
3.4. The shear stress, τo, on the perimeter of the channel is given by

τo = γRSo (1)

From the given data b = 5 m, y = 1.8 m, m = 1.5, and the geometric properties of the channel
are

A = by + my2 = 5(1.8) + 1.5(1.8)2 = 13.86 m2

P = b + 2
√

1 + m2y = 5 + 2
√

1 + 1.52(1.8) = 11.49 m

R =
A

P
=

13.86
11.49

= 1.21 m

From the given data, τo = 3.5 N/m2, and since γ = 9790 N/m2, Equation 1 gives the maximum
allowable slope, So, as

So =
τo

γR
=

3.5
(9790)(1.21)

= 0.00030

For the excavated channel, ks = 3 mm = 0.003 m, and at 20◦C, the density, ρ, and dynamic
viscosity, µ, of water are given by ρ = 998.2 kg/m3, and µ = 0.00100 N·s/m2. Substituting
these data into Equation 3.36 gives the flowrate, Q, as

Q = −2A
√

8gRSo log10

(
ks

12R
+

0.625µ

ρR3/2
√

8gSo

)

Q = −2(13.86)
√

8(9.81)(1.21)(0.00030) log10

(
0.003

12(1.21)
+

0.625(0.00100)
(998.2)(1.21)3/2

√
8(9.81)(0.00030)

)

= 17.2 m3/s

Therefore, for the given flow depth restrictions in the channel, the flow capacity of the channel
is 17.2 m3/s .

3.5. From the given data: b = 8 m, So = 0.0001, ks = 2 mm = 0.002 m, and Q = 15 m3/s. At
20◦C, ρ = 998.2 kg/m3, µ = 0.00100 N·s/m2, and, for a rectangular channel,

A = by and R =
by

2y + b

Substituting into Equation 3.36 gives

Q = −2A
√

8gRSo log10

(
ks

12R
+

0.625µ

ρR3/2
√

8gSo

)

15 = −2(8y)
√

8(9.81)(
8y

2y + 8
)(0.0001) log10

(
0.002

12( 8y
2y+8 )

+
0.625(0.00100)

(998.2)( 8y
2y+8 )3/2

√
8(9.81)(0.0001)

)

which yields
y = 2.25 m

Therefore, the uniform-flow depth in the channel is 2.25 m .
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3.6. From Equation 3.38, taking g = 9.81 m/s2,

C =

√
8g

f
=

√
8(9.81)

f
=

8.86√
f

(1)

Equation 3.43 can be written in the form

1√
f

= 2.97
R1/6

d1/6
(2)

where ks has been replaced by the characteristic roughness height d. Combining Equations 1
and 2 yields

C =
R1/6

0.038d1/6
(3)

Comparing Equation 3 with Equation 3.39 demonstrates that Manning’s n can be expressed
in the form

n = 0.038d1/6

where d is in meters.

3.7. Hydraulically rough flow conditions occur in open channels when

u∗ks

ν
≥ 100 (1)

where
u∗ =

√
gRSf (2)

Equation 3.45 can be rearranged and put in the form

ks = d = 3.32× 108n6 (3)

Substituting Equations (2) and (3) into Equation (1) and noting that ν = 1× 10−6 m2/s at
20◦C and g = 9.81 m/s2 yields

√
9.81

√
RSf × 3.32× 108n6

1× 10−6
≥ 100

which simplifies to

n6
√

RSf ≥ 9.6× 10−14 (4)

From the given data: b = 5 m, and So = 0.05% = 0.0005. For a concrete channel, Table 3.1
indicates that n = 0.011 is a conservative estimate of n. Since

R =
A

P
=

by

2y + b
=

5y

2y + 5
(5)

Equation (4), can be combined with Equation (5) to give the following condition for fully
turbulent flow,

(0.011)6
√( 5y

2y + 5

)
(0.0005) ≥ 9.6× 10−14
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This condition is never satisfied. Taking n = 0.015 requires that

(0.015)6
√( 5y

2y + 5

)
(0.0005) ≥ 9.6× 10−14

which yields
y = 0.15 m

Therefore, the minimum flow depth for fully turbulent flow varies depending on the rough-
ness coefficient of the channel. If the channel is smooth (n = 0.011), then the flow is never
fully turbulent, while if the channel is rough (n = 0.015), fully turbulent flow occurs when
the flow depth is greater than or equal to 0.15 m.

3.8. The Darcy-Weisbach equation gives the average velocity, V , as

V =

√
8g

f

√
RSo

From the given data, y = 2.20 m, ks = 2 mm = 0.002 m, b = 3.6 m, m = 2, So = 0.0006,
and hence the flow area, A, wetted perimeter, P , and hydraulic radius, R, are given by

A = by + my2 = (3.6)(2.20) + (2)(2.20)2 = 17.6 m2

P = b + 2
√

1 + m2y = 3.6 + 2
√

1 + 22(2.20) = 13.4 m

R =
A

P
=

17.6
13.4

= 1.31 m

Assuming the flow is fully turbulent the friction factor, f , can be estimated using Equation
3.28 where

1√
f

= 2 log10

[12R

ks

]
= 2 log10

[12(1.31)
0.002

]
= 7.79

which leads to
f = 0.016

The mean velocity can now be estimated as

V =

√
8g

f

√
RSo =

√
8(9.81)
0.016

√
(1.31)(0.0006) = 1.96 m/s

and the corresponding flowrate, Q, is given by

Q = AV = (17.6)(1.96) = 34.5 m3/s

This flowrate was obtained by assuming that the flow in the channel is hydraulically rough
(fully turbulent), in which case the friction factor does not depend on the Reynolds number
of the flow. This assumption can now be checked by re-calculating the friction factor using
the calculated flowrate. At 20◦C, the kinematic viscosity, ν, of water is 1.00 × 10−6 m2/s,
and the Reynolds number, Re, is therefore given by

Re =
V (4R)

ν
=

(1.96)(4× 1.31)
1.00× 10−6

= 1.03× 107
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The friction factor can now be estimated by the general expression for the friction factor given
by Equation 3.29 where

1√
f

= −2 log10

[
ks

12R
+

2.5
Re
√

f

]

= −2 log10

[ 0.002
12(1.31)

+
2.5

1.03× 107
√

f

]

= −2 log10

[

1.27× 10−4 +
2.43× 10−7

√
f

]

which by trial and error yields
f = 0.016

Since this is the same friction factor as originally estimated, the flow is indeed hydraulically
rough and the estimated velocity and flowrate are 1.96 m/s and 34.5 m3/s .

The Manning’s equation gives the average velocity, V , as

V =
1
n

R2/3S1/2
o

Table 3.1 indicates that a mid-range roughness coefficient for concrete is n = 0.015. The
average velocity given by the Manning equation is

V =
1

0.015
(1.31)2/3(0.0006)1/2 = 1.96 m/s

and the corresponding flowrate, Q, is

Q = AV = (17.6)(1.96) = 34.5 m3/s

Hence, in this case, the Darcy-Weisbach and Manning equations give the same results .

The Manning equation can be taken as valid when n6
√

RSo ≥ 9.6× 10−14 and 2.5 < R/d <
250, where d is the characteristic roughness height corresponding to n = 0.015. These con-
ditions are required for fully turbulent flow conditions to exist and for n/d1/6 to be approxi-
mately constant. In this case,

n6
√

RSo = (0.015)6
√

(1.31)(0.0006) = 3.19× 10−13

and, taking d = (n/0.038)6 = (0.015/0.038)6 = 0.0038 m gives

R

d
=

1.31
0.0038

= 345

These former result indicates that the flow is fully turbulent, and the latter result indicates
that n/d1/6 may not be constant in this case and therefore the Manning equation may not
be strictly applicable.
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3.9. So = 0.0001, ks = 1 mm = 0.001 m, Q = 18 m3/s.

A = 5y + 2y2

P = 5 + 2
√

5y

which gives

R =
A

P
=

5y + 2y2

5 + 2
√

5y
(1)

Assume the flow is fully turbulent, then

1√
f

= −2 log10

(
ks

12R

)
= −2 log10

(0.001
12R

)
(2)

The Darcy-Weisbach uniform-flow equation is

Q = A

√
8g

f
RSo

which can be written as

15 = (5y + 2y2)

√
8(9.81)

f
R(0.0001) = 0.0886(5y + 2y2)

√
R

f
(3)

Solving Equations 1 to 3 simultaneously yields y = 2.18 m, R = 1.38 m, and f = 0.014. Since
V = Q/A = 18/20.4 = 0.88 m/s (where A = 20.4 m2), then the Reynolds number, Re, can
be estimated by

Re =
V (4R)

ν
=

(0.88)(4× 1.38)
1.00× 10−6

= 4.85× 106

According to the Colebrook equation,

1√
f

= −2 log10

(
ks

12R
+

2.5
Re
√

f

)

which leads to
1√
f

= −2 log10

( 0.001
12× 1.38

+
2.5

4.85× 106
√

f

)

and solving for f gives
f = 0.014

Since this is the same value of f obtained by assuming fully turbulent flow, then fully turbu-
lent flow is verified and the uniform depth of flow is 2.18 m . These results indicate that the
flow is hydraulically rough .

Comparing the Manning and Darcy-Weisbach equation gives the following relation between
the Manning roughness coefficient, n, and the Darcy friction factor, f ,

√
8g

f
=

R1/6

n
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Taking g = 9.81 m/s2, f = 0.014, and R = 1.38 m yields n = 0.014. To be valid, the Manning
equation requires fully turbulent flow conditions where n6

√
RSo ≥ 9.6× 10−14. In this case

n6
√

RSo = (0.014)6
√

(1.38)(0.0001) = 9.2× 10−14

Since n6
√

RSo < 9.6× 10−14, the Manning equation is not valid .

3.10. Comparing the Manning and Darcy-Weisbach equations
√

8g

f
=

R1/6

n

which gives

n =
√

fR1/6

√
8g

=
f1/2R1/6

√
8(9.81)

=
f1/2R1/6

8.86

If the friction factor, f , is taken as a constant, the above relation indicates that n must also
be a function of the depth (since R is a function of the depth). However, in fully-turbulent
flow conditions f is certainly not a constant, and Williamson (1951) has shown that f is
proportional to R−1/3 (see Equation 3.43). Taking f ∼ R−1/3, n would be a constant in the
above equation. So the answer to the question is no .

3.11. Given: Q = 20 m3/s, n = 0.015, So = 0.01

(a) Manning equation is given by

Q =
1
n

AnR2/3
n S1/2

o =
1
n

A5/3
n

P 2/3
n

S1/2
o

where

An = [b + myn]yn = [2.8 + 2yn]yn

Pn = b + 2
√

1 + m2yn = 2.8 + 2
√

5yn = 2.8 + 4.472yn

Substituting into the Manning equation yields

20 =
1

0.015
[(2.8 + 2yn)yn]5/3

(2.8 + 4.472yn)2/3
(0.01)1/2

or
[(2.8 + 2yn)yn]5/3

(2.8 + 4.472yn)2/3
= 3.0

Solving by trial and error yields
yn = 0.91 m

(b) Comparing the Manning and Darcy-Weisbach equations gives
√

8g

f
=

R1/6

n
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which leads to
f =

8gn2

R1/3

In this case

A = (2.8 + 2y)y = (2.8 + 2× 0.91)(0.91) = 4.2 m2

P = 2.8 + 4.472(0.91) = 6.87 m

R =
A

P
=

4.20
6.87

= 0.611 m

therefore
f =

8(9.81)(0.015)2

(0.611)1/3
= 0.0208

For fully turbulent, where the Manning equation applies,

1√
f

= −2 log
[

ks

12R

]

1√
0.0208

= −2 log
[

ks

12(0.611)

]

6.93 = −2 log[0.136ks]

which leads to
ks = 0.00249 m = 2.5 mm

3.12. From the given information,
n = 0.039d1/6

where d is in ft. In this case, d = 30 mm = 0.09843 ft, and a 70% error in d is 0.7(0.09843) =
0.06890 ft. Hence, d = 0.09843 ft ± 0.06890 ft. Hence, the estimated value of n, n̄, is given
by

n̄ = 0.039(0.09843)1/6 = 0.027

The lower estimate of n, nL, is given by

nL = 0.039(0.09843− 0.06890)1/6 = 0.022

and the upper estimate of n, nU , is given by

nU = 0.039(0.09843 + 0.06890)1/6 = 0.029

The maximum percentage error in estimating n is therefore given by

error =
0.027− 0.022

0.027
× 100 = 19%

3.13. According to Equation 3.50,

n

k1/6
s

=
1√
8g

(
R
ks

) 1
6

2.0 log
(
12 R

ks

) (1)
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Let

y =
n

k1/6
s

x =
R

ks

and taking g = 9.81 m/s2, Equation 1 can be written

y =

1√
8(9.81)

x1/6

2.0 log(12x)
=

0.1129x1/6

2.0(log 12 + log x)
(2)

=
0.1129x1/6

2.0(log 12 + 0.4343 lnx)
=

0.1129x1/6

2.158 + 0.8686 lnx
(3)

The minimum value of n/k1/2
s (= y) occurs when dy/dx = 0, where

dy

dx
=

(2.158 + 0.8686 lnx)(1
6 × 0.1129x−5/6)− (0.1129x1/6)(0.8686x−1)
(2.158 + 0.8686 lnx)2

= 0

which yields
x = 33.63

and substituting into Equation 3 yields

y = 0.0389

Therefore, under fully-rough flow conditions, the minimum value of n/k1/6
s (= y) is 0.0389, or

approximately 0.039 .

When n/k1/6
s differs by 5% from 0.039,

n

k1/6
s

= 1.05(0.039) =
1√
8g

(
R
ks

) 1
6

2.0 log
(
12 R

ks

)

or

0.04095 =
0.1129x1/6

2.158 + 0.8686 lnx

which yields
x = 6 or 281

Therefore, n/k1/6
s is within 5% of 0.039 when

6 ≤ R

ks
≤ 281

It is noteworthy that this range is narrower than suggested by Yen (1991) and Hager (1999).
The reason for this is that the constant value they assumed is a bit higher than 0.039.

47

© 2006 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This material is 
protected under all copyright laws as they currently exist. No portion of this material may be 
reproduced, in any form or by any means, without permission in writing from the publisher. 

For the exclusive use of adopters of the book Water-Resources Engineering, Second Edition, 
by David A. Chin. 

ISBN 0-13-148192-4.
________________________________________________________________________________________________



3.14. For fully-turbulent flow conditions,
u∗ks

ν
> 70 (1)

where u∗ is given by Equation 3.31 as

u∗ =
√

τo

ρ
=

√
gRS0 (2)

Combining Equations 1 and 2 gives
√

gRS0ks

ν
> 70

or
ks

√
RS0 >

70ν
√

g

Taking ν = 1.00× 10−6 m2/s (at 20◦C), and g = 9.81 m/s2 yields the turbulence condition

ks

√
RS0 >

70(1.00× 10−6)√
9.81

which simplifies to
ks

√
RS0 > 2.2× 10−5

For the given trapezoidal channel, ks = 3 mm = 0.003 m, S0 = 0.1% = 0.001, b = 3 m, m =
2, and for a flow depth y,

R =
A

P
=

by + my2

b + 2y
√

1 + m2
=

3y + 2y2

3 + 2y
√

1 + 22
=

3y + 2y2

3 + 4.472y

For turbulent flow,

ks

√
RS0 > 2.2× 10−5

0.003

√( 3y + 2y2

3 + 4.472y

)
(0.001) > 2.2× 10−5

which requires that
y > 0.056 m

Therefore, flow conditions are fully turbulent when the depth of flow exceeds 0.056 m =
5.6 cm .

At this minimum flow depth,

R =
3(0.056) + 2(0.056)2

3 + 4.472(0.056)
= 0.0536 m

R

ks
=

0.0536 m
0.003 m

= 17.9

Since R/ks is within the range for n/k1/6
s to be assumed constant, using the Manning equation

is appropriate .
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3.15. From the given data: y = 4.00 m, b = 4 m, m = 3, and So = 0.0001. The Manning equation
is valid under the following conditions,

3.6 <
R

ks
< 360 (1)

and
ks

√
RSo > 2.2× 10−5 (2)

Assuming n = 0.013 and n/k1/6
s = 0.040,

ks =
(

n

0.040

)6

=
(0.013

0.040

)6

= 0.00118 m

and since
R =

by + my2

b + 2
√

1 + m2y
=

4(4) + 3(4)2

4 + 2
√

1 + 32(4)
= 2.18 m

then

R

ks
=

2.18 m
0.00118 m

= 1847

ks

√
RSo = (0.00118)

√
(2.18)(0.0001) = 1.74× 10−5

Since R/ks > 360 and ks
√

RSo < 2.2 × 10−5, the flow is not fully turbulent and Manning’s
equation is not applicable .

3.16. From the given data: Q = 1.8 m3/s, m = 2, n = 0.025, and So = 0.1% = 0.001.

(a) Size the channel to accommodate the design flow under normal conditions. Assuming
that the flow in the channel can be described by the Manning equation (i.e. fully turbulent)

Q =
1
n

AR2/3S1/2
o (1)

Since the lengths of the channel sides are equal to the bottom width, b, then the flow depth,
y, is related to the bottom width by the relation

y =
b√

1 + m2
=

b√
1 + 22

= 0.447b (2)

The geometric properties of the channel are

A = by + my2 = b(0.447b) + (2)(0.447b)2 = 0.847b2

P = 3b

R =
A

P
=

0.847b2

3b
= 0.282b

Substituting into the Manning equation, Equation 1, gives

1.8 =
1

0.025
(0.847b2)(0.282b)2/3(0.001)1/2
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which yields
b = 1.67 m

In this case,

n6
√

RSo = (0.025)6
√

(0.282× 1.67)(0.001) = 5.30× 10−12 ≥ 9.6× 10−14

and therefore use of the Manning equation is justified, and according to Equation 2 the depth
of flow is given by

y = 0.447(1.67) = 0.746 m

The required channel is to have a bottom width of 1.67 m, side slopes of 2:1 (H:V), and a
depth of at least 0.746 m.

(b) Let y be the depth of flow when the average shear stress, τ , on the channel lining is equal
to the critical shear stress, τc = 4.0 Pa. The channel lining then becomes unstable and the
geometric properties of the channel are

A = by + my2 = 1.67y + 2y2

P = b + 2
√

1 + m2y = 1.67 + 2
√

1 + 22y1.67 + 4.47y

R =
A

P
=

1.67y + 2y2

1.67 + 4.47y

The average shear stress, τ , on the perimeter of the channel is given by

τ = γRSo (3)

where γ = 9790 N/m3. The channel lining is unstable when τ = τc = 4.0 Pa, and Equation
3 gives

4.0 = (9790)
1.67y + 2y2

1.67 + 4.47y
(0.001)

which yields
y = 0.625 m

Therefore, whenever the flow depth exceeds 0.625 m, the channel lining becomes unstable. In
terms of flow, the Manning equation gives

Q =
1
n

AR2/3S1/2
o

=
1

0.025
[1.67(0.625) + 2(0.625)2]

[
1.67(0.625) + 2(0.625)2

1.67 + 4.47(0.625)

]2/3

(0.001)1/2 = 1.27 m3/s

Therefore, whenever the flowrate exceeds 1.27 m3/s , the channel lining becomes unstable.
An alternative lining should be used if the channel is to accommodate the design flow of 1.8
m3/s.
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