Coordinate Systems

A review of the physical basis that governs mathematical representations

Location is relative

- The position of a thing is stated relative to another thing (real or virtual)
- Reference object must be defined
$\xrightarrow[\text { - Direction must be known }]{\text { - Distance must be known }} \longrightarrow$ Vector

Which of the following can be described with vectors??

- Temperature
- Electric Field
- Liquid Flow Rate
- Voltage
- Mass
- Position
- Translation - Relates the changing position of an object. May be a displacement of the object or its reference.
- Mathematical Representation- Varied uses
- Vectors be velocity, force, etc.
- Spatial - magnitude is a distance
- Displacement - spatial translation of single object. The displacement of an object can be given without respect to another object.
- Position - spatial relation (location) of an object with respect to another (reference object + spatial vector)

Spatial Reference Frame (Basis) representation of length and direction

- Reference Directions
- Defined unit length (distance)
- Origin (reference point)
- Axes
- through origin in reference directions
- positive distinguished from negative
- Spatial (Real Physical) Basis Vectors
- Unit displacement along axes
- Linear sum of basis vectors describes position/direction

Alternate Reference Frames

- Position Coordinates
- $\mathrm{P}_{\mathrm{N}}=\left(\mathrm{x}_{\mathrm{N}}, \mathrm{y}_{\mathrm{N}}, \mathrm{z}_{\mathrm{N}}\right)=(\mathrm{x}, \mathrm{y}, \mathrm{z})_{\mathrm{N}}$
- $\mathrm{P}_{\mathrm{M}}=\left(\mathrm{x}_{\mathrm{M}}, \mathrm{y}_{\mathrm{M}}, \mathrm{z}_{\mathrm{M}}\right)=(\mathrm{x}, \mathrm{y}, \mathrm{z})_{\mathrm{M}}$

Position Reference Relation Between Coordinate Frames

Vector Description Relation Between
Coordinate Frames

So

- Position coordinates are dependent on the reference frame chosen
- When making measurements, the spatial reference frame must be understood or specified
Switching vector descriptions between nonaligned coordinate frames

$$
P^{\left(x_{N}, y_{N}, z_{N}\right)} \begin{aligned}
& \left(x_{M}, y_{M}, z_{M}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
i_{N} & j_{N} & k_{N}
\end{array}\right]\left[\left.\begin{array}{l}
x_{N} \\
y_{N} \\
z_{N}
\end{array} \right\rvert\,\right. \\
& i_{N}=a_{1} i_{M}+a_{2} j_{M}+a_{3} \mathbf{k}_{\mathbf{m}} \\
& \text { and since } \\
& \begin{array}{l}
\dot{j}_{N}=b_{1} \mathfrak{i}_{M}+b_{2} j_{M}+b_{3} \mathbf{k}_{M} \\
\mathbf{k}_{\mathrm{N}}=\mathrm{c}_{1} \mathbf{i}_{\mathrm{M}}+\mathrm{c}_{2} \mathbf{j}_{\mathrm{M}}+\mathrm{c}_{3} \mathbf{k}_{\mathrm{M}}
\end{array} \\
& \text { it follows that } \\
& \left.(\overrightarrow{O P})=\left[\begin{array}{lll}
i_{M} & j_{M} & k_{M}
\end{array}\right] \begin{array}{lll|l}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}| | \begin{array}{l}
x_{N} \\
y_{N} \\
y_{N} \\
z_{N}
\end{array} \right\rvert\, \\
& =\left[\begin{array}{lll}
\mathrm{i}_{\mathrm{M}} & \mathrm{j}_{\mathrm{M}} & \mathrm{k}_{\mathrm{m}} \|[\mathrm{P}]_{M}
\end{array}\right. \\
& \text { so } \\
& {[\mathrm{P}]_{\mathrm{M}}=\left\lceil\left|\mathrm{i}_{\mathrm{N}}\right|_{\mathrm{M}}\left|\mathrm{i}_{\mathrm{N}}\right|_{\mathrm{M}}\left|\mathrm{k}_{\mathrm{N}}\right|_{\mathrm{M}} \mid[\mathrm{P}]_{\mathrm{N}}\right.}
\end{aligned}
$$

Detail of previous transformation between

 rotated coordinate frames with common origin$$
\begin{aligned}
& (\overrightarrow{O P})=\left[\begin{array}{lll}
i_{N} & j_{N} & k_{N}[P]_{N}=\left[\begin{array}{lll}
i_{M} & j_{M} & k_{M}[P]_{M}
\end{array}\right]
\end{array}\right. \\
& =\left[\begin{array}{lll}
i_{N} & j_{N} & k_{N}
\end{array}\right]\left[\begin{array}{l}
x_{N} \\
y_{N} \\
z_{N}
\end{array}|, \quad b u t| \begin{array}{l}
i_{N}=a_{1} i_{M}+a_{2} j_{M}+a_{3} k_{M} \\
j_{N}=b_{1} i_{M}+b_{2} j_{M}+b_{3} k_{M} \\
k_{N}=c_{1} i_{M}+c_{2} j_{M}+c_{3} k_{M}
\end{array}\right. \\
& =x_{N}\left(a_{1} i_{M}+a_{2} j_{M}+a_{3} k_{M}\right)+y_{N}\left(b_{i} i_{M}+b_{2} j_{M}+b_{3} k_{M}\right)+z_{N}\left(c_{1} i_{M}+c_{2} j_{M}+c_{3} k_{M}\right) \\
& =i_{M}\left(x_{N} a_{1}+y_{N} b_{1}+x_{N} c_{1}\right)+j_{M}\left(x_{N} a_{2}+y_{N} b_{2}+z_{N} c_{2}\right)+k_{M}\left(x_{N} a_{3}+y_{N} b_{3}+z_{N} c_{3}\right) \\
& \Gamma x_{N} a_{1}+y_{N} b_{1}+x_{N} c_{1} \\
& =\left[\begin{array}{lll}
\mathrm{i}_{M} & \mathrm{j}_{M} & \mathrm{k}_{\mathrm{M}}
\end{array}\right] \mathrm{x}_{\mathrm{N}} \mathrm{a}_{2}+\mathrm{y}_{\mathrm{N}} \mathrm{~b}_{2}+\mathrm{z}_{\mathrm{N}} \mathrm{c}_{2} \\
& x_{N} a_{3}+y_{N} b_{3}+z_{N} c_{3} \\
& \left.\begin{array}{lll}
a_{1} & b_{1} & c_{1}
\end{array} \right\rvert\, x_{N}
\end{aligned}
$$

Alternative representation of previous transformation between rotated coordinate frames with common origin

$$
\begin{aligned}
& {[P]_{N}\left[\left.\begin{array}{l}
i_{N} \\
j_{N} \\
k_{N}
\end{array}\left|=\left[\begin{array}{lll}
x_{N} & y_{N} & z_{N}
\end{array}\right]\right| \begin{array}{l}
{\left[i_{N}\right.} \\
j_{N} \\
k_{N}
\end{array} \right\rvert\,=x_{N} i_{N}+y_{N} j_{N}+z_{N} k_{N}, \quad \text { but } \left\lvert\, \begin{array}{l}
i_{N}=a_{1} i_{M}+a_{2} j_{M}+a_{3} k_{M} \\
j_{N}=b_{1} i_{M}+b_{2} j_{M}+b_{3} k_{M} \\
k_{N}=c_{1} i_{M}+c_{2} j_{M}+c_{3} k_{M}
\end{array}\right.\right.} \\
& =x_{N}\left(a_{1} j_{M}+a_{2} j_{M}+a_{3} k_{M}\right)+y_{N}\left(b_{1} i_{M}+b_{2} j_{M}+b_{3} k_{M}\right)+z_{N}\left(c_{1} j_{M}+c_{2} j_{M}+c_{3} k_{M}\right) \\
& =\left(x_{N} a_{1}+y_{N} b_{1}+x_{N} c_{1}\right) i_{M}+\left(x_{N} a_{2}+y_{N} b_{2}+z_{N} c_{2}\right) j_{M}+\left(x_{N} a_{3}+y_{N} b_{3}+z_{N} c_{3}\right) k_{M} \\
& =\left[\begin{array}{llll}
x_{N} a_{1}+y_{N} b_{1}+x_{N} c_{1}, & x_{N} a_{2}+y_{N} b_{2}+z_{N} c_{2}, & x_{N} a_{3}+y_{N} b_{3}+z_{N} c_{3}
\end{array}\right]\left|\begin{array}{l}
{\left[i_{M}\right.} \\
j_{M} \\
k_{M}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \text { so }
\end{aligned}
$$

Machines and Metrology

- Basics of Model Building

Machine

- An assemblage of components designed to assist in a desired action being performed on an object.
- System which uses energy in any form to move or alter an object.
- From the Greek 'Mexoo' - mechos meaning expedient

Machine Tool

- Machine which uses any of a variety of tools to change the physical shape or other intrinsic state parameter of a workpiece.
- Common operations include cutting, turning, boring, drilling etc. Often incorporates probes, actuators, transducers, and stages to facilitate its operation.

Machine Design

- Frame - Basic structure of a machine which provides support to all elements.
- Dynamic Elements- motors, ballscrews, carriages Provide Actuation Forces
- Constraining Elements - guideways, ballscrews Limits Degrees of Freedom
- Metrology Elements encoders, scales, readheads Provide Positioning Reference

Structural Loop

- The assembly chain from one machine element to another which provides the physical support and constraint for each element.
- Carriages, guideways (ways), clamping fixtures, toolholder, spindle, bearings
- From workpiece to tool

Metrology Loop/Links

- The path that weaves through the machine elements that provides/affects a machine's positioning reference.
- May interlace through the spindle, quill, table, carriages, scales, ballscrews, frame etc.
- Can be separated to some extent from the structural and dynamic loops and thus not be subject to a distorted frame caused by actuation forces.
- Path may interlace through some supporting components and be affected by their thermal expansion, force distortions, and misalignments.

Dynamic Loops/Links

- The assembly chain from one machine element to another which directs the forces producing motion throughout the machine.
- For a machine tool, the dynamic loops may involve such things as the motors, actuators, spindle, carriages, frame, bearings, ballscrews, workpiece, tool, and clamping fixture.

Transformation Development on a Two Carriage Machine

$\overrightarrow{\mathrm{ft}}=\overrightarrow{\mathrm{fa}}+\overrightarrow{\mathrm{at}}=\overrightarrow{\mathrm{fb}}+\overrightarrow{\mathrm{bt}} \quad$ (physical model)
$\overrightarrow{\mathrm{ft}}_{\mathrm{F}}=\mathrm{fa}_{\mathrm{F}}+\overrightarrow{\mathrm{at}}_{\mathrm{F}}=\mathrm{fb}_{\mathrm{F}}+\overrightarrow{\mathrm{bt}}_{\mathrm{F}} \quad$ (coord representation)
$\overrightarrow{\mathrm{ft}}_{\mathrm{F}}=\overrightarrow{\mathrm{fa}_{\mathrm{F}}}+\mathrm{R}_{\mathrm{AF}}| | \overrightarrow{\mathrm{at}_{\mathrm{A}}} \mid=\mathrm{fb}_{\mathrm{F}}+\mathrm{R}_{\mathrm{BF}}\left(\left|\overrightarrow{\mathrm{bt}}_{\mathrm{B}}\right|\right.$
so that
$\overrightarrow{\mathrm{fa}}_{\mathrm{F}}+\mathrm{R}_{\mathrm{AF}}\left(\left|\overrightarrow{\mathrm{at}}_{\mathrm{A}}\right|-\mathrm{fb}_{\mathrm{F}}=\mathrm{R}_{\mathrm{BF}}| | \overrightarrow{\mathrm{bt}}_{\mathrm{B}} \mid\right.$
$\mathrm{R}_{\mathrm{BF}}{ }^{-1}\left(\mid \mathrm{fa}_{\mathrm{F}}+\mathrm{R}_{\mathrm{AF}}\left(\left|\overrightarrow{\mathrm{at}}_{\mathrm{A}}\right|-\overrightarrow{\mathrm{fb}}_{\mathrm{F}} \mid=\overrightarrow{\mathrm{bt}}_{\mathrm{B}}\right.\right.$
$\mathrm{R}_{\mathrm{BF}}{ }^{-1}\left(\mid \overrightarrow{\mathrm{a}_{\mathrm{F}}}+\mathrm{R}_{\mathrm{AF}}\left(\left|\overrightarrow{\mathrm{t}_{\mathrm{A}}}\right|-\overrightarrow{\mathrm{b}_{\mathrm{F}}} \mid=\overrightarrow{\mathrm{t}_{\mathrm{B}}}\right.\right.$
$\mathrm{R}_{\mathrm{BF}}{ }^{-1}| | \overrightarrow{\mathrm{T}_{\mathrm{aF}}}+\mathrm{R}_{\mathrm{AF}}\left(\left|\overrightarrow{\mathrm{t}_{\mathrm{A}}}\right|-\overrightarrow{\mathrm{T}}_{\mathrm{bF}} \mid=\overrightarrow{\mathrm{t}_{\mathrm{B}}}\right.$

Measurements wrt frame

Transformation Development on a Two Carriage Machine

$\overrightarrow{\mathrm{bt}}=\overrightarrow{\mathrm{bf}}+\overrightarrow{\mathrm{ft}}=\overrightarrow{\mathrm{bf}}+\overrightarrow{\mathrm{fa}}+\overrightarrow{\mathrm{at}}$
$\overrightarrow{b t}_{B}=\overrightarrow{b f}_{B}+\overrightarrow{\mathrm{ft}}_{\mathrm{B}}$
$\overrightarrow{\mathrm{bt}}_{\mathrm{B}}=\overrightarrow{\mathrm{bf}}_{\mathrm{B}}+\mathrm{R}_{\mathrm{FB}}| | \overrightarrow{\mathrm{ft}}_{\mathrm{F}} \mid$
$\overrightarrow{b t}_{B}=\overrightarrow{b f}_{B}+R_{F B}| | \overrightarrow{f a}_{F}+\overrightarrow{a t}_{F} \mid$
$\overrightarrow{b t}_{\mathrm{B}}=\overrightarrow{\mathrm{bf}}_{\mathrm{B}}+\mathrm{R}_{\mathrm{FB}}| | \overrightarrow{\mathrm{a}}_{\mathrm{F}}+\mathrm{R}_{\mathrm{AF}}| | \overrightarrow{\mathrm{at}}_{\mathrm{A}}| |$

$\overrightarrow{\mathrm{t}}_{\mathrm{B}}=\overrightarrow{\mathrm{f}}_{\mathrm{B}}+\mathrm{R}_{\mathrm{FB}}| | \overrightarrow{\mathrm{a}_{\mathrm{F}}}+\mathrm{R}_{\mathrm{AF}} \overrightarrow{\mathrm{t}}_{\mathrm{A}} \mid$
$\overrightarrow{\mathrm{t}_{\mathrm{B}}}=\overrightarrow{\mathrm{T}}_{\mathrm{fB}}+\mathrm{R}_{\mathrm{FB}}| | \overrightarrow{\mathrm{T}_{\mathrm{aF}}}+\mathrm{R}_{\mathrm{AF}} \overrightarrow{\mathrm{t}_{\mathrm{A}}} \mid$

