Coloring Graphs with Intervals

Erik Saule and Dante Durrman

The University of North Carolina at Charlotte

Scheduling for Large Scale Systems Workshop
May 22, 2023

Scheduling, Traditionally

Parallel Task Graph
O O

Pipelined Graphs
Independent Tasks 5 2 3 2

, s 1
Opur ®rus Opue ®pus ®paz Opue ®ruto
of.s e el el el. el e, ¢

;P
S == < Chas pi < C;

max

Processors

time

All these cases have precedence dependencies that come from the application

Conflict Graph Model

A Coloring Model

Applications ‘
() (&)

Process X can't run while Process Y runs.

® Transactions in Databases

® Transpose sparse matrix operations
® Anytimes tasks share memory writes G Q

Traditionally solved with mutex and atomics.
Schedule

In batches of colors with a hard
synchronization between colors.

Conflict models do not account for runtime of tasks.

The runtime of tasks matters

Executing colors one at a time Optimal schedule

w=3
c=[7-10)
w=5
c=[0-5)
w=2
c=[5-7)
w=2 w=06
c=[0-2) c=[7-13)

Solution in 13

w=3
c=[0-3)
w=5
c=[3-8)
w=2
c=[8-10)
w=2 w=6
c=[8-10) c=[0-6)

Solution in 10

Formal Definition of the Interval Vertex Coloring Problem

Interval Vertex Coloring Problem (IVC)

Let G = (V, E) be an undirected graph and w : V — Z* be a weight function.
An interval coloring of the vertices of G is a function start : V — ZT.
We say that vertex v is colored with the open interval [start(v), start(v) + w(v)).

Valid Interval Coloring

For the coloring to be valid, neighboring vertices must have disjoint color intervals:
V(a, b) € E,[start(a), start(a) + w(a)) N [start(b), start(b) + w(b)) = 0.

Optimal Interval Coloring

A particular coloring of vertices is said to use maxcolor = max,cy start(v) + w(v) colors.
The optimization problem is to find a coloring that minimizes maxcolor.

We denote the optimal value of maxcolor as maxcolor*.

Coloring vertices with interval is harder than regular graph coloring

o NP Complete in general

® No general approximation algorithm

@ Introduction
@® Coloring 9-pt and 27-pt stencils with intervals [[PDPS22]
© Optimizing Distributed Dataflow Algorithms [PDCO23]

® Conclusion

The Problem of Coloring Stencils with Intervals

2D Example (4x4)

2H1H2H:2
1 1 1 1
At ® A graph which is a
1 1 1 1
THoHoH2 ® 2D 9-pt stencil _
- - - - ® or 3D 27-pt stencil
' 2ne ® Each vertex has a weight w(v)
E le Solut ® Color each vertex with an interval larger than its weight
xample Solution
P ® Intervals should have the form [start(v), start(v) + w(v))
02560235 ® No adjacent vertices can have overlapping intervals
1 1 1 1
23H3s5H23H 56 ® maxcolors is the largest right endpoint in the set of intervals
- - - - ® Objective is to minimize maxcolor
56 Ho2HooHoz2
1 1 1 1
24H45H24Hoo0

Cliques can be Colored in Linear Time

K4 Example

2 11

I I ® No vertex can share any color with any other vertex in clique

® We must use at least) ., w(v) colors

1T H 2 e Greedily color the interval with the lowest available start(v)
® Complexity ©(V)
K4 Solution
0,2 B 5,6 ® Each square block of 4 vertices is a Ky

® Sum of weights of Kj is a lower bound of 2D 9-pt stencil

® Each square block of 8 vertices is a Kg
2 3 | 3 5 ® Sum of weights of Kg is a lower bound of 3D 27-pt stencil
’ ’

Bipartite Graphs can be Colored in Linear Time

Bipartite Example
Algorithm

® Partition vertices into A, B, s.t, (i,j)) € E = i€ A,j,eB

2 3

3 2 * Compute maxcolor = max; jjcg w(i) + w())
6 e Color i € A starting at 0 with [0; w(/))
¢ Color j € B ending at maxcolor with [maxcolor — w(j); maxcolor)

e Complexity ©(E)

Bipartite Solution —
Implications

02 6.9 . N :
Many subgraphs of a stencil are bipartite and induce lower bounds:

1

/)N

2

03 7.9 ® Each edge in the graph
® 2D 5-pt stencils

® 3D 7-pt stencils

01 39

/)N

79

® Many cycles of even length

Odd Cycles can be Colored in Linear Time

Odd Cycle Example
Algorithm

18H 6 . . .
® | et maxpair be the largest sum of any 2 consecutive vertices
7 18 ® | et minchain3 is the smallest sum of 3 consecutive vertices
18 6 ® We have maxcolor = max(maxpair, minchain3)

® |dentify the minchain3 triplet: 0, 1,2

Color 0 with [0; w(0))

Color 1 with [w(0); w(0) + w(1))

Color 2 with [w(0) + w(1); w(2))

Color the other alternatively with [0; w(v))
or [maxcolor — w(v); maxcolor)

07 624 e Complexity ©(E)

7,25 24,30 - -
Implications

07 Many odd cycles in 2D 9-pt stencils and 3D 27-pt stencils

7

Odd Cycle Solution

725 H 0,6

27pt-Stencil is NP-Complete by Reduction from NAE-3SAT

NAE-3SAT: Not-All-Equal 3-SAT

® n binary variables in m groups of 3 variables

® Assign true or false to each variable

® The instance is positive if every group has at least one variable that is true and at least
one that is false

NAE-3SAT is known to be NP-Complete

Solving NAE-3SAT by Coloring a Simple Graph with 14 Colors

NAE-3SAT Instance
Variables: {a, b, c,d}; Clauses: {(a, b, c),(b,c,d)}

Constructed Graph Instance Solution in 14 Colors

Embedding the Constructed Graph in a 3D 27-pt Stencil

... To a 27-pt 3D stencil

Layer 1 Layer 2 Layer 3

77 77
77777777007 77 777777007 77
7 7003007 7 7003007
700777777700733007 7007777700733007
707 7 707 707 7 707
707007777007007007 7070077007007007
70707 70077 7 707070070077 7
7 70707 7 7

Greedy Algorithms

Greedy Principles

Any greedy coloring will color vertex v with an interval that ends before:

2jery wl) + (T(v) + Dw(v) — T(v)

® Greedy Largest First

® Greedy Line by Line
® Greedy Z-Order

® Greedy Largest Clique First
® Schedule vertices in the largest clique first; order within clique uses vertex id

® Smart Greedy Largest Clique First
® Permute each clique and use the order with least maxcolor

Bipartite Decomposition is a 2-approx. in 2D (and 4-approx. in 3D)

Do Rows Independently | Shift Odd Rows by Max Color

2 H3H2HS5 02H47H02H27|7 02H47H02H27
I I I I I I I I
TH2H1THA4 01TH35HO01TH 155 7,8 H 10124 7,8 H6,10
I I I I I I I I
3 H3IH3H! 03H36HO03H56|6 03H36HO03H56
I I I I I I I I
TH2H1H 2 O0TH13HO1TH 133 7,8 H8,10H 7,8 H8,10

Bipartite Decomposition with Post Optimization

® Sort Ky or Kg (in 3D) by non-increasing order by the sum total of their weights
® Sort vertices within K by increasing order of lowest value in their scheduled interval

® Recolor each vertex one at a time using a greedy principle

We Ran Simulations. These Methods Work.

Pollen-highres-lowbw-xy-179-32 PollenUs-highres-lowbw-xy-32-14

FluAnimal-highres-lowbw-xy-57-153

Dengue-highres lowbw-xy-73-64

- -
- s000 ~
- “ s0000
° " N
“© q - 4000 ®
b 2 30000
o H 2000 =
w3 =5 * «a
= = 20000
. 2 200 20000 H
o H 1000 1000 3 20000
* —— - o ®
30 8 12 15182128213033 3 90 1243 48515157 6063 Sn2nINRRIGRASERAGERR 6 8 1012 14 10 18 20 22 24 2 28 % ° °
v v v
1 10 1
08 08 08
<06 <o <o
g g 2 —e— Bipartite Decomposition K
- —o— Bipartite Decomposition 04 04 Bipartite Decomposition + Post Lt ~®— Bipartite Decomposition
Bipartite Decompositon + Post - Bipartite Decomposition =~ Greedy Line by Line Bipartite Decomposition + Past
- Greedy Line by Line Bipartite Decompositon + Post —+— Greedy Z.0rder =~ Greedy Line by Line
. —— Greedy 2.Order 02 =~ Greedy Line by Line 02 - Greedy Largest First 02 4 Greedy Largest First
— Greedy Largest First & Greedy Largest First - Greedy Largest Clique irst - Greedy Largest Clque Firs
- Greedy Largest Clique First < Greedy Largest Clique First —— Smart Greedy Largest Clique First —— Smart Greedy Largest Clique First
—— Smart Greedy Largest Clique First —— Smart Greedy Largest Clique First Integer Linear Programing Integer Linear Programming
00+ 3 00, 3
To 12 Ta T T8 20 To T2 Ta 6 s 20 o 12 Ta s s 20) 12) s) 20
tau tau

We Integrated that in a Real Application. These Methods Work.

Eal

> Gy K,

——— - -
Y
P ——— [RR——— [
o o
_
“‘{‘ o1 !
~ & Lo o
O .
o
s s
P———- ReI——— [T —
o
3 . 3
w4
o ;
. oS e
- o . 80
z r z 2
H « wor : i
£ e
. ok o
o

calors colors calos

© Optimizing Distributed Dataflow Algorithms [PDCO23]

Luby's Algorithm is an Example of a Dataflow Algorithm

Luby's Algorithm for Maximal Independent Set

® Each vertex v picks unique random number r(v) uniformly in [0; 1)

® v sends r(v) to each of its neighbors u
® v notes which neighbors u have the property r(u) > r(v)
® v marks its own state as unknown

® v awaits a message from each of its neighbors v if r(u) < r(v)

If the state of u is marked, the state of v is changed to unmarked

o After receiving messages from all neighbors u, if the state of v is unknown, the state of v
is changed to marked

® v sends its state to all neighbors u, such that r(u) > r(v)

® All vertices in the marked state are a maximal independent set

Introduction to Dataflow Algorithms
Distributed Dataflow Algorithms

® Only use local information

® Processing order of vertices is generated randomly

® Once the order is picked the vertices are processed from low to high in each neighborhood
® Cost to determine other desirable properties is too high

® We are interested in these methods as a model for distributed graph algorithms

® Luby’'s Algorithm for Maximal Independent Set
® Jones-Plassmann Algorithm for Graph Coloring

Choice of random order matters to algorithm runtime

55888 S

Figure 1: Lucky Draw Figure 2: Unlucky Draw

Choice of random order matters to algorithm runtime

55888 S

Figure 1: Lucky Draw Figure 2: Unlucky Draw

The question

How can we avoid unlucky draws?

Developing a Dataflow Model for Distributed Graph Algorithms

® Let G = {V, E} be an undirected graph and w : V — Z" be a weight function

® Assign r(v) to each vertex v with your algorithm of choice

e Construct directed graph G by orienting the existing edges from low r(v) to high r(v)
e Calculate length of critical path of G

Critical Path

Longest weighted path in G

Minimizing the length of the critical path (which minimizes the algorithm execution time)

The Weight Function is Non-trivial

Special Case: w(v) =1

® Execution time is dominated by latency.
® The critical path is the number of phases for the graph.

® (ritical path is the same as longest path using euclidean distance

Special Case: w(v) = d(v)

® Bandwidth or the cost of algorithms on the vertices themselves dominates the total
execution time of the algorithm.

® Each vertex sends and receives 0(v) messages
® Most dataflow algorithms have each vertex do O(d(v)) computations

® |argest Degree First Order closely resembles that of Largest Processing Time First

Deriving Better Partial Orders for Distributed Graph Algorithms

Uniform (aka draw in [0;1))
® Existing method of random number generation in dataflow algorithms

Linear (aka draw in [0; d(v)))
® v is guaranteed to be after all vertices u, such that 6(uv) = 0(v) — 1 with probability ﬁ
® Good approximation of Largest Degree First with vertices of dramatic difference in degrees

® Poor approximation when A(G) is large and G has many vertices of large degrees

Exponential (aka draw in [0;2°(V)))
® v is guaranteed to be after all vertices u, such that §(u) = §(v) — 1 with probability > 3

® Better approximation of Largest Degree First

® Communication and Computational cost is the same for each algorithm

® Sampling uniformly in those intervals despite naming conventions

Introduction to RMAT Graphs

Vertex v
o
® 2" nodes . | d °
® Recursively split square matrix into 4 quadrants: a, b, ¢, d a
® Each quadrant has an associated probability that a given ¢ d

Vertex u

edge will fall into that quadrant: a4+ b+c+d=1

® Edges are generated one at a time and placed in a
quadrant recursively following those probabilities until the c d
edge is placed in a 1 x 1 submatrix.

® of x2" edges

RMAT Graphs Study

&[4[Unform O Espanentiar € | Linear [U7E U/ I/
30078 028 | 074 [9%, 3997 | 2623, 765 | 0. 2653|1125 | 1033 | 1087
s {aaeo. 1062 | 1056 | 1010 | 1036

{sees. 4] | 1049 | 1015 | 1030
o175, 178] | 1051 | 1022 [1028
(o067, 3000 | 1054 | 1025 | 1020
s [oy 565 2108 | 1025 | 707 [1010
Methodolo jose3. 2505] | 1060 | 1019 | 1060
510, 3513] | 1215 | 1077 | 1128

= picz 2004 | 1282 | 1003 | 1173

o625, 2627 | 1243 | 1085 | 1345

Y Samp|ed RMA parameter space Wlth constant ef oo | 0m [ant | o7 | e 3oy | bratioiay | oo, aeem | dces | 261 | 1398
) Computed crltlcal path Iength fOI’ each algorlthm 030|049 |017 | 004 | (5052 5050] | ot s] | saes, 307 | 1603 | 1301 | 1232
0 , :

° Calculated 95/ Conﬂdence |nterVa|S 040030 [018 | 012 | (soos 5006 | fsss 4535 | a2 4526 | 1050 | 13s | 1050
0 040 [030{ 02¢ | 006 | (o141 144 | [sss2 s0s6] | [s032 so3s] | 10so | 1035 | 1049

) CO puted pairwise ratios Of critical paths 040 042|007 | 011 | o7 so70] | oo 00 | fgss o3 | 1452 | 1221 | 1189
® Conducted Z-Test to validate statistical significance
esults
® Exponential path < Linear path < Uniform path
® Exponential was never worse than Uniform e e e e
, 0

® At best, Exponential was 50% better b | |
, o sl e | i i

® On average, Exponential was about 10% better i e e el

Understanding the Results of the RMAT Graphs Study

Why is Exponential better on RMAT Graphs

® RMAT Graphs have the same properties of a social network

® Social networks are " Onion-like" - dense core, but outer layers become less dense

® Exponential is similar to Largest First

DENSITY: 0.0—0.2—0.4—0.6—08—-1.0

2/ N\ @
SIZE: 10 <= 10% <= ¢ 107 <= 10
O < Vet Jercte

Figure 3: Hierarchy of Dense Subgraphs by Sariyuce et al. (2015)

Building a Real World Application from the RMAT Graphs Study

Real World Application

® Conducted similar experiment on real world graphs from SNAP

® All graphs have small world properties, except roads of Pennsylvania

® Exponential was better except on ca-HepPh and roadNet-PA

Max | Clustering

Name Vertices Edges | Degree | Coefficient | Diameter | Uniform CI Exp ial Cl Linear CI U/E |U/L |L/E

CA-HepPh 89,209 118,521 491 0.6115 13 || [1030; 1036] 1040; 1045] 1032; 1037] 0.991 | 0.999 | 0.992
Email-Enron 36,692 183,831 1,383 0.4970 11 || [43437; 43720] 38836; 38982] 40688; 41002] 1.120 | 1.067 | 1.050
p2p-Gnutella04 10,879 39,994 103 0.0062 9 | [911; 925] 568; 575] 728; 740] 1.606 | 1.251 | 1.284
roadNet-PA 1,090,920 | 1,541,898 9 0.0465 786 || [49; 49] 49; 50] 48; 49] 0.990 | 1.010 | 0.980
soc-Epinions1 75,888 405,740 3,044 0.1378 14 || [94793; 95270] 88297; 88593 80488; 90034] 1.074 | 1.059 | 1.015
soc-pokec-relationships | 1,632,804 | 22,301,964 | 14,854 0.1094 11 || [118924; 119528] 96958; 97239 100836; 101775] 1.228 | 1.177 | 1.043
web-Google 916,428 | 4,322,051 6,332 0.5143 21 || [80466; 81618] 18166; 18192 20577, 21084] 4.458 | 3.891 | 1.146
WikiTalk 2,394,385 | 4,659,565 | 100,029 0.0526 9 | [1352414; 1357165] | [1101248; 1103043] | [1145942; 1151894] || 1.229 | 1.179 | 1.042

of the Real World Application

1050 1100 1200 1250 1300

1150
CrtcalPath Longth

Figure 4: ca-HepPh

Cumdiatve Densty Funcion

a0o00 as000

s w0 oo 05000
Citical Path Lengtn

Figure 8: soc-Epinionsl

300 W00 4000 42000 44000 45000
Crtial Path Lengtn

45000

Figure 5: email-Enron

0000 1000 120000

110000
Grical Path Longth

Figure 9: soc-pokec

130000

w0 w0 70 wo w0 120

)
Gottal Patn Length

Figure 6: p2p-Gnutella04

— Exponental

20000 0000 0000 100000

o000
GrttalPatn Longth

Figure 10: web-Google

55
CrtcalPath Longth

Figure 7: roadNet-PA

105 10 15 1m0 125 1w s 1e0 14
Crtical Patn Lengtn 166

Figure 11: wiki-Talk

® Conclusion

Tackled an understudied coloring problem

Structured graphs Distributed coloring with interval

® Recast graph dataflow algorithm

® 27-pt 3D stencil is NP Complete R g . .
optimization as interval coloring

® Polynomiality of simple structures .
® Suggested new algorithms for

® Approximation algorithms for 2D and distributed interval coloring

3D stencils

] o) e Statistically proved soundness on RMAT
Validated in simulation

graphs

Validated in a real application ® Validated on some real world graphs

Complexity of coloring 2D 9pt stencil with intervals?

Can we do better than 4-approximation for 3D 27-pt stencils?

Are there other particular graphs it would make sense to consider?

® Can we prove that largest degree first lead to shorter path for some categories of graphs?

Can we find more applications where coloring with intervals is a good model?

Thank you!

Papers

Dante Durrman and Erik Saule. Optimizing the critical path of distributed dataflow graph
algorithms. In Proceedings of IPDPS Workshops (IPDPSW); PDCO, 2023.

Dante Durrman and Erik Saule. Coloring the vertices of 9-pt and 27-pt stencils with intervals.
In Proc. of IPDPS, May 2022.

Contact
esaule@uncc.edu

Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant
No CCF-1652442.

	Introduction
	Coloring 9-pt and 27-pt stencils with intervals [IPDPS22]
	Problem Definition
	Basic Structures
	Complexity
	Experiments

	Optimizing Distributed Dataflow Algorithms [PDCO23]
	Conclusion

