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Scheduling, Traditionally
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All these cases have precedence dependencies that come from the application



Conflict Graph Model

A Coloring Model

Applications ‘
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Process X can't run while Process Y runs.

® Transactions in Databases

® Transpose sparse matrix operations
® Anytimes tasks share memory writes G Q

Traditionally solved with mutex and atomics.
Schedule

In batches of colors with a hard
synchronization between colors.

Conflict models do not account for runtime of tasks.




The runtime of tasks matters

Executing colors one at a time Optimal schedule
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Formal Definition of the Interval Vertex Coloring Problem

Interval Vertex Coloring Problem (IVC)

Let G = (V, E) be an undirected graph and w : V — Z* be a weight function.
An interval coloring of the vertices of G is a function start : V — ZT.
We say that vertex v is colored with the open interval [start(v), start(v) + w(v)).

Valid Interval Coloring

For the coloring to be valid, neighboring vertices must have disjoint color intervals:
V(a, b) € E,[start(a), start(a) + w(a)) N [start(b), start(b) + w(b)) = 0.

Optimal Interval Coloring

A particular coloring of vertices is said to use maxcolor = max,cy start(v) + w(v) colors.
The optimization problem is to find a coloring that minimizes maxcolor.

We denote the optimal value of maxcolor as maxcolor*.



Coloring vertices with interval is harder than regular graph coloring

o NP Complete in general

® No general approximation algorithm



@ Introduction
@® Coloring 9-pt and 27-pt stencils with intervals [[PDPS22]
© Optimizing Distributed Dataflow Algorithms [PDCO23]

® Conclusion



The Problem of Coloring Stencils with Intervals

2D Example (4x4)
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1 1 1 1
THoHoH2 ® 2D 9-pt stencil _
- - - - ® or 3D 27-pt stencil
' 2ne ® Each vertex has a weight w(v)
E le Solut ® Color each vertex with an interval larger than its weight
xample Solution
P ® Intervals should have the form [start(v), start(v) + w(v))
02560235 ® No adjacent vertices can have overlapping intervals
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23H3s5H23H 56 ® maxcolors is the largest right endpoint in the set of intervals
- - - - ® Objective is to minimize maxcolor
56 Ho2HooHoz2
1 1 1 1
24H45H24Hoo0







Cliques can be Colored in Linear Time

K4 Example

2 11

I I ® No vertex can share any color with any other vertex in clique

® We must use at least ) ., w(v) colors

1T H 2 e Greedily color the interval with the lowest available start(v)
® Complexity ©(V)
K4 Solution
0,2 B 5,6 ® Each square block of 4 vertices is a Ky

® Sum of weights of Kj is a lower bound of 2D 9-pt stencil

® Each square block of 8 vertices is a Kg
2 3 | 3 5 ® Sum of weights of Kg is a lower bound of 3D 27-pt stencil
’ ’




Bipartite Graphs can be Colored in Linear Time

Bipartite Example
Algorithm

® Partition vertices into A, B, s.t, (i,j)) € E = i€ A,j,eB

2 3

3 2 * Compute maxcolor = max; jjcg w(i) + w())
6 e Color i € A starting at 0 with [0; w(/))
¢ Color j € B ending at maxcolor with [maxcolor — w(j); maxcolor)

e Complexity ©(E)

Bipartite Solution —
Implications

02 6.9 . N :
Many subgraphs of a stencil are bipartite and induce lower bounds:
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03 7.9 ® Each edge in the graph
® 2D 5-pt stencils

® 3D 7-pt stencils
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® Many cycles of even length




Odd Cycles can be Colored in Linear Time

Odd Cycle Example
Algorithm

18H 6 . . .
® | et maxpair be the largest sum of any 2 consecutive vertices
7 18 ® | et minchain3 is the smallest sum of 3 consecutive vertices
18 6 ® We have maxcolor = max(maxpair, minchain3)

® |dentify the minchain3 triplet: 0, 1,2

Color 0 with [0; w(0))

Color 1 with [w(0); w(0) + w(1))

Color 2 with [w(0) + w(1); w(2))

Color the other alternatively with [0; w(v))
or [maxcolor — w(v); maxcolor)

07 624 e Complexity ©(E)

7,25 24,30 - -
Implications

07 Many odd cycles in 2D 9-pt stencils and 3D 27-pt stencils

7

Odd Cycle Solution

725 H 0,6




27pt-Stencil is NP-Complete by Reduction from NAE-3SAT

NAE-3SAT: Not-All-Equal 3-SAT

® n binary variables in m groups of 3 variables

® Assign true or false to each variable

® The instance is positive if every group has at least one variable that is true and at least
one that is false

NAE-3SAT is known to be NP-Complete



Solving NAE-3SAT by Coloring a Simple Graph with 14 Colors

NAE-3SAT Instance
Variables: {a, b, c,d}; Clauses: {(a, b, c),(b,c,d)}

Constructed Graph Instance Solution in 14 Colors




Embedding the Constructed Graph in a 3D 27-pt Stencil

... To a 27-pt 3D stencil

Layer 1 Layer 2 Layer 3
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Greedy Algorithms

Greedy Principles

Any greedy coloring will color vertex v with an interval that ends before:

2jery wl) + (T(v) + Dw(v) — T(v)

® Greedy Largest First

® Greedy Line by Line
® Greedy Z-Order

® Greedy Largest Clique First
® Schedule vertices in the largest clique first; order within clique uses vertex id

® Smart Greedy Largest Clique First
® Permute each clique and use the order with least maxcolor



Bipartite Decomposition is a 2-approx. in 2D (and 4-approx. in 3D)

Do Rows Independently | Shift Odd Rows by Max Color
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Bipartite Decomposition with Post Optimization

® Sort Ky or Kg (in 3D) by non-increasing order by the sum total of their weights
® Sort vertices within K by increasing order of lowest value in their scheduled interval

® Recolor each vertex one at a time using a greedy principle



We Ran Simulations. These Methods Work.
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We Integrated that in a Real Application. These Methods Work.
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© Optimizing Distributed Dataflow Algorithms [PDCO23]



Luby's Algorithm is an Example of a Dataflow Algorithm

Luby's Algorithm for Maximal Independent Set

® Each vertex v picks unique random number r(v) uniformly in [0; 1)

® v sends r(v) to each of its neighbors u
® v notes which neighbors u have the property r(u) > r(v)
® v marks its own state as unknown

® v awaits a message from each of its neighbors v if r(u) < r(v)

If the state of u is marked, the state of v is changed to unmarked

o After receiving messages from all neighbors u, if the state of v is unknown, the state of v
is changed to marked

® v sends its state to all neighbors u, such that r(u) > r(v)

® All vertices in the marked state are a maximal independent set



Introduction to Dataflow Algorithms
Distributed Dataflow Algorithms

® Only use local information

® Processing order of vertices is generated randomly

® Once the order is picked the vertices are processed from low to high in each neighborhood
® Cost to determine other desirable properties is too high

® We are interested in these methods as a model for distributed graph algorithms

® Luby’'s Algorithm for Maximal Independent Set
® Jones-Plassmann Algorithm for Graph Coloring




Choice of random order matters to algorithm runtime

55888 S

Figure 1: Lucky Draw Figure 2: Unlucky Draw



Choice of random order matters to algorithm runtime

55888 S

Figure 1: Lucky Draw Figure 2: Unlucky Draw

The question

How can we avoid unlucky draws?



Developing a Dataflow Model for Distributed Graph Algorithms

® Let G = {V, E} be an undirected graph and w : V — Z" be a weight function

® Assign r(v) to each vertex v with your algorithm of choice

e Construct directed graph G by orienting the existing edges from low r(v) to high r(v)
e Calculate length of critical path of G

Critical Path

Longest weighted path in G

Minimizing the length of the critical path (which minimizes the algorithm execution time)




The Weight Function is Non-trivial

Special Case: w(v) =1

® Execution time is dominated by latency.
® The critical path is the number of phases for the graph.

® (ritical path is the same as longest path using euclidean distance

Special Case: w(v) = d(v)

® Bandwidth or the cost of algorithms on the vertices themselves dominates the total
execution time of the algorithm.

® Each vertex sends and receives 0(v) messages
® Most dataflow algorithms have each vertex do O(d(v)) computations

® |argest Degree First Order closely resembles that of Largest Processing Time First



Deriving Better Partial Orders for Distributed Graph Algorithms

Uniform (aka draw in [0;1))
® Existing method of random number generation in dataflow algorithms

Linear (aka draw in [0; d(v)))
® v is guaranteed to be after all vertices u, such that 6(uv) = 0(v) — 1 with probability ﬁ
® Good approximation of Largest Degree First with vertices of dramatic difference in degrees

® Poor approximation when A(G) is large and G has many vertices of large degrees

Exponential (aka draw in [0;2°(V)))
® v is guaranteed to be after all vertices u, such that §(u) = §(v) — 1 with probability > 3

® Better approximation of Largest Degree First

® Communication and Computational cost is the same for each algorithm

® Sampling uniformly in those intervals despite naming conventions



Introduction to RMAT Graphs

Vertex v
o
® 2" nodes . | d °
® Recursively split square matrix into 4 quadrants: a, b, ¢, d a
® Each quadrant has an associated probability that a given ¢ d

Vertex u

edge will fall into that quadrant: a4+ b+c+d=1

® Edges are generated one at a time and placed in a
quadrant recursively following those probabilities until the c d
edge is placed in a 1 x 1 submatrix.

® of x2" edges



RMAT Graphs Study
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Understanding the Results of the RMAT Graphs Study

Why is Exponential better on RMAT Graphs

® RMAT Graphs have the same properties of a social network

® Social networks are " Onion-like" - dense core, but outer layers become less dense

® Exponential is similar to Largest First

DENSITY: 0.0—0.2—0.4—0.6—08—-1.0

2/ N\ @
SIZE: 10 <= 10% <= ¢ 107 <= 10
O < Vet Jercte

Figure 3: Hierarchy of Dense Subgraphs by Sariyuce et al. (2015)



Building a Real World Application from the RMAT Graphs Study

Real World Application

® Conducted similar experiment on real world graphs from SNAP

® All graphs have small world properties, except roads of Pennsylvania

® Exponential was better except on ca-HepPh and roadNet-PA

Max | Clustering

Name Vertices Edges | Degree | Coefficient | Diameter | Uniform CI Exp ial Cl Linear CI U/E |U/L |L/E

CA-HepPh 89,209 118,521 491 0.6115 13 || [1030; 1036] 1040; 1045] 1032; 1037] 0.991 | 0.999 | 0.992
Email-Enron 36,692 183,831 1,383 0.4970 11 || [43437; 43720] 38836; 38982] 40688; 41002] 1.120 | 1.067 | 1.050
p2p-Gnutella04 10,879 39,994 103 0.0062 9 | [911; 925] 568; 575] 728; 740] 1.606 | 1.251 | 1.284
roadNet-PA 1,090,920 | 1,541,898 9 0.0465 786 || [49; 49] 49; 50] 48; 49] 0.990 | 1.010 | 0.980
soc-Epinions1 75,888 405,740 3,044 0.1378 14 || [94793; 95270] 88297; 88593 80488; 90034] 1.074 | 1.059 | 1.015
soc-pokec-relationships | 1,632,804 | 22,301,964 | 14,854 0.1094 11 || [118924; 119528] 96958; 97239 100836; 101775] 1.228 | 1.177 | 1.043
web-Google 916,428 | 4,322,051 6,332 0.5143 21 || [80466; 81618] 18166; 18192 20577, 21084] 4.458 | 3.891 | 1.146
WikiTalk 2,394,385 | 4,659,565 | 100,029 0.0526 9 | [1352414; 1357165] | [1101248; 1103043] | [1145942; 1151894] || 1.229 | 1.179 | 1.042




of the Real World Application
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® Conclusion



Tackled an understudied coloring problem

Structured graphs Distributed coloring with interval

® Recast graph dataflow algorithm

® 27-pt 3D stencil is NP Complete R g . .
optimization as interval coloring

® Polynomiality of simple structures .
® Suggested new algorithms for

® Approximation algorithms for 2D and distributed interval coloring

3D stencils

] o ) e Statistically proved soundness on RMAT
Validated in simulation

graphs

Validated in a real application ® Validated on some real world graphs



Complexity of coloring 2D 9pt stencil with intervals?

Can we do better than 4-approximation for 3D 27-pt stencils?

Are there other particular graphs it would make sense to consider?

® Can we prove that largest degree first lead to shorter path for some categories of graphs?

Can we find more applications where coloring with intervals is a good model?



Thank you!
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