$\mathrm{w}=\int P \mathrm{dv} \quad$ Quasi-equilibrium (reversible) process;

$$
\mathrm{h}=\mathrm{u}+\mathrm{Pv} \quad \text { Definition, always true }
$$

$\mathrm{PV}=\mathrm{mRT}=\mathrm{n} \bar{R} \mathrm{~T} \quad$ Ideal gas $\left(\mathrm{T}>2 * \mathrm{~T}_{\text {crit }}, \mathrm{P}<10 \mathrm{MPa}\right)$
$\mathrm{Q}-\mathrm{W}=\mathrm{E}_{2}-\mathrm{E}_{1} \quad$ First law for a process, no constraints
$\mathrm{u} \approx \mathrm{u}_{\mathrm{f}} @ \mathrm{~T} ; \mathrm{v} \approx \mathrm{v}_{\mathrm{f}} @ \mathrm{~T}$ Subcooled liquid $\mathrm{h} \approx \mathrm{h}_{\mathrm{f}} @ \mathrm{~T}+\mathrm{v}_{\mathrm{f}}\left(\mathrm{P}-\mathrm{P}_{\mathrm{sat}}\right)$ Subcooled liquid $\mathrm{v}=\mathrm{v}_{\mathrm{f}}+\mathrm{x}\left(\mathrm{v}_{\mathrm{g}}-\mathrm{V}_{\mathrm{f}}\right), \quad \mathrm{u}=\mathrm{u}_{\mathrm{f}}+\mathrm{x} \mathrm{u}_{\mathrm{fg}}$ Two-phase
$\mathrm{Q}-\mathrm{W}=\mathrm{U}_{2}-\mathrm{U}_{1} \quad$ First law for a process, closed system, negligible changes in kinetic and potential energy
$\mathrm{C}_{\mathrm{v}}=\frac{\partial u}{\partial T} \quad, \mathrm{C}_{\mathrm{p}}=\frac{\partial h}{\partial T} \quad$ Definition; $\quad \mathrm{C}_{\mathrm{v}}=\frac{d u}{d T} \quad, \mathrm{C}_{\mathrm{p}}=\frac{d h}{d T} \quad \mathrm{u}$ and h functions of temperature only
$\mathrm{u}_{2}-\mathrm{u}_{1}=\int C_{v} \mathrm{dT} \quad$ Internal energy is a function of temp only; $\mathrm{h}_{2}-\mathrm{h}_{1}=\int C_{p} \mathrm{dT} \quad$ Enthalpy is a function of temp only $\oint \delta Q=\oint \delta W \quad$ Any thermodynamic cycle $\quad \dot{m}=\rho \vec{V} \mathrm{~A}$ steady, 1-d flow
$\dot{Q}+\sum \dot{m}_{\mathrm{i}}\left(\mathrm{h}+\frac{\vec{V}^{2}}{2}+\mathrm{gZ}\right)_{\mathrm{i}}=\dot{W}+\sum \dot{m}_{\mathrm{e}}\left(\mathrm{h}+\frac{\vec{V}^{2}}{2}+\mathrm{gZ}\right)_{\mathrm{e}}+\frac{d E}{d t} \quad$ First law for control volume
$\mathrm{q}+\mathrm{h}_{1}+1 / 2 \vec{V}_{1}^{2}+\mathrm{gZ} \mathrm{Z}_{1}=\mathrm{w}+\mathrm{h}_{2}+1 / 2 \vec{V}_{2}^{2}+\mathrm{gZ} \mathrm{Z}_{2} \quad$ Single-inlet, single-exit, steady flow
$\eta_{\mathrm{th}}=\frac{\mathcal{W}_{\text {net }}}{q_{H}}=1-\frac{q_{L}}{q_{H}}$ Heat engine; $\quad \beta=\frac{q_{L}}{\mathcal{W}_{\text {net }}} \quad$ Heat pump (cooler); $\gamma=\frac{q_{H}}{\mathcal{W}_{\text {net }}} \quad$ Heat pump (heater)
$\mathrm{w}=-\int v \mathrm{dP}-1 / 2\left(\vec{V}_{2}^{2}-\vec{V}_{1}^{2}\right)-\mathrm{g}\left(\mathrm{Z}_{2}-\mathrm{Z}_{1}\right) \quad$ Reversible, steady flow
$\mathrm{q}=\int T d s \quad$ Reversible process $\quad \mathrm{Q}_{\mathrm{H}} / \mathrm{Q}_{\mathrm{L}}=\mathrm{T}_{\mathrm{H}} / \mathrm{T}_{\mathrm{L}}$ Carnot cycle
$\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}} ; \frac{T_{2}}{T_{1}}=\left(\frac{v_{2}}{v_{1}}\right)^{1-k} ; \quad \frac{P_{2}}{P_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{k} \mathrm{~s}=$ const, IG, Cp $=$ const

$\Delta \mathrm{s}=\mathrm{C}_{\mathrm{p}} \ln \frac{T_{2}}{T_{1}}-\mathrm{R} \ln \frac{P_{2}}{P_{1}}, \Delta \mathrm{~s}=\mathrm{C}_{\mathrm{v}} \ln \frac{T_{2}}{T_{1}}+\mathrm{R} \ln \frac{v_{2}}{v_{1}} \quad$ IG, const specific heats
$\frac{P_{R 2}}{P_{R 1}}=\frac{P_{2}}{P_{1}} ; \frac{v_{R 2}}{v_{R 1}}=\frac{v_{2}}{v_{1}} \quad$ Isentropic, ideal gas, non-constant specific heats
$\eta_{\text {turbine }}=\mathrm{w}_{\mathrm{a}} / \mathrm{w}_{\mathrm{s}} \quad \eta_{\text {compressor }}=\mathrm{w}_{\mathrm{s}} / \mathrm{w}_{\mathrm{a}} \quad \eta_{\text {pump }}=\mathrm{w}_{\mathrm{s}} / \mathrm{w}_{\mathrm{a}} \quad \eta_{\text {nozzle }}=\frac{\vec{V}_{a}^{2}}{\vec{V}_{s}^{2}}$

Polytropic ${ }^{\text {s }}$ processes

