which yields

$$
Q_{\max }=0.146 \mathrm{~m}^{3} / \mathrm{s}
$$

Therefore, the operating range for the weir is given by

$$
0.0223 \mathrm{~m}^{3} / \mathrm{s}<Q<0.146 \mathrm{~m}^{3} / \mathrm{s}
$$

3.73. From the given data: $b=3 \mathrm{~m}, h_{1}+H_{w}=4 \mathrm{~m}, Q=5 \mathrm{~m}^{3} / \mathrm{s}$, and

$$
\frac{V_{1}^{2}}{2 g}=\frac{(Q / A)^{2}}{2 g}=\frac{[5 /(3 \times 4)]^{2}}{2(9.81)}=0.00885 \mathrm{~m}
$$

which gives

$$
\begin{equation*}
H=h_{1}+\frac{V_{1}^{2}}{2 g}=h_{1}+0.00885 \tag{1}
\end{equation*}
$$

The discharge rate is given by

$$
\begin{equation*}
Q=C_{d} \sqrt{g} b\left(\frac{2}{3} H\right)^{3 / 2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{d}=\frac{0.65}{\left(1+H / H_{w}\right)^{1 / 2}} \tag{3}
\end{equation*}
$$

Combining Equations 1 to 3 and substituting the given data yields

$$
\begin{aligned}
Q & =\frac{0.65}{\left(1+H / H_{w}\right)^{1 / 2}} \sqrt{g} b\left(\frac{2}{3} H\right)^{3 / 2} \\
5 & =\frac{0.65}{\left[1+\frac{h_{1}+0.00885}{4-h_{1}}\right]^{1 / 2}} \sqrt{9.81}(3)\left[\frac{2}{3}\left(h_{1}+0.00885\right)\right]^{3 / 2}
\end{aligned}
$$

which gives

$$
\begin{aligned}
h_{1} & =1.53 \mathrm{~m} \text { or } 3.84 \mathrm{~m} \\
H_{w} & =4-h_{1}=0.16 \mathrm{~m} \text { or } 2.47 \mathrm{~m}
\end{aligned}
$$

This indicates two possible flow conditions:

Condition	h_{1} $(\mathrm{~m})$	H $(\mathrm{~m})$	H_{w} $(\mathrm{~m})$	H / H_{w}	C_{d}	$\sqrt{g} b\left(\frac{2}{3} H\right)^{3 / 2}$ $\left(\mathrm{~m}^{3} / \mathrm{s}\right)$
1	1.53	1.54	2.47	0.62	0.51	9.77
2	3.84	3.85	0.16	24.06	0.13	38.64

Only Condition 1 gives a C_{d} that is typical of properly-operated broad-crested weirs (typically $0.527<C_{d}<0.540$, so take $H_{w}=2.47 \mathrm{~m}$.

For proper operation of the weir, take $h_{1} / L=0.25$, so

$$
L=\frac{h_{1}}{0.25}=\frac{1.53}{0.25}=6.12 \mathrm{~m}
$$

Therefore the weir should be 2.47 m high and 6.12 m long.
3.74. From the given data: $b=3 \mathrm{~m}, Q=1.5 \mathrm{~m}^{3} / \mathrm{s}, y=2 \mathrm{~m}$, and therefore

$$
h_{1}=2-H_{w}
$$

and

$$
\begin{aligned}
H & =h_{1}+\frac{Q^{2}}{2 g b^{2}\left(h_{1}+H_{w}\right)^{2}}=\left(2-H_{w}\right)+\frac{1.5^{2}}{2(9.81)(3)^{2}\left(2-H_{w}+H_{w}\right)^{2}}=2.003-H_{w} \\
C_{d} & =\frac{0.65}{\left(1+\frac{H}{H_{w}}\right)^{1 / 2}}=\frac{0.65}{\left(1+\frac{2.003-H_{w}}{H_{w}}\right)^{1 / 2}}=0.459 H_{w}^{1 / 2} \\
Q & =C_{d} b g^{1 / 2}\left(\frac{2}{3} H\right)^{3 / 2} \\
1.5 & =0.459 H_{w}^{1 / 2}(3)(9.81)^{1 / 2}\left[\frac{2}{3}\left(2.003-H_{w}\right)\right]^{3 / 2}
\end{aligned}
$$

which gives

$$
H_{w}=0.056 \mathrm{~m}, 1.33 \mathrm{~m}
$$

To achieve critical flow conditions over the weir use $H_{w}=1.33 \mathrm{~m}$, which corresponds to

$$
h_{1}=2-H_{w}=2-1.33=0.67 \mathrm{~m}
$$

The weir length, L, is then given by the relation

$$
\begin{array}{rlll}
0.08< & h_{1} / L & <0.33 \\
12.5 & > & L / h_{1} & >3.03 \\
12.5 h_{1} & > & L & >3.03 h_{1} \\
12.5(0.67) & > & L & >3.03(0.67) \\
8.38 \mathrm{~m} & & L & >2.03 \mathrm{~m}
\end{array}
$$

Therefore a weir length in the range $2.0 \mathrm{~m}<L<8.4 \mathrm{~m}$ would be satisfactory.
3.75. From the given data: $W=0.91 \mathrm{~m}, H_{a}=0.457 \mathrm{~m}, H_{b}=0.320 \mathrm{~m}$. Therefore,

$$
Q=0.372 W\left(3.281 H_{a}\right)^{1.570 W^{0.026}}=0.372(0.91)(3.281 \times 0.457)^{1.570(0.91)^{0.026}}=0.638 \mathrm{~m}^{3} / \mathrm{s}
$$

Check:

$$
\frac{H_{b}}{H_{a}}=\frac{0.320}{0.457}=0.70
$$

This does not exceed the critical value in Table 3.9.
3.76. From the given data: $W=6.10 \mathrm{~m}, H_{a}=1.22 \mathrm{~m}, H_{b}=1.10 \mathrm{~m}$.

$$
Q=[2.29 W+0.474] H_{a}^{1.6}=[2.29(6.10)+0.474](1.22)^{1.6}=19.9 \mathrm{~m}^{3} / \mathrm{s}
$$

Check:

$$
\frac{H_{b}}{H_{a}}=\frac{1.10}{1.22}=0.9 \quad \text { flow is submerged }
$$

