$$
\begin{aligned}
& \text { © } 2006 \text { Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is } \\
& \text { protected under all copyright laws as they currently exist. No portion of this material may be } \\
& \text { reproduced, in any form or by any means, without permission in writing from the publisher. } \\
& \text { For the exclusive use of adopters of the book Water-Resources Engineering, Second Edition, } \\
& \text { by David A. Chin. } \\
& \text { ISBN 0-13-148192-4. }
\end{aligned}
$$

where

$$
\begin{aligned}
A_{1} & =\left(b_{1}+m_{1} y_{1}\right) y_{1}=(2+2 \times 1)(1)=4 \mathrm{~m}^{2} \\
A_{2} & =\left(b_{2}+m_{2} y_{2}\right) y_{2}=(2.5+2 \times 1)(1)=4.5 \mathrm{~m}^{2} \\
V_{1} & =\frac{Q}{A_{1}}=\frac{8.4}{4}=2.10 \mathrm{~m} / \mathrm{s} \\
V_{2} & =\frac{Q}{A_{2}}=\frac{8.4}{4.5}=1.87 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Substituting into the energy equation gives

$$
1+\frac{2.10^{2}}{2(9.81)}-1-\frac{1.87^{2}}{2(9.81)}=(100)\left(S_{f}-0.001\right)
$$

which simplifies to

$$
S_{f}=0.00147
$$

and the head loss, h_{L}, is given by

$$
h_{L}=L S_{f}=(100)(0.00147)=0.147 \mathrm{~m}
$$

The power, P, dissipated is

$$
P=\gamma_{w} Q h_{L}=(9.79)(8.4)(0.147)=12.1 \mathrm{~kW}
$$

where $\gamma_{w}=9.79 \mathrm{kN} / \mathrm{m}^{3}$ at $20^{\circ} \mathrm{C}$.
3.24. The Darcy-Weisbach equation can be written as

$$
h_{f}=\frac{\bar{f} L}{D} \frac{\bar{V}^{2}}{2 g}
$$

Defining

$$
S=\frac{h_{f}}{L} \quad \text { and } \quad \bar{R}=\frac{D}{4}
$$

and substituting into the Darcy-Weisbach equation gives

$$
S=\frac{\bar{f}}{4 R} \frac{\bar{V}^{2}}{2 g}
$$

3.25. $Q=30 \mathrm{~m}^{3} / \mathrm{s}, w=5 \mathrm{~m}$, and for a rectangular channel

$$
y_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3}
$$

where

$$
q=\frac{Q}{w}=\frac{30}{5}=6 \mathrm{~m}^{2} / \mathrm{s}
$$

Hence

$$
y_{c}=\left(\frac{6^{2}}{9.81}\right)^{1 / 3}=1.54 \mathrm{~m}
$$

Therefore, when the depth of flow is $3 \mathrm{~m}, y_{c}<3 \mathrm{~m}$ and the flow is subcritical.

$$
\begin{aligned}
& \text { © } 2006 \text { Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is } \\
& \text { protected under all copyright laws as they currently exist. No portion of this material may be } \\
& \text { reproduced, in any form or by any means, without permission in writing from the publisher. } \\
& \text { For the exclusive use of adopters of the book Water-Resources Engineering, Second Edition, } \\
& \text { by David A. Chin. } \\
& \text { ISBN 0-13-148192-4. }
\end{aligned}
$$

3.26. From the given data: $Q=50 \mathrm{~m}^{3} / \mathrm{s}, b=4 \mathrm{~m}$, and $m=1.5$. Under critical flow conditions

$$
\frac{Q^{2}}{g}=\frac{A^{3}}{T}
$$

which gives

$$
\frac{50^{2}}{9.81}=\frac{\left(4 y_{c}+1.5 y_{c}^{2}\right)^{3}}{4+2(1.5) y_{c}}
$$

Solving by trial and error yields

$$
y_{c}=1.96 \mathrm{~m}
$$

When $y=3 \mathrm{~m}$, the Froude number, Fr, is given by the relation

$$
\begin{aligned}
\operatorname{Fr}^{2} & =\frac{Q^{2} T}{g A^{3}} \\
& =\frac{(50)^{2}(4+2 \times 1.5 \times 3)}{(9.81)\left(4 \times 3+1.5 \times 3^{2}\right)^{3}}=0.19
\end{aligned}
$$

hence

$$
\mathrm{Fr}=0.45
$$

and the flow is subcritical.
3.27. From the given data: $w_{1}=2 \mathrm{~m}, Q=3 \mathrm{~m}^{3} / \mathrm{s}, y_{1}=1.2 \mathrm{~m}$, and $w_{2}=w_{1}-0.4 \mathrm{~m}=1.6 \mathrm{~m}$. Conservation of energy requires that

$$
y_{1}+\frac{V_{1}^{2}}{2 g}=y_{2}+\frac{V_{2}^{2}}{2 g}
$$

where

$$
\begin{aligned}
& V_{1}=\frac{Q}{A_{1}}=\frac{Q}{w_{1} y_{1}}=\frac{3}{(2)(1.2)}=1.25 \mathrm{~m} / \mathrm{s} \\
& V_{2}=\frac{Q}{A_{2}}=\frac{Q}{w_{2} y_{2}}=\frac{3}{1.6 y_{2}}=\frac{1.875}{y_{2}} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Substituting into the energy equation gives

$$
\begin{aligned}
1.2+\frac{1.25^{2}}{2(9.81)} & =y_{2}+\frac{\left(1.875 / y_{2}\right)^{2}}{2(9.81)} \\
1.28 & =y_{2}+\frac{0.179}{y_{2}^{2}}
\end{aligned}
$$

Solving for y_{2} gives

$$
y_{2}=0.47 \mathrm{~m}, 1.14 \mathrm{~m}
$$

These depths correspond to supercritical and subcritical flow conditions respectively. Since the upstream flow is subcritical, the flow in the constriction must also be subcritical, hence

$$
y_{2}=1.14 \mathrm{~m}
$$

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

For the exclusive use of adopters of the book Water-Resources Engineering, Second Edition,

When choking occurs at the constriction,

$$
y=y_{c} \quad \text { and } \quad \operatorname{Fr}=1=\frac{V}{\sqrt{g D}}
$$

and the energy equation gives

$$
\begin{aligned}
y_{1}+\frac{V_{1}^{2}}{2 g} & =y_{c}+\frac{V_{c}^{2}}{2 g} \\
1.28 & =\left(\frac{q^{2}}{9.81}\right)^{1 / 3}+\frac{1}{2(9.81)}\left[\frac{q}{\left(q^{2} / 9.81\right)^{1 / 3}}\right]^{2}
\end{aligned}
$$

which yields

$$
q=2.47 \mathrm{~m}^{2} / \mathrm{s}
$$

and

$$
w_{2}=\frac{Q}{q}=\frac{3}{2.47}=1.21 \mathrm{~m}
$$

3.28. From the given data: $Q=1 \mathrm{~m}^{3} / \mathrm{s}, b=1 \mathrm{~m}$, and $y_{1}=1 \mathrm{~m}$. The flow is choked when there is critical flow in the constriction. The upstream specific energy, E_{1}, is given by

$$
E_{1}=y_{1}+\frac{V_{1}^{2}}{2 g}=y_{1}+\frac{Q^{2}}{2 g\left(b y_{1}\right)^{2}}=1.0+\frac{1^{2}}{2(9.81)(1 \times 1)^{2}}=1.05 \mathrm{~m}
$$

At the constriction, $\mathrm{Fr}_{c}^{2}=1$ which leads to

$$
\frac{Q^{2}}{g}=\frac{A_{c}^{3}}{T_{c}}
$$

Substituting given data

$$
\frac{1^{2}}{9.81}=\frac{\left(b y_{c}\right)^{3}}{b}
$$

which leads to

$$
\begin{equation*}
\left(b y_{c}\right)^{2}=\frac{0.102}{y_{c}} \tag{1}
\end{equation*}
$$

The energy equation requires that

$$
\begin{align*}
y_{c}+\frac{Q^{2}}{2 g A_{c}^{2}} & =1.05 \\
y_{c}+\frac{(1)^{2}}{2(9.81)\left(b y_{c}\right)^{2}} & =1.05 \\
y_{c}+\frac{0.0510}{\left(b y_{c}\right)^{2}} & =1.05 \tag{2}
\end{align*}
$$

Combining Equations 1 and 2 gives

$$
y_{c}+\frac{0.0510}{0.102 / y_{c}}=1.05
$$

$$
\begin{aligned}
& \text { © } 2006 \text { Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is } \\
& \text { protected under all copyright laws as they currently exist. No portion of this material may be } \\
& \text { reproduced, in any form or by any means, without permission in writing from the publisher. } \\
& \text { For the exclusive use of adopters of the book Water-Resources Engineering, Second Edition, } \\
& \text { by David A. Chin. } \\
& \text { ISBN 0-13-148192-4. }
\end{aligned}
$$

or

$$
y_{c}=0.70 \mathrm{~m}
$$

which leads to

$$
b=0.55 \mathrm{~m}
$$

3.29. From the given data: $b_{1}=10.0 \mathrm{~m}, y_{1}=1.00 \mathrm{~m}, Q=8 \mathrm{~m}^{3} / \mathrm{s}, b_{2}=6 \mathrm{~m}$, and $L=7 \mathrm{~m}$.
(a) According to the energy equation

$$
\begin{equation*}
E_{1}=E_{2}+\frac{V_{1}^{2}}{2 g} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
V_{1} & =\frac{Q}{b_{1} y_{1}}=\frac{8}{(10.0)(1.00)}=0.800 \mathrm{~m} / \mathrm{s} \\
\frac{V_{1}^{2}}{2 g} & =\frac{(0.800)^{2}}{2(9.81)}=0.0326 \mathrm{~m} \\
E_{1} & =y_{1}+\frac{V_{1}^{2}}{2 g}=1.00+0.0326=1.0326 \mathrm{~m} \\
E_{2} & =y_{2}+\frac{Q^{2}}{2 g\left(b_{2} y_{2}\right)^{2}}=y_{2}+\frac{8^{2}}{2(9.81)\left(6 y_{2}\right)^{2}}=y_{2}+\frac{0.0906}{y_{2}^{2}}
\end{aligned}
$$

Substituting into the energy equation, Equation 1, gives

$$
1.0326=y_{2}+\frac{0.0906}{y_{2}^{2}}+0.0326
$$

which simplifies to

$$
1.00=y_{2}+\frac{0.0906}{y_{2}^{2}}
$$

which yields the following positive solutions

$$
y_{2}=0.383 \mathrm{~m}, \quad 0.884 \mathrm{~m}
$$

Since

$$
\operatorname{Fr}_{1}^{2}=\frac{V_{1}^{2}}{g y_{1}}=\frac{0.800^{2}}{(9.81)(1.00)}=0.065
$$

the upstream flow is subcritical, and therefore the flow in the constriction must also be subcritical, and hence

$$
y_{2}=0.884 \mathrm{~m}
$$

(b) To assess the effect of the energy loss, the depth of flow in the constriction must be calculated without including the energy loss. According to the energy equation

$$
\begin{equation*}
E_{1}=E_{2} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \text { © } 2006 \text { Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is } \\
& \text { protected under all copyright laws as they currently exist. No portion of this material may be } \\
& \text { reproduced, in any form or by any means, without permission in writing from the publisher. } \\
& \text { For the exclusive use of adopters of the book Water-Resources Engineering, Second Edition, } \\
& \text { by David A. Chin. } \\
& \text { ISBN 0-13-148192-4. }
\end{aligned}
$$

where

$$
\begin{aligned}
& E_{1}=1.0326 \mathrm{~m} \\
& E_{2}=y_{2}+\frac{0.0906}{y_{2}^{2}}
\end{aligned}
$$

Substituting into the energy equation, Equation 2, gives

$$
1.0326=y_{2}+\frac{0.0906}{y_{2}^{2}}
$$

which yields the following positive solutions

$$
y_{2}=0.371 \mathrm{~m}, \quad 0.924 \mathrm{~m}
$$

Since the upstream flow is subcritical, the flow in the constriction must also be subcritical, and hence

$$
y_{2}=0.924 \mathrm{~m}
$$

Therefore, if energy losses are neglected the calculated flow depth is in error by (0.924$0.884) / 0.884 \times 100=4.5 \%$. This effect is not very significant.
(c) According to the energy equation

$$
\begin{equation*}
E_{1}=E_{2}+\frac{V_{1}^{2}}{2 g} \tag{3}
\end{equation*}
$$

where $V_{1}=0.800 \mathrm{~m} / \mathrm{s}$, and

$$
\begin{aligned}
& E_{1}=1.0326 \mathrm{~m} \\
& E_{2}=y_{2}+\frac{Q^{2}}{2 g\left(b_{2} y_{2}\right)^{2}}=y_{2}+\frac{8^{2}}{2(9.81)\left(4.5 y_{2}\right)^{2}}=y_{2}+\frac{0.1612}{y_{2}^{2}}
\end{aligned}
$$

Substituting into the energy equation, Equation 3, gives

$$
1.0326=y_{2}+\frac{0.1612}{y_{2}^{2}}+\frac{0.800^{2}}{2(9.81)}
$$

which does not have any positive solutions. Therefore, the flow is choked and critical flow exists within the constriction. Under critical flow conditions,

$$
\begin{aligned}
\frac{Q^{2}}{g} & =\frac{A^{3}}{T} \\
\frac{8^{2}}{9.81} & =\frac{\left(4.5 y_{2}\right)^{3}}{4.5}
\end{aligned}
$$

which yields

$$
y_{2}=0.686 \mathrm{~m}
$$

(d) Since the flow is choked, the constriction influences the upstream flow depth. Under critical flow conditions,

$$
E_{2}=\frac{3}{2} y_{2}=\frac{3}{2}(0.686)=1.028 \mathrm{~m}
$$

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

For the exclusive use of adopters of the book Water-Resources Engineering, Second Edition,

According to the energy equation

$$
\begin{equation*}
E_{1}=E_{2}+\frac{V_{1}^{2}}{2 g} \tag{4}
\end{equation*}
$$

or

$$
y_{1}+\frac{V_{1}^{2}}{2 g}=1.028+\frac{V_{1}^{2}}{2 g}
$$

which yields

$$
y_{1}=1.028 \mathrm{~m}
$$

3.30. From given data: $b=3 \mathrm{~m}, Q=4 \mathrm{~m}^{3} / \mathrm{s}, y_{1}=1.5 \mathrm{~m}$, and

$$
V_{1}=\frac{Q}{b y_{1}}=\frac{4}{3(1.5)}=0.889 \mathrm{~m} / \mathrm{s}
$$

Applying the energy equation,

$$
\begin{aligned}
y_{1}+\frac{V_{1}^{2}}{2 g} & =y_{2}+\frac{V_{2}^{2}}{2 g}+\Delta z \\
1.5+\frac{0.889^{2}}{2(9.81)} & =y_{2}+\frac{\left(4 / 3 y_{2}\right)^{2}}{2(9.81)}+0.15 \\
1.54 & =y_{2}+\frac{0.0906}{y_{2}^{2}}+0.15
\end{aligned}
$$

Solving this equation for y_{2} gives

$$
y_{2}=1.34 \mathrm{~m}, 0.29 \mathrm{~m}
$$

Since the upstream flow is subcritical, select the subcritical flow depth, where

$$
y_{2}=1.34 \mathrm{~m}
$$

When choking just occurs,

$$
y_{2}=y_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3}
$$

where

$$
q=\frac{Q}{b}=\frac{4}{3}=1.33 \mathrm{~m}^{2} / \mathrm{s}
$$

and therefore

$$
y_{c}=\left(\frac{1.33^{2}}{9.81}\right)^{1 / 3}=0.565 \mathrm{~m}
$$

and the energy equation can be written as

$$
\begin{aligned}
y_{1}+\frac{V_{1}^{2}}{2 g} & =y_{c}+\frac{\left(q / y_{c}\right)^{2}}{2 g}+\Delta z_{m} \\
1.54 & =0.565+\frac{(1.33 / 0.565)^{2}}{2(9.81)}+\Delta z_{m}
\end{aligned}
$$

which giveS

$$
\Delta z_{m}=0.69 \mathrm{~m}
$$

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

For the exclusive use of adopters of the book Water-Resources Engineering, Second Edition,
3.31. Flow in a rectangular open channel is choked when

$$
\begin{aligned}
E_{1} & =E_{2}+\Delta z_{c} \\
y_{1}+\frac{V_{1}^{2}}{2 g} & =\frac{3}{2} y_{c}+\Delta z_{c} \\
y_{1}+\frac{V_{1}^{2}}{2 g} & =\frac{3}{2}\left(\frac{q^{2}}{g}\right)^{1 / 3}+\Delta z_{c} \\
y_{1}+\frac{V_{1}^{2}}{2 g} & =\frac{3}{2}\left(\frac{Q^{2}}{g b^{2}}\right)^{1 / 3}+\Delta z_{c} \\
y_{1}+\frac{V_{1}^{2}}{2 g} & =\frac{3}{2}\left[\frac{\left(V_{1} b y_{1}\right)^{2}}{g b^{2}}\right]^{1 / 3}+\Delta z_{c} \\
y_{1}+\frac{V_{1}^{2}}{2 g} & =\frac{3}{2} \frac{\left(V_{1}^{2 / 3} y_{1}^{2 / 3}\right)}{g^{1 / 3}}+\Delta z_{c}
\end{aligned}
$$

Dividing by y_{1} yields

$$
\begin{equation*}
1+\frac{V_{1}^{2}}{2 g y_{1}}=\frac{3}{2}\left(\frac{V_{1}^{2}}{g y_{1}}\right)^{1 / 3}+\frac{\Delta z_{c}}{y_{1}} \tag{1}
\end{equation*}
$$

and defining

$$
\operatorname{Fr}_{1}=\frac{V_{1}}{\sqrt{g y_{1}}}
$$

then Equation 1 can be written as

$$
\frac{\Delta z_{c}}{y_{1}}=1+\frac{\mathrm{Fr}_{1}^{2}}{2}-\frac{3}{2} \mathrm{Fr}_{1}^{2 / 3}
$$

From Problem 3.30: $b=3 \mathrm{~m}, Q=4 \mathrm{~m}^{3} / \mathrm{s}, y_{1}=1.5 \mathrm{~m}$, and $\Delta z_{c}=0.15 \mathrm{~m}$. Therefore

$$
\begin{aligned}
V_{1} & =\frac{Q}{b y_{1}}=\frac{4}{(3)(1.5)}=0.889 \mathrm{~m} / \mathrm{s} \\
\operatorname{Fr}_{1} & =\frac{V_{1}}{\sqrt{g y_{1}}}=\frac{0.889}{\sqrt{(9.81)(1.5)}}=0.232
\end{aligned}
$$

which yields

$$
\begin{aligned}
\frac{\Delta z_{c}}{y_{1}} & =1+\frac{\operatorname{Fr}_{1}^{2}}{2}-\frac{3}{2} \operatorname{Fr}_{1}^{2 / 3} \\
\frac{\Delta z_{c}}{1.5} & =1+\frac{(0.232)^{2}}{2}-\frac{3}{2}(0.232)^{2 / 3}
\end{aligned}
$$

and solving for Δz_{c} gives

$$
\Delta z_{c}=0.69 \mathrm{~m}
$$

