{g}}{2}\left[\sqrt{1+\frac{16}{\eta(1+\eta)}}-1\right] \\
& =\frac{0.61(1.10)}{2}\left[\sqrt{1+\frac{16}{0.134(1+0.134)}}-1\right] \\
& =3.12 \mathrm{~m}
\end{aligned}
$$

Since the tailwater depth of 4 m exceeds the distinguishing condition $\left(y_{3}=3.12 \mathrm{~m}\right)$, then submerged flow conditions exist and the flow through the gate is given by Equation 3.219. In this case, Equations 3.220 and 3.221 give

$$
\begin{aligned}
\lambda & =\frac{y_{1}}{y_{3}}=\frac{5}{4}=1.25 \\
\xi & =\left(\frac{1}{\eta}-1\right)^{2}+2(\lambda-1)=\left(\frac{1}{0.134}-1\right)^{2}+2(1.25-1)=42.3
\end{aligned}
$$

and Equation 3.219 gives

$$
\begin{aligned}
Q & =C_{c} \frac{\left[\xi-\sqrt{\xi^{2}-\left(\frac{1}{\eta^{2}}-1\right)^{2}\left(1-\frac{1}{\lambda^{2}}\right)}\right]^{1 / 2}}{\frac{1}{\eta}-\eta} b y_{g} \sqrt{2 g y_{1}} \\
& =0.61 \frac{\left[42.3-\sqrt{42.3^{2}-\left(\frac{1}{0.134^{2}}-1\right)^{2}\left(1-\frac{1}{1.25^{2}}\right)}\right]^{1 / 2}}{\frac{1}{0.134}-0.134}(8)(1.10) \sqrt{2(9.81)(5)} \\
& =28.7 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Therefore, when the tailwater depth is 4 m , the flow through the gate is submerged and equal to $28.7 \mathrm{~m}^{3} / \mathrm{s}$.
3.93. Since

$$
C_{c}=1-0.75\left(\frac{\theta}{90}\right)+0.36\left(\frac{\theta}{90}\right)^{2}
$$

To find θ that minimizes C_{c},

$$
\frac{d C_{c}}{d \theta}=-\frac{0.75}{90}+0.72\left(\frac{\theta}{90}\right) \frac{1}{90}=0
$$

which simplifies to

$$
-0.00833+0.0000889 \theta=0
$$

or

$$
\theta=93.7^{\circ}
$$

Since

$$
\frac{d^{2} C_{c}}{d \theta^{2}}>0
$$

then $\theta=93.7^{\circ}$ is a minimum. Since θ must be between 0° and 90°, then, within this range, the minimum value of C_{c} occurs at $\theta=90^{\circ}$.
3.94. From the given data: $D=0.5 \mathrm{~m}, n=0.013, k_{e}=0.05, C_{d}=0.95, S_{o}=0.02$, and $L=20 \mathrm{~m}$. The elevation difference, Δh, between the headwater and the top of the culvert at the exit is given by

$$
\Delta h=0.2+S_{o} L=0.2+(0.02)(20)=0.6 \mathrm{~m}
$$

