which yields

$$
y_{2}=2.59 \mathrm{~m}
$$

The energy equation gives the energy loss, ΔE, as

$$
\Delta E=y_{1}+\frac{V_{1}^{2}}{2 g}-y_{2}-\frac{V_{2}^{2}}{2 g}=1+\frac{7^{2}}{2(9.81)}-2.59-\frac{\left(\frac{21}{2 \times 2.59+2.59^{2}}\right)^{2}}{2(9.81)}=0.748 \mathrm{~m}
$$

3.44. From the given data: $m=2, Q=0.30 \mathrm{~m}^{3} / \mathrm{s}, y=15 \mathrm{~cm}$, and

$$
\begin{aligned}
A & =m y^{2}=2(0.15)^{2}=0.045 \mathrm{~m}^{2} \\
T & =2 m y=2(2)(0.15)=0.6 \mathrm{~m} \\
D & =\frac{A}{T}=\frac{0.045}{0.6}=0.075 \mathrm{~m} \\
V & =\frac{Q}{A}=\frac{0.30}{0.045}=6.67 \mathrm{~m} / \mathrm{s} \\
\mathrm{Fr} & =\frac{V}{\sqrt{g D}}=\frac{6.67}{\sqrt{(9.81)(0.075)}}=7.78
\end{aligned}
$$

Since $\operatorname{Fr}=7.78>1$, the flow is supercritical.
The hydraulic jump equation is the same as for a trapezoidal channel with $b=0$, hence

$$
\begin{aligned}
\frac{m y_{1}^{3}}{3}+\frac{Q^{2}}{g m y_{1}^{2}} & =\frac{m y_{2}^{3}}{3}+\frac{Q^{2}}{g m y_{2}^{2}} \\
\frac{m(0.15)^{3}}{3}+\frac{(0.30)^{2}}{(9.81)(2)(0.15)^{2}} & =\frac{2 y_{2}^{3}}{3}+\frac{(0.30)^{2}}{(9.81)(2) y_{2}^{2}} \\
0.219 & =0.667 y_{2}^{3}+\frac{0.00459}{y_{2}^{2}}
\end{aligned}
$$

which yields

$$
y_{2}=0.679 \mathrm{~m} \quad \text { or } \quad 0.145 \mathrm{~m}
$$

Since the downstream flow is subcritical, $y_{2}=0.679 \mathrm{~m}$.
3.45. From given data: $Q=10 \mathrm{~m}^{3} / \mathrm{s}, b=5.5 \mathrm{~m}, S_{o}=0.0015, n=0.038, y_{2}=2.2 \mathrm{~m}$.
(a) Using the direct-integration method,

$$
\begin{align*}
y_{1} & =y_{2}-\frac{S_{o}-\left(\frac{n Q \bar{P}^{2 / 3}}{A^{5 / 3}}\right)^{2}}{1-\frac{\bar{V}^{2}}{g \bar{y}}}\left(x_{2}-x_{1}\right) \\
& =y_{2}-\frac{S_{o}-\left(\frac{n Q(b+2 \bar{y})^{2 / 3}}{(b \bar{y})^{5 / 3}}\right)^{2}}{1-\frac{Q^{2}}{g b^{2} \bar{y}^{3}}}\left(x_{2}-x_{1}\right) \\
& =2.2-\frac{0.0015-\left(\frac{(0.038)(10)(5.5+2 \bar{y})^{2 / 3}}{(5.5 \bar{y})^{5 / 3}}\right)^{2}}{1-\frac{10^{2}}{(9.81)(5.5)^{2} \bar{y}^{3}}}(100-0) \tag{1}
\end{align*}
$$

For the exclusive use of adopters of the book Water-Resources Engineering, Second Edition,
where

$$
\begin{equation*}
\bar{y}=\frac{y_{1}+y_{2}}{2}=\frac{y_{1}+2.2}{2} \tag{2}
\end{equation*}
$$

Solving Equations 1 and 2 gives

$$
y_{1}=2.12 \mathrm{~m}
$$

(b) Using the standard-step equation

$$
\begin{equation*}
\Delta L=\frac{\left[y+\frac{V^{2}}{2 g}\right]_{2}^{1}}{\bar{S}_{f}-S_{o}} \tag{3}
\end{equation*}
$$

This equation is solved iteratively until $\Delta L=100 \mathrm{~m}$, and the iterations are summarized in the following table:

y_{2}	A_{2}	P_{2}	R_{2}	V_{2}	S_{2}	y_{1}	A_{1}	P_{1}	R_{1}	V_{1}	S_{1}	\bar{S}_{f}	ΔL
2.2	12.1	9.4	1.29	0.826	0.00070	2.20	12.1	9.4	1.29	0.826	0.00070	0.00070	0
2.2	12.1	9.4	1.29	0.826	0.00070	2.10	11.6	9.2	1.26	0.866	0.00080	0.00075	129
2.2	12.1	9.4	1.29	0.826	0.00070	2.11	11.6	9.22	1.26	0.862	0.00079	0.00075	115
2.2	12.1	9.4	1.29	0.826	0.00070	2.12	11.7	9.24	1.26	0.857	0.00078	0.00074	100

Therefore $y_{1}=2.12 \mathrm{~m}$.
Find the uniform flow depth, y_{n}, using the Manning equation

$$
Q=\frac{1}{n} \frac{A^{5 / 3}}{P^{2 / 3}} \sqrt{S_{o}}
$$

which can be written as

$$
\begin{aligned}
10 & =\frac{1}{n} \frac{\left(5.5 y_{n}\right)^{5 / 3}}{\left(5.5+2 y_{n}\right)^{2 / 3}} \sqrt{S_{o}} \\
10 & =\frac{1}{0.038} \frac{\left(5.5 y_{n}\right)^{5 / 3}}{\left(5.5+2 y_{n}\right)^{2 / 3}} \sqrt{0.0015}
\end{aligned}
$$

which gives

$$
y_{n}=1.719 \mathrm{~m}
$$

Plugging this value of y into the direct-step equation, Equation 3 gives

y_{2}	A_{2}	P_{2}	R_{2}	V_{2}	S_{2}	y_{1}	A_{1}	P_{1}	R_{1}	V_{1}	S_{1}	\bar{S}_{f}	ΔL
2.2	12.1	9.4	1.29	0.826	0.000704	1.719	9.455	8.94	1.00	1.06	0.00149	0.001	1230

Therefore $\Delta L=1230 \mathrm{~m}$.

